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Abstract
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1 Introduction
Recently, a number of studies related to fixed points, coupled fixed points and coupled
coincidence points of maps defined via auxiliary functions have appeared in the literature.
In particular, the so-called weak ϕ-contractions, contractions defined bymeans of altering
distance functions, α –ψ-type contractions have been a subject of considerable interest.
Studies of this type aim to generalize and improve contractive condition on the maps (see,
e.g., [–]).
A great deal of these studies investigate contractions on partially ordered metric spaces

because of their applicability to initial value problems defined by differential or integral
equations. This is the case of the following result.

Theorem . (Hussain et al. [], Theorem ) Let (X,�) be a partially ordered set such
that there exists a complete metric d on X. Assume that F ,G : X × X → X are two gener-
alized compatible mappings such that F is G-increasing with respect to �, G is continuous
and has the mixed monotone property, and there exist two elements x, y ∈ X such that

G(x, y) � F(x, y) and G(y,x) � F(y,x). ()

Suppose that there exist φ ∈ � and ψ ∈ � such that

φ
(
d
(
F(x, y),F(u, v)

)) ≤ 

φ
(
d
(
G(x, y),G(u, v)

)
+ d

(
G(y,x),G(v,u)

))
–ψ

(
d(G(x, y),G(u, v)) + d(G(y,x),G(v,u))



)
()
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for all x, y,u, v ∈ X withG(x, y) �G(u, v) andG(y,x) �G(v,u). Suppose that for any x, y ∈ X,
there exist u, v ∈ X such that

F(x, y) =G(u, v) and F(y,x) =G(v,u). ()

Also suppose that either
(a) F is continuous, or
(b) X has the following property:

(i) if a �-non-decreasing sequence {xn} → x, then xn � x for all n ∈N,
(ii) if a �-non-increasing sequence {yn} → y, then y � yn for all n ∈ N.

Then F and G have a coupled coincidence point in X.

In this paper we show that the previous result can be easily improved because of the
following facts.
() The mixed monotone property is not necessary since F is G-increasing with respect

to �.
() It is possible to consider a pair of mappings satisfying a weaker condition than the

generalized compatible property (using monotone sequences).
() In fact, Theorem . is not a true advance because it can be reduced to its

corresponding unidimensional coincidence point theorem.
To prove our main claims, we will show a unidimensional proof of the mentioned theo-

rem.

2 Preliminaries
Firstly, we recall some basic definitions and elementary results needed throughout the
paper. Some of them can be found in []. In the sequel, we denote by X a nonempty
set. Given a natural number n ∈ N, let Xn be the nth Cartesian product X × X × · · · × X
(n times). We employ mappings T , g : X → X and F : Xn → X. For simplicity, if x ∈ X, we
denote T(x) by Tx.

Definition . (Khan et al. []) An altering distance function is a continuous, non-
decreasing function φ : [,∞) → [,∞) such that φ(t) =  if and only if t = . Let Falt

denote the family of all altering distance functions.

A function φ : [,∞) → [,∞) is said to be subadditive if φ(t + s) ≤ φ(t) + φ(s) for all
t, s≥ . Following [], we introduce the following families of control functions. Let � de-
note the family of all subadditive altering distance functions, that is, functions φ : [,∞) →
[,∞) which satisfy the following:

(φ) φ is continuous and non-decreasing;
(φ) φ(t) =  if and only if t = ;
(φ) φ(t + s) ≤ φ(t) + φ(s) for all t, s ∈ [,∞).

We denote by � the family of all functions ψ : [,∞)→ [,∞) which satisfy the follow-
ing:
() limt→r ψ(t) >  for all r > ;
() limt→+ ψ(t) = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/207
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Remark . Let ψ ∈ � , c >  and define ψc : [,∞) → [,∞) by ψc(t) = cψ(t/c) for all
t ≥ . Then ψc ∈ � .

Definition . (see [, ]) A coincidence point of two mappings T , g : X → X is a point
x ∈ X such that Tx = gx.

Definition. (Hussain et al. [], Definition ) A coupled coincidence point of twomap-
pings F ,G : X → X is a point (x, y) ∈ X such that

F(x, y) =G(x, y) and F(y,x) =G(y,x).

Definition . An ordered metric space (X,d,�) is a metric space (X,d) provided with a
partial order �.

Definition . ([, ]) An ordered metric space (X,d,�) is said to be non-decreasing-
regular (respectively, non-increasing-regular) if for every sequence {xm} ⊆ X such that
{xm} → x and xm � xm+ (respectively, xm � xm+) for all m, we have that xm � x (respec-
tively, xm � x) for all m. (X,d,�) is said to be regular if it is both non-decreasing-regular
and non-increasing-regular.

Remark . Notice that condition (b) in Theorem . means that (X,d,�) is regular.

Definition . Let (X,�) be a partially ordered set, and letT , g : X → X be twomappings.
We say that T is (g,�)-non-decreasing if Tx � Ty for all x, y ∈ X such that gx � gy. If g is
the identity mapping on X, we say that T is �-non-decreasing.

Remark . If T is (g,�)-non-decreasing and gx = gy, then Tx = Ty. It follows that

gx = gy ⇒
{
gx � gy
gy � gx

}
⇒

{
Tx � Ty
Ty� Tx

}
⇒ Tx = Ty.

Definition . (Hussain et al. [], Definition ) Suppose that F ,G : X × X → X are two
mappings, and let� be a partial order on X. Themapping F is said to beG-increasing with
respect to � if for all x, y,u, v ∈ X with G(x, y)�G(u, v) we have F(x, y)� F(u, v).

Lemma . (see []) Let (X,d) be a metric space and define �n : Xn × Xn → [,∞), for
all A = (a,a, . . . ,an),B = (b,b, . . . ,bn) ∈ Xn, by

�n(A,B) =
n∑
i=

d(ai,bi).

Then �n is metric on Xn and (X,d) is complete if and only if (X,�n) is complete.

Consider on the product space X the following partial order: for (x, y), (u, v) ∈ X,

(x, y) � (u, v) ⇔ [x� u and y� v]. ()
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Definition . ([, –]) Let (X,d,�) be an orderedmetric space. TwomappingsT , g :
X → X are said to be O-compatible if

lim
m→∞d(gTxm,Tgxm) = 

provided that {xm} is a sequence in X such that {gxm} is �-monotone, that is, it is either
non-increasing or non-decreasing with respect to �, and

lim
m→∞Txm = lim

m→∞ gxm ∈ X.

Definition . (Hussain et al. [], Definition ) Let F ,G : X × X → X. We say that the
pair {F ,G} is generalized compatible if for all sequences {xn}, {yn} ⊆ X such that

lim
n→∞F(xn, yn) = lim

n→∞G(xn, yn) = t ∈ X and lim
n→∞F(yn,xn) = lim

n→∞G(yn,xn) = t ∈ X,

we have that

lim
n→∞d

(
F
(
G(xn, yn),G(yn,xn)

)
,G

(
F(xn, yn),F(yn,xn)

))
=  and

lim
n→∞d

(
F
(
G(yn,xn),G(xn, yn)

)
,G

(
F(yn,xn),F(xn, yn)

))
= .

3 Main results
To start with, we highlight the weakness of Theorem . using the following example.

Example . Let X = [,∞) endowed with the standard metric d(x, y) = |x – y| for all
x, y ∈ X. Consider the maps F ,G : X ×X → X defined by

F(x, y) =


x –



y and G(x, y) =

x – y


for all x, y ∈ X.

Then, for all x, y,u, v ∈ X with y = v, we have

d
(
F(x, y),F(u, v)

)
=


|x – u| and d

(
G(x, y),G(u, v)

)
+ d

(
G(y,x),G(v,u)

)
= |x – u|.

Thus,

d
(
F(x, y),F(u, v)

)
>


(
d
(
G(x, y),G(u, v)

)
+ d

(
G(y,x),G(v,u)

))
.

Regarding the properties of the functions in �, we derive that

ϕ
(
d
(
F(x, y),F(u, v)

))
>


ϕ
(
d
(
G(x, y),G(u, v)

)
+ d

(
G(y,x),G(v,u)

))
.

Since the function in the class� takes values on [,∞), it is impossible to verify inequality
(). Hence, Theorem . cannot be applied to get a coupled coincidence point. However,
it is easy to see that (, ) is a coupled coincidence point of F and G.
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Next, we show a unidimensional version of Theorem .. Notice that, indeed, the fol-
lowing result is better than Theorem . because we reorder the hypotheses obtaining
that, in some cases, neither the continuity of, at least, one mapping (T or g) nor the O-
compatibility of the pair (T , g) is necessary. In fact, both hypotheses are omitted in case (c).

Theorem . Let (X,d,�) be an ordered metric space, and let T , g : X → X be two map-
pings such that the following properties are fulfilled:

(i) T(X)⊆ g(X);
(ii) T is (g,�)-non-decreasing;
(iii) there exists x ∈ X such that gx � Tx;
(iv) there exist φ ∈ � and ψ ∈ � verifying

φ
(
d(Tx,Ty)

) ≤ φ
(
d(gx, gy)

)
–ψ

(
d(gx, gy)

)
for all x, y ∈ X such that gx � gy.

Also assume that, at least, one of the following conditions holds.
(a) (X,d) is complete, T and g are continuous and the pair (T , g) is O-compatible;
(b) (X,d) is complete and T and g are continuous and commuting;
(c) (g(X),d) is complete and (X,d,�) is non-decreasing-regular;
(d) (X,d) is complete, g(X) is closed and (X,d,�) is non-decreasing-regular;
(e) (X,d) is complete, g is continuous and monotone �-non-decreasing, the pair (T , g) is

O-compatible and (X,d,�) is non-decreasing-regular.
Then T and g have, at least, a coincidence point.

We omit the proof of the previous result since its proof is similar to the main theorem
in [] and it can be concluded by following, point by point, all of its arguments.
Next, we show how to deduce an appropriate version of Theorem . from Theo-

rem .. Given the orderedmetric space (X,d,�), let us consider the orderedmetric space
(X,�,�), where � was defined in Lemma . and � was introduced in (). We define
the mappings TF ,TG : X → X, for all (x, y) ∈ X, by

TF (x, y) =
(
F(x, y),F(y,x)

)
and TG(x, y) =

(
G(x, y),G(y,x)

)
.

Under these conditions, the following properties hold.

Lemma . Let (X,d,�) be an ordered metric space, and let F ,G : X → X be two map-
pings. Then the following properties hold.
() (X,d) is complete if and only if (X,�) is complete.
() If (X,d,�) is regular, then (X,�,�) is also regular.
() If F is d-continuous, then TF is �-continuous.
() If F is G-increasing with respect to �, then TF is (TG,�)-non-decreasing.
() Condition () is equivalent to the existence of a point (x, y) ∈ X such that

TG(x, y) � TF (x, y).
() Condition () is equivalent to TF (X)⊆ TG(X).
() If there exist φ ∈ � and ψ ∈ � such that () holds, then

φ
(
�

(
TF (x, y),TF (u, v)

)) ≤ φ
(
�

(
TG(x, y),TG(u, v)

))
–ψ

(
�

(
TG(x, y),TG(u, v)

))
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for all (x, y), (u, v) ∈ X such that TG(x, y) � TG(u, v), where ψ ∈ � was defined in
Remark ..

() If the pair {F ,G} is generalized compatible, then the mappings TF and TG are
O-compatible in (X,�,�).

() A point (x, y) ∈ X is a coupled coincidence point of F and G if and only if it is a
coincidence point of TF and TG.

Proof Item () follows from Lemma . and items (), (), (), () and () are obvious.
() Assume that F is G-increasing with respect to �, and let (x, y), (u, v) ∈ X be

such that TG(x, y) � TG(u, v). Then G(x, y) � G(u, v) and G(y,x) � G(v,u). Since F is G-
increasing with respect to �, we deduce that F(x, y)� F(u, v) and F(y,x) � F(v,u). There-
fore, TF (x, y) � TF (u, v) and this means that TF is (TG,�)-non-decreasing.
() Suppose that there exist φ ∈ � andψ ∈ � such that () holds, and let (x, y), (u, v) ∈ X

be such thatTG(x, y) � TG(u, v). ThereforeG(x, y) �G(u, v) andG(y,x) �G(v,u). Using (),
we have that

φ
(
d
(
F(x, y),F(u, v)

)) ≤ 

φ
(
d
(
G(x, y),G(u, v)

)
+ d

(
G(y,x),G(v,u)

))
–ψ

(
d(G(x, y),G(u, v)) + d(G(y,x),G(v,u))



)
. ()

Furthermore, taking into account that G(v,u) � G(y,x) and G(u, v) � G(x, y), the contrac-
tivity condition () also guarantees that

φ
(
d
(
F(v,u),F(y,x)

)) ≤ 

φ
(
d
(
G(v,u),G(y,x)

)
+ d

(
G(u, v),G(x, y)

))
–ψ

(
d(G(v,u),G(y,x)) + d(G(u, v),G(x, y))



)
. ()

Since φ is subadditive, it follows from () and () that

φ
(
�

(
TF (x, y),TF (u, v)

))
= φ

(
�

[(
F(x, y),F(y,x)

)
,
(
F(u, v),F(v,u)

)])
= φ

(
d
(
F(x, y),F(u, v)

)
+ d

(
F(y,x),F(v,u)

))
≤ φ

(
d
(
F(x, y),F(u, v)

))
+ φ

(
d
(
F(y,x),F(v,u)

))
≤ φ

(
d
(
G(x, y),G(u, v)

)
+ d

(
G(y,x),G(v,u)

))
– ψ

(
d(G(v,u),G(y,x)) + d(G(u, v),G(x, y))



)

= φ
(
�

(
TG(x, y),TG(u, v)

))
–ψ

(
�

(
TG(x, y),TG(u, v)

))
.

() Let {(xm, ym)} ⊆ X be any sequence such that {TF (xm, ym)}
�−→ (x, y) and

{TG(xm, ym)}
�−→ (x, y) (notice that we do not need to suppose that {TG(xm, ym)} is �-

monotone). Therefore,

{(
F(xm, ym),F(ym,xm)

)} �−→ (x, y) ⇒ [{
F(xm, ym)

} d−→ x and
{
F(ym,xm)

} d−→ y
]
;
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{(
G(xm, ym),G(ym,xm)

)} �−→ (x, y)

⇒ [{
G(xm, ym)

} d−→ x and
{
G(ym,xm)

} d−→ y
]
.

Therefore

lim
m→∞F(xm, ym) = lim

m→∞G(xm, ym) = x ∈ X and

lim
m→∞F(ym,xm) = lim

m→∞G(ym,xm) = y ∈ X.

Since the pair {F ,G} is generalized compatible, we deduce that

lim
m→∞d

(
F
(
G(xm, ym),G(ym,xm)

)
,G

(
F(xm, ym),F(ym,xm)

))
=  and

lim
m→∞d

(
F
(
G(ym,xm),G(xm, ym)

)
,G

(
F(ym,xm),F(xm, ym)

))
= .

In particular,

lim
m→∞�

(
TGTF (xm, ym),TFTG(xm, ym)

)
= lim

m→∞�
(
TG

(
F(xm, ym),F(ym,xm)

)
,TF

(
G(xm, ym),G(ym,xm)

))
= lim

m→∞�
((
G

(
F(xm, ym),F(ym,xm)

)
,G

(
F(ym,xm),F(xm, ym)

))
,

(
F
(
G(xm, ym),G(ym,xm)

)
,F

(
G(ym,xm),G(xm, ym)

)))
= lim

m→∞
[
d
((
G

(
F(xm, ym),F(ym,xm)

)
,F

(
G(xm, ym),G(ym,xm)

)))
+ d

((
G

(
F(ym,xm),F(xm, ym)

)
,F

(
G(ym,xm),G(xm, ym)

)))]
= .

Hence, the mappings TF and TG are O-compatible in (X,�,�). �

As a consequence, we conclude that Hussain et al.’s result can be deduced from the cor-
responding unidimensional result. Furthermore, aswe have pointed out, it is not necessary
for G to have the mixed monotone property because F is G-increasing with respect to �.

Corollary . Theorem ., even avoiding the assumption that G has the mixed monotone
property, is a consequence of Theorem ..

Proof It is only necessary to apply Theorem . to the mappings T = TF and g = TG in the
ordered metric space (X,�,�), taking into account all items of Lemma .. �

The following result is an improved version of Theorem . in which the contractivity
condition is replaced by a more convenient one, which is symmetric on the variables (x, y)
and (u, v).

Corollary . Let (X,�) be a partially ordered set such that there exists a complete metric
d on X. Assume that F ,G : X ×X → X are two generalized compatible mappings such that

http://www.fixedpointtheoryandapplications.com/content/2014/1/207
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F is G-increasing with respect to �,G is continuous and there exist two elements x, y ∈ X
such that

G(x, y)� F(x, y) and G(y,x) � F(y,x).

Suppose that there exist φ ∈ � and ψ ∈ � such that

φ

(
d(F(x, y),F(u, v)) + d(F(y,x),F(v,u))



)

≤ φ

(
d(G(x, y),G(u, v)) + d(G(y,x) +G(v,u))



)

–ψ

(
d(G(x, y),G(u, v)) + d(G(y,x) +G(v,u))



)
()

for all x, y,u, v ∈ X withG(x, y) �G(u, v) andG(y,x) �G(v,u). Suppose that for any x, y ∈ X,
there exist u, v ∈ X such that

F(x, y) =G(u, v) and G(y,x)� F(y,x).

Also assume that either
(a) F is continuous, or
(b) (X,d,�) is regular.
Then F and G have, at least, a coupled coincidence point, that is, there exist x, y ∈ X such

that G(x, y) = F(x, y) and G(y,x) = F(y,x).

Proof It is only necessary to apply Theorem . to the mappings T = TF and g = TG in
the ordered metric space (X,�′

,�), where �′
 = �/, taking into account all items of

Lemma .. �

In the following example we show that Corollary . is applicable to the mappings of
Example ., when Theorem . is not useful.

Example . Let X = [,∞) endowed with the Euclidean metric d(x, y) = |x – y| for all
x, y ∈ X. Consider the maps F ,G : X ×X → X defined by

F(x, y) =


x –



y and G(x, y) =

x – y


for all x, y ∈ X.

Then, for all x, y,u, v ∈ X with y = v, we have

d
(
F(x, y),F(u, v)

)
+ d

(
F(y,x),F(v,u)

)
=


(|x – u| + |y – v|) and

d
(
G(x, y),G(u, v)

)
+ d

(
G(y,x),G(v,u)

)
= |x – u| + |y – v|.

Thus,

d
(
F(x, y),F(u, v)

)
< d

(
G(x, y),G(u, v)

)
+ d

(
G(y,x),G(v,u)

)
.
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Regarding the properties of the functions in �, we derive that

φ

(
d(F(x, y),F(u, v)) + d(F(y,x),F(v,u))



)

≤ φ

(
d(G(x, y),G(u, v)) + d(G(y,x) +G(v,u))



)
.

To provide inequality (), it is sufficient to choose ψ(t) = t
 . Hence, Theorem . can be

applied in order to guarantee that F and G have a coupled coincidence point. Indeed, it is
easy to check that (, ) is a coupled coincidence point of F and G.

To finish the paper, we want to point out a pair of details.
() The function in φ in Theorem . is not a true generalization because if φ ∈ �, then

the mapping dφ : X ×X → [,∞), defined by dφ(x, y) = φ(d(x, y)) for all x, y ∈ X , is
also a metric on X . For more details, see []. Notice also that the assumption of
sub-additivity (φ) is superfluous in most of the published results (see, e.g., []).

() Using the same techniques that can be found in [, , –], it is possible to
deduce, from Theorem ., tripled, quadrupled and, in general, multidimensional
coincidence point theorems.
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