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Abstract

We give new hybrid variants of extragradient methods for finding a common solution
of an equilibrium problem and a family of nonexpansive mappings. We present a
scheme that combines the idea of an extragradient method and a successive
iteration method as a hybrid variant. Then, this scheme is modified by projecting on a
suitable convex set to get a better convergence property under certain assumptions
in a real Hilbert space.
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1 Introduction

In this paper, we always assume that # is a real Hilbert space with the inner product (-, )
and the induced norm | - ||. Let C be a nonempty closed convex subset of H and the
bifunction f : C x C — R. Then f is called strongly monotone on C with 8 > 0 iff

fxy) +f0,x) <-Blx—-yI* Vx,yeC;

monotone on C iff

SEy)+fx) <0 Vx,yeC
pseudomonotone on C iff

flx,y) >0 implies f(y,x) <0 Vx,yeC;

Lipschitz-type continuous on C in the sense of Mastroeni [1] iff there exist positive con-
stants ¢; > 0, ¢; > 0 such that

fey) +f0,2) = f2) —allx-y* - caly-2I* VayzeC.
An equilibrium problem, shortly EP(f, C), is to find a point in

Sol(f,C) = {x* € C:f(x*,y) = 0 Vy e C}.
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Let a mapping T of C into itself. Then T is called contractive with constant § € (0,1) iff
|7 - TGN <8l -y VayeC.

The mapping T is called strictly pseudocontractive iff there exists a constant k € [0,1) such
that
2 2
| TG) = TO)|" < llx =y + k|| = T) @) - (U = D))"

In the case k = 0, the mapping T is called nonexpansive on C. We denote by Fix(T) the set
of fixed points of T

Let T; : C — C, i € T, be a family of nonexpansive mappings where I' stands for an
index set. In this paper, we are interested in the problem of finding a common element of
the solution set of problem EP(f, C) and the set of fixed points F = (), Fix(T;), namely:

Find x* € F N Sol(f, C), (1.1)

where the function f and the mappings T;, i € I, satisfy the following conditions:

A;) f(x,x) =0 for all x € C and f is pseudomonotone on C,
Ajy) f is Lipschitz-type continuous on C with constants ¢; > 0 and ¢; > 0,

A4) Foreachx € C, f(x,-) is convex and subdifferentiable on C,

(
(
(As3) f is upper semicontinuous on C,
(
(As) FNSol(f,C) #0.

Under these assumptions, for each r > 0 and x € C, there exists a unique element z € C
such that

f(z,y)+%(y—z,z—x)20 Vy e C. (1.2)
Problem (1.1) is very general in the sense that it includes, as special cases, optimization
problems, variational inequalities, minimax problems, equilibrium equilibriums, fixed
point problems (see, e.g., [2—7]). Recently, it has become an attractive field for many re-
searchers in both theory and its solution methods (see, e.g,, [3, 4, 8—12] and the references
therein). Most of these algorithms are based on inequality (1.2) for solving the underlying
equilibrium problem when F N Sol(f, C) # . Motivated by this idea for finding a common
point of Sol(f, C) and the fixed point set Fix(7) of a nonexpansive mapping 7, Takahashi
and Takahashi [13] first introduced an iterative scheme by the viscosity approximation
method. The sequence {x"} is defined by

xo € C,
f@hy) + -y —u',u" —x") =0 VyeC,
xn+1 — ang(x") + (1 — O[n)T(Mn) Vn>0,

where g: C — C is contractive. Under certain conditions over the parameters {«,} and
{r,}, they showed that the sequences {x"} and {u"} strongly converge to z =
Prrix(r)nsol(r,c) &(2), where Pr¢ denotes the projection on C. At each iteration # in all of
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these algorithms, it requires to solve approximation auxiliary equilibrium problems for
finding a common solution of an equilibrium problem and a fixed point problem. In order
to avoid this requirement, Anh [14] recently proposed a hybrid extragradient algorithm
for finding a common point of the set Fix(T") N Sol(f, C). Starting with an arbitrary initial

point x° € C, iteration sequences are defined by

y* = argmin{if (8, y) + 3lly - 25> 1y € C},
t* = argmin{Aif (/% 1) + 3 || — &X||* : £ € C}, (1.3)

2 = e + (1 — ) T(HF).

Under certain conditions onto parameters {A;} and {a}, he showed that the sequences
(%}, {y*} and {t*} weakly converge to the point x € Fix(T) N Sol(f, C) in a real Hilbert
space. At each main iteration # of the scheme, he only solved strongly convex problems

n+l

on C, but the proof of convergence was still done under the assumptions that x"** —x” — 0.

For finding a common point of a family of nonexpansive mappings T; (i € I'), as a corol-

lary of Theorem 2.1 in [15], Zhou proposed the following iteration scheme:

%% € H chosen arbitrarily,

Ci=C,C = Nier Cuiv

x! = Prc, (x°),

Y= (1= )% + o, Ti(x"), (1.4)
Cuari = {2 € it ai(1 =200, ) |2 = Ty |1 < (8" — 2,9 = Ti(y™)},

Cui1 = Nier Curvis

"t = Pre,,, (x0).

Under the restrictions of the control sequences 0 < liminf,,_,  &,; < limsup,,_, . a,; <
a; < %, he showed that the sequence {x"} defined by (1.4) strongly converges to x* = Prp(x°)
in a real Hilbert space H, where F = (), Fix(T}).

In this paper, motivated by Ceng et al. [16, 17], Wang and Guo [18], Zhou [15], Nadezhk-
ina and Takahashi [10], Cho et al. [19], Takahashi and Takahashi [13], Anh [6, 12] and Anh
et al. [20, 21], we introduce several modified hybrid extragradient schemes to modify the
iteration schemes (1.3) and (1.4) to obtain new strong convergence theorems for a family
of nonexpansive mappings and the equilibrium problem EP(f, C) in the framework of a
real Hilbert space H.

To investigate the convergence of this scheme, we recall the following technical lemmas

which will be used in the sequel.

Lemma 1.1 ([14], Lemma 3.1) Let C be a nonempty closed convex subset of a real Hilbert
space H. Let f : C x C — R be a pseudomonotone and Lipschitz-type continuous bifunc-
tion. For each x € C, let f(x,-) be convex and subdifferentiable on C. Suppose that the se-
quences {x"}, {y"}, {t"} are generated by scheme (1.3) and x* € Sol(f, C). Then

”t" —x* ||2 < ”x” —x* ||2 - (1—2)»,,01)Hx” —y"H2 - (1—2)\,,02)Hy” —t" ”2 Yn>0.

Page 3 of 11
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Lemma 1.2 Let C be a closed convex subset of a real Hilbert space H, and let Prc be the
metric projection from H on to C (i.e., for x € H, Prc is the only point in C such that ||x —
Prex| = inf{||x — z|| : z € C}). Given x € H and z € C. Then z = Prc x if only if there holds
the relation (x —z,y—z) <0 forall y € C.

Lemma 1.3 Let H be a real Hilbert space. Then the following equations hold:
@ Il =01 = llx1? = IylI* — 24x ~ 3,y) for all x,y € H.
(i) lltx+ @ =l? = x> + A= O)lyI* — A - ) |lx~ yII* for all t € [0,1] and x,y € H.

2 Convergence theorems

Now, we prove the main convergence theorem.

Theorem 2.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Suppose
that assumptions (A1)-(As) are satisfied and {T}};cr is a family of nonexpansive mappings
from C into itself and a nonempty common fixed points set F. Let {x"} be a sequence gen-

erated by the following scheme:

%% € H chosen arbitrarily,

Ci=D1;=C,C = jer Cri- D1 = jer Dris
x! = Preynp, 47,

y" = argmin{A,f (x",9) + lly —x"|| : y € C},
Z" = argmin{A,f (", y) + %Ilz —x"?:ze C},
Y = (1= @p)2" + ay TiZ",

Cuari = {2 € Cuii (1= 2a,) 12" = Tiz"||* < (2" — 2,y — Tiy™)),
Cur1 = Nier Curviv

Dy ={z € Dyi: |y =zl < %" — 2|},
Dyt = (Nier Dusis

K= Pre, 10D, %,

0 <liminfe,; <limsupw,; <1,

{L.} C a,b] for some a,b € (0, %), where L = max{2c¢,2¢,}.
Then the sequences {x"}, {y"} and {2"} strongly converge to the same point Prrasois,c) x°.

Proof The proof of this theorem is divided into several steps.

Step 1. Claim that C, and D,, are closed and convex for all n > 0.

We have to show that for any fixed point but arbitrary i € ', C,; is closed and convex
for every n > 0. This can be proved by induction on #. It is obvious that C;; = C is closed
and convex. Assume that C,; is closed and convex for some n € N'* = {1,2,...}. We have
that the set

A={zeCiay(l-2a,)|2" - TiZ" H2 <("-zy" - Ty}
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is closed and convex, and C,,1; = C,; N A, hence C,,;, is closed and convex. Then C, is

closed and convex for all # > 0. We can write D,,;,; under the form
Dy = {z €D,;: ”y"” —x" ” + Z(y"" —x" & - z) < 0}.

Then D, ; is closed and convex. Thus, D, is closed and convex.
Step 2. Claim that F N Sol(f, C) € C, N D, for all n € N'*.

First, we show that F C C,, by induction on #. It suffices to show that F € C,,;.
We have F C C = Cy; is obvious. Suppose F C C,; for some n € N/. We have to show
that F C C,,1,i. Indeed, let w € F, by inductive hypothesis, we have w € C,,; and

|z - T:z" ||2 =(" - Tiz", 2" - Tiz")

_ al ’(Z” —y"’i,Zn _ Tizn>
n,i
1 . . . 1 o .
— (Zn _yn,z,zn _ TiZn _ (y}’l,l _ Tiyn,t)> + _<Zn _yn,l’y}’l,l _ Tiyn,t>
Uy i Oy
_ al .<Zn _yn,i’zn T — (yn,i _ Tviyn,i))
n,i
+ al (Zn —wiw _yn,i,yn,i _ Tiyn,i>
n,i
1 . . 1 . .
— (Zn _yn,tizn _yn,1> + (zn _y}’l,l, Tiyn,t _ T,‘Zn>
Qi Oy
+ 1 (zn _ W’yn,i _ Tiyn,i) + 1 (W _yn,i’yn,i _ Tiyn,i)
Qi Oy i
< 2 ”Zn _yn,i ”2 + 1 (Zn _ W’yn,i _ Tiyn,i)
an,i n,i

1 S .
(W _yn,t,yn,t _ Tiyn,z>.

n,i

+

On the other hand, for all w € F and y* € C, we have
[w=y"|* = (Tow = Ty, w -y
— <W _ Tiyn,i, w— yn,i>
— <W _yn,i +yn,i _ Ti)’n’i, w _yn,i>
_ ||w _yn,iHZ + <yn,i _ Tiyn,i’ w _yn,i>,
and hence
(W _yn,i’yn,i _ Tiyn,i> < 0.

Combining this with (2.1), we obtain

”Zn_Tizn”ZS%”Zn_yn,inz_'_ ll(zn_w’yn,i_Tiyn,i>

ni n,i

1 '<Zn _ W,yn,i _ Ti}’n’i>-

n,l

< 2an,,»||z" - TZ" ||2 +
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This follows that
(1= 2a,) | 2" - Tiz" ||2 <("—wy" - Ty™).

By the definition of C,,;;, we have w € C,,1,;, and so F C C,,,,; for all i € T, which deduces
that F C C,,. This shows that F N Sol(f,C) € C, for all n € N'*.

Next, we will prove FNSol(f, C) € D, by induction on n € N*. It suffices to show that FN
Sol(f,C) € D,,;. Indeed, F € C = Dy; so F N Sol(f, C) € Dy;. Suppose that F N Sol(f,C) <
D,,;. Let x* € FN Sol(f, C), then x* € D,,;. Using Lemma 1.1, we get

||y”’i —x* ||2 = || (1-ay)" + 0, Ti2" — x* ||2
< (M -an))| 2"~ 2| + @i Tz - Tx|)®
<[
< = | - A= 2| =y~ = 2hen |y - 2
<[ —x]. (2.2)
Then we have x* € D,,,;; and hence F N Sol(f, C) € D,,1;. This shows that F N Sol(f, C)
D,,, which yields that F N Sol(f,C) € C, N D, for all n € N'*.
Step 3. Claim that the sequence {x"} is bounded and there exists the limit lim,,_, , ||x”" —
2 =c.
From " = Prc,np, «°, it follows that

(% —a"x"~y)>0 VyeC,ND,. (2.3)
Then, using Step 2, we have F N Sol(f,C) < C, N D, and
(x° —a"a" —w) >0 V¥weFnSol(f,C). (2.4)

Combining this and assumption (As), the projection Prrnsoir,c) x0 is well defined and there
exits a unique point p such that p = Prrensolr,c) x°. So, we have

0<(x"—a", 6" —p) = (x* —a", 2" —=2° +2° - p)

<[l =P+ 1 2 |2 - p

’

and hence
% —"]| < [|+° - p].

Then the sequence {x"} is bounded. So, the sequences {y"}, {z"}, {y"}, {T;»"™'} also are
bounded. Since x**! € C,;;; N D,y € C, N D,, and (2.3), we have

Of(xo_xn’xn_erl):( O_xn,xn_x0+x0_xn+1>

e I L [
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and hence [|x° —x"|| < ||x® —x"*1||. This together with the boundedness of {x”"} implies that
the limit lim,_, o ||&” — x°|| = ¢ exists.
Step 4. We claim that lim,,_, 4" =g € C.

Since C,, N D, € C,N Dy, x™ = Prc,,np,, %% € C, N D, for any positive integer m > n and
(2.3), we have

(x() _xn’xn _xn+m> > 0.
Then

n n+m ”2 _

" - |

" = 2% + &% —x
_ ”xn —x0 ”2 + ||x0 _ ”2 _ 2(x° —x"x° _xn+m>
< ||x0 _ ”2 _ Hxn _x0 ”2 _ 2<x0 —x A" _xn+m>
< [l =P~ a0 (2.5)
Passing the limit in (2.5) as # — 0o, we get lim,,_, o [|¥” —x"*"|| = 0 Vim € N'*. Hence, {x"}
is a Cauchy sequence in a real Hilbert space H and so lim,_, %" =g € C.
Step 5. We claim that g = Preasoi,c) #°, where ¢ = lim,,_, o0 4.

First we show that ¢ € FNSol(f, C). Since 8™ = Pr¢,,,np,,, #°, we have ”*! € D,,,;. Then
x"!' e D,,1; and

||yn,i _xn+1 H < “xn _ xn+1 H’
which yields that

”xn _yn,i ” < ”xn _xn+l ” + ||xn+1 _yn,i ”

<ol -]
Combining this and lim,,_, », [|%” — x| = 0 for all m € N'*, we get

lim ||x” — g || =0. (2.6)

n— o0
For each x* € Sol(f, C) N F, by (2.2) we have
(1= 2bey) [~y |* < (@ = 2hue) [ = 5
< [ -] - |y -2
= ([l =+ [y =2 ) (" =27 = |5 = #"])

= (o =2+ ™ = (" = 51)-

Using this, the boundedness of sequences {x"}, {y"*} and (2.6), we obtain

lim ”x” -y ” =0. (2.7)

n—00

Page 7 of 11
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By a similar way, we also have lim,,_, o ||z — ¥"|| = 0. Then it follows from the inequality
J«" =2 < " =" + |y = 27|
that
lim ||x” -Z" “ =0. (2.8)
n—0Q
On the other hand, we have
o =2 = [y =" + " - 2"
y =y .

Combining this, (2.6) and (2.8), we obtain lim,,_, » ||/ — z2"|| = 0. By the definition of the

sequence {y"}, we have

’

b - 21 = ons| T -2
and hence

lim | T;z" - 2"| =0,

n—0o0
which yields that

| T =& < | Tw" = Tiz" || + | Tiz" = 2" + " = 2"
<afer- 2|+ |12 - 2]
—0 asun— o0
and
lim || Tix" — &" || =0.
n—oQ

It follows from Step 4 that lim,,_, o, Tx” = q. Hence g € F.
Now we show that g € Sol(f, C). By Step 5, we have y" — g as n — oo.
Since y" is the unique solution of the strongly convex problem

min{%”y—x”H2 + M f(2"y) ¥ € C},
we get

0c, (AJ(xn, 9+ 2y HZ) () + Ne ().
From this it follows that

0=A,w+y"=x"+w,
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where w € d,f (", -)(y") and w € N¢(y"). By the definition of the normal cone N¢, we have
" =a"y=y") = hw,y" —y) VyeC. (2.9)

On the other hand, since f(x",) is subdifferentiable on C, by the well-known Moreau-
Rockafellar theorem, there exists w € d,f (x”,-)(y") such that

f(x",y) —f(x",y”) > (w,y —y") VyeC.
Combining this with (2.9), we have

hn(f(*"9) =f(x"9") = (" =" 9" =y) VyeC.

Then, using {*,} C [a,b] C (O, %), (2.7), " — ¢q, y* — g as n — oo and the upper semi-
continuity of f, we have

gy =0 VqeC.
This means that g € Sol(f, C). By taking the limit in (2.4), we have
(xo —q,q—w> >0 VYweFnSol(f,C),

which implies that g = Preasois,c) x9. Thus, the subsequences {x"}, {y"}, {z"} strongly con-
verge to the same point g = Przngoir,c) °. This completes the proof. g

Now, notice that Vw € F

|- = | = w o w— T |
-l =wlP + [T | + 2"~ ww -T2
<2 —w|> 2l —ww 2" + 2" — T2
<27 w] 2 -] 42w - T

= 2<z” -w,z" — Tl'Z”).

Hence
[ = wl)” = (1 = i) (2" = w) + €s(Ti" = w)
=(1-ay)|e" - w||2 + o | Ti2" - w||2 —ayi(1 = ay) | Ti2" - 2" ||2
= A=) =W + o | Ti2" — 2" + 27— w?
—anil-a,)| T2 -2
= a7 -l + | T2 -2 4 a2~
420, (T2 — 22" — W) — a1 — )| Ti2" — 2" |

< ||z” - w||2 + 20(,,,,»(2" -w,z" - T,»z”) + 20(,,,5(le” -7 - W>

Page 9 of 11
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—anil-a,)| T2 2"

= ||z” - w||2 -1 —ay) H T.z" - 7" ||2 (2.10)

From (2.10) and using the methods in Theorem 2.1, we can get the following convergence
result.

Theorem 2.2 Let C be a nonempty closed convex subset of a real Hilbert space H. Suppose
that assumptions (A1)-(As) are satisfied and {T}}cr is a family of nonexpansive mappings
from C into itself and a nonempty common fixed points set F. Let {x"} be a sequence gen-
erated by the following scheme:

x° € H chosen arbitrarily,

Cii=D1i = C,Cr = Nier Cui D1 = Nier Dris

1 0
X = PrCle X7,

N

= argmin{A,f (x",y) + 5|y — "> : y € C},
= argmin{,f(y",y) + 2|z —&"|*:z € C},

Y

=

Y= (1= )2+, Ti2",

Cuni = {2 € Cui: Iy = 2lI” < 12" = 2|1 - @il — ) ll2" — Ti2"||?},
Cun = miel“ Cn+1,i;

Dy ={z € Dyt 9™ =zl < %" = zlI},

D1 = (Nier Disris

aml = Pre, . np,0 %,

0 <liminfe,; <limsupoy,; <1,

{Au} C la, b] for some a, b € (0, %), where L = max{2c;,2¢5}.

Then the sequences {x"}, {y"} and {z"} converge strongly to the same point Prrasoi,c) %0,
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