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1 Introduction
In an ordinary game, the sets of strategies of the players or the decision makers may
be equipped with a preorder, and the decision makers may consider having indifference
(same) utilities at order equivalent elements. It is the motivation to investigate the proper-
ties of order equivalent elements and order equivalent classes in a preordered set, which
are called order-clusters in [].
Fixed point theory has played important roles in traditional equilibrium theory, varia-

tional inequalities and optimization theory (see [–]). Fixed point theorems have been
applied in the proofs of the existence of solutions in equilibrium problems, variational in-
equalities, and other problems, in which the underlying spaces are topological spaces and
the considered mappings must satisfy some continuity conditions. One is to extend these
techniques from traditional variational analysis to analysis on ordered sets, in which there
are order structures whichmay not be topological structures. Hence some new fixed point
theorems on ordered sets must be developed.
For single-valued mappings, Tarski et al. provided a fixed point theorem on complete

lattices and on chain-complete posets (see []). For set-valued mappings, Fujimoto in []
generalized Tarski’s fixed point theorem from single-valued mappings to set-valued map-
pings on complete lattices. Very recently, in [, ], Li provided several versions of exten-
sions of both the Abian-Brown fixed point theorem and the Fujimoto-Tarski fixed point
theorem for set-valued mappings on chain-complete posets. These fixed point theorems
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have been applied to solve vector-complementarity problems and generalized Nash equi-
librium problems.
To generalize the fixed point theorems from posets to preordered sets, Xie et al. in []

introduced the concepts of order cluster and order-clustered fixed point for order-cluster
preserving mappings. They also provided some order-clustered fixed point theorems on
preordered sets, which have been applied to solve some generalized equilibrium problems
for some strategic games with preordered preferences. We recall the fixed point theorem
obtained in [].
Let (P,�) be a chain-complete preordered set and let F : P → P\{∅} be a set-valued

mapping. Suppose that F satisfies the following two conditions:

A. F is order-increasing upward.
A. There is an element y in P with y� u, for some u ∈ F(y).

Assume, in addition to conditions A and A, F also satisfies one of the following condi-
tions:

A. {z ∈ P : z� u for some u ∈ F(x)} is an inductive subset of P, for each x ∈ P.
A′. F(x) is inductive with a finite number of maximal element clusters, for every x ∈ P.
A′′. F(x) has a maximum element, for every x ∈ P.

Then F has an order-clustered fixed point, that is, there are x∗ ∈ P and w ∈ [x∗] with
w ∈ F(x∗).
In this paper, we apply the above fixed point theorem to solve some generalized vari-

ational inequalities, in which the ranges of the considered mappings and the underlying
spaces both are preordered sets.We also solve generalized saddle point problems and gen-
eralized equilibrium problems in preordered sets.

2 Order-clustered fixed point theorems on preordered sets
In this section, we recall and provide some concepts and properties of preordered sets
and the concept of order-clustered fixed point of set-valued mapping on preordered sets,
which is introduced in [] by Xie et al. Here we closely follow the notations from [, ,
–] and [].
Let P be a nonempty set. An ordering relation� on P is said to be a preorder, whenever

it satisfies the following two conditions:
. (reflexive) x� x, for every x ∈ P.
. (transitive) x� y and y� z imply x� z, for all x, y, z ∈ P.
Then P, together with the preorder �, is called a preordered set, which is denoted by

(P,�). Furthermore, a preorder � on a preordered set P is said to be a partial order if, in
addition to the above two properties, it also satisfies
. (antisymmetric) x� y and y� x imply x = y, for every x, y ∈ P.

In this case, (P,�) is simply called a poset.

Remark . It is worthy tomention for clarification that a preordered set (P,�) equipped
with the preorder � on P is called a partially ordered system (p.o.s.) in [].

Let (P,�) be a preordered set and let A be a nonempty subset of P. Then an element u of
P is called an upper bound of A if x� u for each x ∈ A. The collection of all upper bounds
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of A is denoted by uppA. That is,

uppA = {y ∈ P : y� x, for all x ∈ A}.

If an upper bound u ofA is inA, then u is called a greatest element (or amaximumelement)
ofA. The collection of all greatest elements (maximumelements) ofA is denoted bymaxA,
that is,

maxA = {y ∈ A : y� x, for all x ∈ A}.

A lower bound of A can be similarly defined and the collection of all lower bounds of A is
written as

lowA = {y ∈ P : y� x, for all x ∈ A}.

The collection of all smallest elements (minimum elements) of A is denoted by minA.
That is,

minA = {y ∈ A : y� x, for all x ∈ A}.

If the set of all upper bounds of A has a smallest element, then we call it a supremum of A;
and the collection of all supremum elements of A is denoted by supA or ∨A. That is,

supA = ∨A =min(uppA).

An infimum of A is similarly defined as a greatest element of the set of all lower bounds
of A, provided that it exists; and the collection of all infimum elements of A is denoted by
infA or ∧A. We have

infA = ∧A =max(lowA).

It is important to note that, from the above definitions, if A is a subset of a preordered set
(P,�), then maxA and minA are subsets of A; and uppA, lowA, supA, and infA all are
subsets of P. In particular, if (P,�) is a poset, then maxA, minA, supA, and infA all are
singletons, provided that they are nonempty. In this case, maxA, minA, supA, and infA
are simply written by the contained elements, respectively.
An element y ∈ A is said to be a maximal element of a subset A of a preordered set

(P,�) if for any z ∈ A with y� z implies z � y. The collection of all maximal elements of
A is denoted byMaxA, that is,

MaxA = {y ∈ A : x ∈ A and x� y imply y� x}.

Similar to the definition of maximal element, a minimal element of A can be defined. The
collection of all minimal elements of A is written as

MinA = {y ∈ A : x ∈ A and x� y imply y� x}.
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Then every greatest element (or smallest element) of a subset A of a preordered set (P,�)
is a maximal element (or minimum element) of A; the converse does not hold. That is,

maxA ⊆MaxA and minA⊆MinA, for every ∅ 	= A⊆ P.

A subsetC of a preordered set (P,�) is said to be totally ordered, or a chain in P, whenever,
for every pair x, y ∈ C, either x� y or y� x. Following [] and [], we have the following.

Definition . A nonempty subset A of a preordered set (P,�) is said to be
i. inductive if every chain C in A possesses an upper bound in A, that is,∅ 	= uppC ⊆ A;
ii. chain-complete whenever, every chain C in A has a supremum element in A; that is,

∅ 	= uppC ⊆ A.

Let (P,�) be a preordered set. For any z,w ∈ P, we denote the following �-intervals:

[z) = {x ∈ P : x� z}, (w] = {x ∈ P : x� w} and

[z,w] = [z)∩ (w] = {x ∈ P : z� x� w}.

Let (P,�) be a preordered set. For any x, y ∈ P, we say that x, y are �-order equivalent
(�-order indifference), which is denoted by x ∼ y, whenever both x � y and y � x hold.
It is clear that ∼ is an equivalence relation on P. For any x ∈ P, let [x] denote the order
equivalent class (order indifference class) containing x, which is called a�-cluster (or sim-
ply an order cluster, or a cluster, if there is no confusion caused). Let P/ ∼ or P̃ denote the
collection of all order clusters in the preordered set (P,�). So x ∈ [x] ∈ P̃, for every x ∈ P.
In the case that z ∼ w, we have [z,w] = [z], which is the order cluster containing z. It is

worthy to note that both [z) and (w] can be considered as unions of order clusters.
Given two preordered sets (X,�X) and (U ,�U ), we say that a single valued mapping

f : X → U is order-increasing (or order-preserving) if x �X y in X implies f (x) �U f (y)
in U . An order-increasing single valued mapping f : X → U is said to be strictly order-
increasing whenever x ≺X y implies f (x) ≺U f (x), where ≺X and ≺U are the strict parts
of �X and �U , respectively.
We say that a set-valued mapping F : X → U\{∅} is order-increasing upward if x�X y

in X and u ∈ F(x) imply that there is w ∈ F(y) such that u �U w. F is said to be order-
increasing downward if x �X y in X and w ∈ F(y) imply that there is u ∈ F(x) such that
u�U w. A set-valued mapping F is said to be order-increasing whenever F is both order-
increasing upward and downward.
Order-increasing mappings from preordered set to preordered set have the following

equivalent classes preserving properties (see []).

Lemma . Let (X,�X) and (U ,�U ) be two preordered sets and let f : X →U be an order-
increasing single valued mapping. Then, for every x in X, y ∈ [x] implies f (y) ∈ [f (x)] in U .

Definition . Let (X,�X) and (U ,�U ) be two preordered sets and let f : X → U be a
single valued mapping. f is said to be order-cluster-preserving, whenever

x ∼X y implies f (x) ∼U f (y), for x, y ∈ X.
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Lemma. Every order-preserving single valuedmapping fromapreordered set to another
preordered set is cluster-preserving.

Definition . Let (X,�X) be a preordered set and let F : X → X\{∅} be a set-valued
mapping. An element x ∈ X is called
. a fixed point of F , whenever x ∈ F(x);
. an �X-clustered fixed point (an order-clustered-fixed point, or simply a clustered

fixed point) of F , whenever there is a w ∈ [x] such that w ∈ F(x).

Let (P,�) be a chain-complete preordered set and let F : P → P\{∅} be a set-valued
mapping. Following Fujimoto [], we use the notation

SF(x) =
{
z ∈ P : z� u for some u ∈ F(x)

}
, for every x ∈ P.

Xie et al. in [] proved the following results, which are extensions of the theorem proved
by Li in [] from chain-complete posets to chain-complete preordered sets.

Theorem . Let (P,�) be a chain-complete preordered set and let F : P → P\{∅} be a
set-valued mapping. Suppose that F satisfies the following two conditions:

A. F is order-increasing upward.
A. There is an element y in P with y� u, for some u ∈ F(y).

Assume, in addition to conditions A and A, F also satisfies one of the following condi-
tions:

A. SF(x) is an inductive subset of P, for each x ∈ P.
A′. F(x) is inductive with a finite number of maximal element clusters, for every x ∈ P.
A′′. F(x) has a maximum element, for every x ∈ P.

Then F has an order-clustered fixed point, that is, there are x∗ ∈ P and w ∈ [x∗] with
w ∈ F(x∗).

Remark . If (P,�) is a chain-complete preordered set satisfying ∧P 	= ∅, then condi-
tion A in Theorem . will be automatically satisfied.

Proof In the case that ∧P 	= ∅, then for any y ∈ ∧P, we must have y � u, for every
u ∈ F(y). �

3 Generalized saddle point problems for bifunctions on preordered sets
Let (X,�X) and (Y ,�Y ) be preordered sets. The product set X ×Y of the preordered sets
X and Y is ordered by the component-wise ordering, which is denoted by �X×Y . That is,
for any (x, y) and (x, y) ∈ X × Y

(x, y)�X×Y (x, y) if and only if x �X x and y �Y y.

One can check that the coordinate ordering�X×Y on X ×Y induced by the preorders�X

and�Y defines a preordering relation on X ×Y ; and hence (X ×Y ,�X×Y ) is a preordered
set. It has the following properties:

http://www.fixedpointtheoryandapplications.com/content/2014/1/191
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. If both (X,�X) and (Y ,�Y ) are chain-complete (inductive) preordered sets, then
(X × Y ,�X×Y ) is also a chain-complete (inductive) preordered set.

. For any x ∈ X and y ∈ Y , [(x, y)] = [x]× [y], here [(x, y)], [x], [y] are understood to be
the order clusters in (X × Y ,�X×Y ), (X,�X) and (Y ,�Y ), respectively.

. For any (x, y), (s, t) ∈ X × Y with (x, y)�Y (s, t), then we have

(
(x, y)

]
= (x]× (y],

[
(x, y)

)
= [x)× [y) and

[
(x, y), (s, t)

]
= [x, s]× [y, t],

here, ((x, y)], (x], (y] are the order intervals in (X × Y ,�X×Y ), (X,�X) and (Y ,�Y ),
respectively.

Definition. Let (X,�X), (Y ,�Y ) and (U ;�U ) be preordered sets. LetC,D be nonempty
subsets of X and Y , respectively. Let F : C×D →U be amapping. A point (x∗, y∗) ∈ C×D
is called a generalized saddle point of the mapping F if it satisfies

F
(
x, y∗)�U F

(
x∗, y∗) �U F

(
x∗, y

)
, for all x ∈ C and y ∈D.

It is equivalent, for all x ∈ C and y ∈D, to

u�U w∗ �U v,

for any u ∈ [F(x, y∗)], w∗ ∈ [F(x∗, y∗)] and v ∈ [F(x∗, y)].

Definition. Let (X,�X), (Y ,�Y ) and (U ;�U ) be preordered sets. LetC,D be nonempty
subsets of X and Y , respectively. Let F : C ×D →U be a mapping. F is said to be
. order-phase preserving for the first variable on C, whenever, for any x �X x in C,

F(x, y)�U F(x, t) implies F(x, y)�U F(x, t), for any y, t ∈D;

. order-phase preserving for the second variable on D, whenever, for any y �Y y in D,

F(x, y)�U F(s, y) implies F(x, y)�U F(s, y), for any x, s ∈ C.

From Definition ., if a mapping F from (C × D,�X×Y ) to (U ,�U ) is order-cluster pre-
serving, then it is order-cluster preserving for every single variable. That is,
. s ∈ [x] in C implies F(s, y) ∈ [F(x, y)] in U , for every given y ∈D;
. t ∈ [y] in D implies F(x, t) ∈ [F(x, y)] in U , for every given x ∈ C.

Example . Let (R,≥) be the set of real numbers equipped with the ordinary real or-
der ≥. Let F : R× R→ R be a real function as

F(x, y) = x – y, for all x, y ∈ R.

Then F is order-phase preserving for both variables on R.

Theorem . Let (X,�X), (Y ,�Y ) and (U ;�U ) be preordered sets. Let C, D be nonempty
chain-complete subsets of X and Y , respectively. Let F : C × D → U be a mapping and
satisfy the following conditions:

http://www.fixedpointtheoryandapplications.com/content/2014/1/191
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. F(x, y) is order-phase preserving for variables x and y on C and D, respectively.
. For every fixed x ∈ C, {t ∈D : F(x, t) ∈min{F(x, y) : y ∈D}} is a nonempty inductive

subset of D with a finite number of maximal elements.
. For every fixed y ∈ D, {s ∈ C : F(s, y) ∈ max{F(x, y) : x ∈ C}} is a nonempty inductive

subset of C with a finite number of maximal elements.
. There is an element (x′, y′) ∈ C ×D with x′ �X s, for some s ∈ C satisfying

F
(
s, y′) ∈max

{
F
(
x, y′) : x ∈ C

}
and y′ �Y t, for some t ∈D satisfying

F
(
x′, t

) ∈ min
{
F
(
x′, y

)
: y ∈D

}
.

. F is order-cluster preserving on C ×D.
Then F has a generalized saddle point.

Proof For the given mapping F : C × D → U , we define mappings ϒF : C → D and �F :
D → C by

ϒF (x) =
{
t ∈D : F(x, t) ∈min

{
F(x, y) : y ∈D

}}
, for any x ∈ C,

�F (y) =
{
s ∈ C : F(s, y) ∈ max

{
F(x, y) : x ∈ C

}}
, for any y ∈D.

It is worthy to note that since ϒF (x)⊆ D and �F (y) ⊆ C, the above definitions are equiva-
lent to

ϒF (x) =

{
t ∈D : F(x, t) ∈

∧
y∈D

F(x, y)

}
, for any x ∈ C,

�F (y) =

{
s ∈ C : F(s, y) ∈

∧
x∈C

F(x, y)

}
, for any y ∈D.

Define T : C ×D→ C×D\{∅} by

T(x, y) = �F (y)× ϒF (x), for all (x, y) ∈ C ×D.

From conditions  and , T is well defined.
At first, we show that, for any (x, y), (x, y) ∈ C × D, (x, y) �X×Y (x, y) implies

T(x, y) ⊆ T(x, y). For any given (s, t) ∈ T(x, y), we need to prove (s, t) ∈ T(x, y).
To this end, from that (s, t) ∈ T(x, y) is equivalent to s ∈ �F (y) and t ∈ ϒF (x), we
have

F(s, y) ∈max
{
F(x, y) : x ∈ C

}
()

and

F(x, t) ∈min
{
F(x, y) : y ∈D

}
. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/191
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From (), we have F(x, y) �U F(s, y), for all x ∈ C. Since y �Y y, then from condi-
tion  in this theorem that F(x, y) is order-phase preserving for variable y on D, it implies
F(x, y) �U F(s, y), for all x ∈ C. That is, F(s, y) ∈ max{F(x, y) : x ∈ C}; and therefore,
s ∈ �F (y). So we obtain

�F (y) ⊆ �F (y). ()

On the other hand, from (), we have F(x, t)�U F(x, y), for all y ∈D. Since x �X x, then
from condition  in this theorem that F(x, y) is order-phase preserving for the variable x
on C, it implies F(x, t)�U F(x, y), for all y ∈ D. That is, F(x, t) ∈ min{F(x, y) : y ∈ D};
and therefore, t ∈ ϒF (x). So we obtain

ϒF (x) ⊆ ϒF (x), if x �X x. ()

Combining () and (), we get

�F (y)× ϒF (x) ⊆ �F (y)× ϒF (x).

That is, T(x, y) ⊆ T(x, y). It clearly implies that T is order-increasing upward.
We claim that an element (p,q) is a maximal element of �F (y)×ϒF (x), if and only if p is

a maximal element of �F (y) and q is a maximal element of ϒF (x). In fact, if p is a maximal
element of �F (y) and q is a maximal element of ϒF (x), then, for any (s, t) ∈ �F (y)× ϒF (x),
we find that s�X p implies p�X s and t �Y q implies q�Y t. Then we find that (s, t)�X×Y

(p,q) implies (p,q)�X×Y (s, t). So (p,q) is a maximal element of �F (y)× ϒF (x).
On the other hand, if p is not a maximal element of �F (y) or q is not a maximal element

of ϒF (x), say, p is not a maximal element of �F (y), then there is s ∈ �F (y) with s �X p, that
is, (s,q) �X×Y (p,q). It implies that (p,q) cannot be a maximal element of �F (y) × ϒF (x).
Hence, from conditions  and  in this theorem, (T(x, y),�X×Y ) is an inductive preordered
set with a finite number of maximal elements.
Let (x′, y′) be the element in C ×D given in condition  of this theorem. Then there are

points s ∈ �F (y′) and t ∈ ϒF (x′) satisfying x′ �X s, and y′ �Y t; that is,

(s, t) ∈ T
(
x′, y′) and

(
x′, y′)�X×Y (s, t).

Hence themappingT fromC×D to C×D\{∅} satisfies all conditions in Theorem . with
respect to condition A′. As we apply the mapping T to the preordered set (C×D,�X×Y ),
which is a chain complete preordered set, from Theorem ., T has an order-clustered
fixed point, say (x∗, y∗) ∈ C×D. Let [(x∗, y∗)]C×D denote the order-cluster in (C×D,�X×Y )
containing the point (x∗, y∗). So there is an element (u, v) ∈ [(x∗, y∗)]C×D ⊆ C×D such that
(u, v) ∈ T(x∗, y∗). Then we have

u ∈ �F
(
y∗) and v ∈ ϒF

(
x∗).

It next will be shown that �F and ϒF both are order-cluster preserving on D and C, re-
spectively. In fact, from condition , F(x, y) is order-phase preserving on C.

http://www.fixedpointtheoryandapplications.com/content/2014/1/191
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From u ∈ �F (y∗), we get F(u, y∗) ∈max{F(x, y∗) : x ∈ C}, that is,

F
(
u, y∗)�U F

(
x, y∗), for all x ∈ C. ()

From condition , F is order-cluster preserving. From (u, v) ∈ [(x∗, y∗)], it implies F(u, y∗) ∈
[F(x∗, y∗)]. By (), we have

F
(
x∗, y∗) �U F

(
x, y∗), for all x ∈ C. ()

From v ∈ ϒF (x∗), we have F(x∗, v) ∈min{F(x∗, y) : y ∈ D}, that is,

F
(
x∗, v

)
�U F

(
x∗, y

)
, for all y ∈D. ()

Since F is order-cluster preserving, from (u, v) ∈ [(x∗, y∗)], it implies F(x∗, v) ∈ [F(x∗, y∗)].
From (), we have

F
(
x∗, y∗) �U F

(
x∗, y

)
, for all y ∈ D. ()

By combining () and (), we get

F
(
x, y∗)�U F

(
x∗, y∗) �U F

(
x∗, y

)
, for all x ∈ C and y ∈D.

Hence (x∗, y∗) is a generalized saddle point of F on C ×D. �

If we apply the two mappings ϒF and �F for a mapping F , defined in the proof of The-
orem ., and apply their order-increasing properties, we can get the following theorem.

Theorem . Let (X,�X), (Y ,�Y ) and (U ;�U ) be preordered sets. Let C, D be nonempty
chain-complete subsets of X and Y , respectively. Let F : C × D → U be a mapping and
satisfy the following conditions:
. ϒF : C → D and �F :D→ C both are order-increasing upward.
. For every fixed x ∈ C, (ϒF (x),�Y ) is a nonempty inductive subset of D with a finite

number of maximal elements.
. For every fixed y ∈ D, (�F (y),�X) is a nonempty inductive subset of C with a finite

number of maximal elements.
. There is an element (x′, y′) ∈ C ×D with x′ �X s, for some s ∈ �F (y′) and y′ �Y t, for

some t ∈ ϒF (x′).
. F is order-cluster preserving on C ×D.

Then F has a generalized saddle point.

Sketch of the proof Let T : C ×D → C×D\{∅} be defined as in the proof of Theorem .:

T(x, y) = �F (y)× ϒF (x), for all (x, y) ∈ C ×D.

For any (x, y), (x, y) ∈ C×Dwith (x, y)�X×Y (x, y), take an arbitrary element (s, t) ∈
T(x, y), we have s ∈ �F (y) and t ∈ ϒF (x). Since y �Y y and x �X x, from condition
 in this theorem, there are s ∈ �F (y) and t ∈ ϒF (x) such that s �X s and t �Y t.
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That is (s, t) ∈ C ×D satisfying (s, t)�X×Y (s, t) and (s, t) ∈ T(x, y). Hence T is an
�X×Y -increasing mapping from C×D to C×D\{∅}. The rest of the proof is similar to the
proof of Theorem .. �

4 Generalized equilibrium problems of bifunctions on preordered sets
Definition . Let (X,�X) and (U ;�U ) be preordered sets. Let C be a nonempty subset
of X. Let F : C ×C → U be a mapping. A point x∗ ∈ C is called a generalized equilibrium
of the mapping F if it satisfies

F
(
x∗,x

)
�U F

(
x∗,x∗), for all x ∈ C.

It is equivalent to the following, for all x ∈ C:

u�U w∗,

for any u ∈ [F(x∗,x)] and w∗ ∈ [F(x∗,x∗)].

For a given mapping F : C ×C →U , define a mapping � : C → C by

�F (x) =

{
t ∈ C : F(x, t) ∈

∨
y∈C

F(x, y)

}

=
{
t ∈ C : F(x, t) ∈max

{
F(x, y) : y ∈ C

}}
, for any x ∈ C.

We prove the following theorem for the existence of generalized equilibrium. The proof
is similar to the proofs of Theorems . and ..

Theorem . Let (X,�X) and (U ;�U ) be preordered sets. Let C be a nonempty chain-
complete subset of X. Let F : C×C →U be amapping and satisfy the following conditions:
. F(·, y) is order-phase preserving on C, for every y ∈ C.
. For every fixed x ∈ C, (�F (x),�X) is a nonempty inductive subset of C with a finite

number of maximal elements.
. There is an element x′ ∈ C with x′ �X s, for some s ∈ �F (x′).
. F is order-cluster preserving on C ×C.

Then F has a generalized equilibrium in C.

Proof For the given mapping F , by condition  in this theorem, the mapping �F : C →
C\{∅} is well defined. It will next be shown that �F is order-increasing upward. For any
x,x ∈ C with x �X x, for arbitrary t ∈ �F (x), we have

F(x, t) ∈max
{
F(x, y) : y ∈ C

}
.

That is, F(x, y) �U F(x, t), for all y ∈ D. Since x �X x, then from condition  in this
theorem we see that F(x, y) is order-phase preserving with respect to x ∈ C, it implies
F(x, y) �U F(x, t), for all y ∈ C. That is, F(x, t) ∈ max{F(x, y) : y ∈ C}. We obtain
t ∈ �F (x). It implies that �F is order-increasing upward. From condition  in this theo-
rem, it is clearly seen that the elements x′ ∈ C, s ∈ �F (x′) satisfy x′ � s. Hence the mapping
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�F from C to C\{∅} satisfies all conditions in Theorem . with respect to condition A′,
as we consider the mapping is from the chain-complete preordered set (C,�X) to C\{∅}.
We denote by [x∗]C the order cluster in (C,�X) containing x∗. So�F has an order-clustered
fixed point, say x∗ ∈ C. So there is u ∈ [x∗]C ⊆ C, such that u ∈ �F (x∗). Then we have

F
(
x∗,u

) ∈max
{
F
(
x∗, y

)
: y ∈ C

}
,

which is equivalent to

F
(
x∗,u

)
�U F

(
x∗, y

)
, for all y ∈ C. ()

Since F is order cluster preserving, from u ∈ [x∗]C , it implies F(x∗,u) ∈ [F(x∗,x∗)]. By (),
we have

F
(
x∗,x∗) �U F

(
x∗, y

)
, for all y ∈ C. �

5 Order-clustered fixed point theorems and generalized
preordered-variational inequalities

In this section, we consider preordered topological spaces and their properties. We also
give some fixed point theorems on preordered topological spaces, which will be applied to
solving generalized preordered-variational inequalities in preordered Banach spaces. The
notations and terminologies used in this section are derived from Aliprantis and Burkin-
shaw [], Carl and Heikkilä [], Li [], Ok [], Xie et al. [].
Let (P,�) be a preordered set equipped with a topology τ (it is also a topological space).

The topology τ is called a natural topology on (P,�) with respect to the preorder�, when-
ever, for every z ∈ P, the �-intervals [z) and (z] are all τ -closed. A preordered set (P,�)
equipped with a natural topology τ is called a preordered topological space, and it is de-
noted by (P, τ ,�).
A preorder � on a vector space P is said to be convex, whenever for any z ∈ P, the

�-intervals [z) and (z] are all convex subsets in P.
We say that a Banach space (B,‖ · ‖) endowed with a preorder� is a preordered Banach

space if its norm topology is a natural topology with respect to the preorder � on B. A
preordered Banach space (B,‖ · ‖,�) is called a convex preordered Banach space if the
preorder � is convex on B.
Recall that every convex subset in a Banach space is closed in the norm topology if and

only if it is closed in the weak topology. Then we have the following result.

Theorem . Let (B,‖ · ‖) be a Banach space with norm ‖ · ‖. Let � be a convex preorder
on B. Then, with respect to the convex preorder �, the norm topology on B is a natural
topology, if and only if the weak topology on B is a natural topology.

The connections between the chain-completeness and compactness of subsets in or-
dered topological spaces are very important topics in the theory of ordered topological
spaces. In [], Li proved that every nonempty compact subset of a partially ordered Haus-
dorff topological space is chain-complete. In this paper, we extend it to preordered Haus-
dorff topological spaces. The proof is similar to the proof of Theorem . in [] and it is
omitted here.
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Theorem. Every nonempty compact subset of a preordered Hausdorff topological space
is chain-complete.

Notice that nonempty bounded closed and convex subset of a reflexive Banach space is
compact in the weak topology. From Theorems . and ., we have the following.

Corollary . Let (B,�) be a convex preordered reflexive Banach space. Then, for any
nonempty bounded closed and convex subset P of B, (P,�) is a chain-complete preordered
set.

Applying Theorems ., . and ., we obtain the following result.

Theorem . Let (B,‖ · ‖,�) be a convex preordered reflexive Banach space and let P be a
nonempty bounded closed convex subset of B. Let F : P → P\{∅} be a set-valued mapping.
Suppose that F satisfies the following two conditions:

A. F is order-increasing upward.
A. There is an element y in P with y� u, for some u ∈ F(y).

Assume, in addition conditions A and A, F also satisfies one of the conditions below:

A. SF(x) is an inductive subset of P, for each x ∈ P.
A′. F(x) is inductive with a finite number of maximal element clusters, for every x ∈ P.
A′′. F(x) has a maximum element, for every x ∈ P.

Then F has an order-clustered fixed point, that is, there are x∗ ∈ P and w ∈ [x∗] ∩ P with
w ∈ F(x∗).

Let (B,�B) and (U ;�U ) be Banach spaces. As usual, we denote by L(B,U) the collection
of all linear mappings from B to U .

Definition . Let (B,�B) and (U ;�U ) be preordered Banach spaces and C a nonempty
subset of B. Let F : C → L(B,U) be a mapping. A generalized preordered-variational in-
equality problem associated with C, F , andU , denoted by GPVI(F ,C,U), is to find a point
x∗ ∈ C, such that

F
(
x∗)(x – x∗) �U , for all x ∈ C, ()

where  is understood as the origin of the Banach spaceU . Any such point x∗ ∈ C is called
a solution to the problem GPVI(F ,C,U).

Notice that F(x∗) ∈ L(B,U), then () is equivalent to

F
(
x∗)(x)�U F

(
x∗)(x∗), for all x ∈ C. ()

Definition . Let (B,�B) and (U ;�U ) be preordered Banach spaces, and C a nonempty
subset of B. A mapping F : C → L(B,U) is said to be order-phase preserving on C, when-
ever for any x �B x in C, F(x)(y)�U  implies F(x)(y)�U , for any given y ∈ B.
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Theorem . Let (B,�B) be a convex preordered reflexive Banach space and (U ;�U ) a
preordered Banach space. Let C be a nonempty bounded closed convex subset of B. Let
F : C → L(B,U) be a mapping and satisfy the following conditions:
. F(x) : B→U is preorder-phase preserving on C, for every x ∈ C.
. For every fixed x ∈ C, the set ({t ∈ C : F(x)(t) ∈min{F(x)(y) : y ∈ C}},�B) is a

nonempty inductive subset of C with a finite number of maximal order clusters.
. There are elements x′, s ∈ C with x′ �B s, such that F(x′)(s) ∈ min{F(x′)(y) : y ∈ C}.
. F(x) : B→U is order-cluster preserving, for every x ∈ C.

Then the problem GPVI(F ,C,U) has a solution.

Proof Since (B,�B) is a convex preordered reflexive Banach space and C is a nonempty
bounded closed convex subset of B, from Corollary ., (C,�B) is chain-complete. Define
a mapping �F by

�F (x) =
{
t ∈ C : F(x)(t) ∈min

{
F(x)(y) : y ∈ C

}}
, for any x ∈ C.

From condition  in this theorem, �F : C → C\{∅} is well defined. Similarly to the proof
of Theorem ., we can show that the mapping �F , from C to C\{∅}, satisfies all con-
ditions in Theorem . with respect to condition A′. So �F has an order-clustered fixed
point, say x∗ ∈ C. Then there is u ∈ [x∗]∩C, such that u ∈ �F (x∗). Then we have

F
(
x∗)(u) ∈min

{
F
(
x∗)(y) : y ∈ C

}
,

which is equivalent to

F
(
x∗)(u)�U F

(
x∗)(y), for all y ∈ C. ()

Since F is order-cluster preserving, from u ∈ [x∗] ∩ C, it implies F(x∗)(u) ∈ [F(x∗)(x∗)].
By (), we have

F
(
x∗)(x∗)�U F

(
x∗)(y), for all y ∈ C.

Hence the point x∗ satisfies (). It is equivalent to

F
(
x∗)(x – x∗) �U , for all x ∈ C. �
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