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Abstract

In this paper, we prove the existence and uniqueness of a fixed point for some new
classes of contractive mappings via a-admissible mappings in the framework of
b-metric spaces. We also present an example to illustrate the usability of the obtained
results. The generalized Ulam-Hyers stability and well-posedness of a fixed point
equation via a-admissible mappings in b-metric spaces are given.
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1 Introduction and preliminaries

1.1 The b-metric space

The Banach contraction mapping principle is the most important in mathematics analysis,
it guarantees the existence and uniqueness of a fixed point for certain self-mapping in
metric spaces and provides a constructive method to find this fixed point. Several authors
have obtained fixed point and common fixed point results for various classes of mappings
in the setting of several spaces (see [1-6] and the references therein).

In 1993, Czerwik [7] introduced b-metric spaces as a generalization of metric spaces and
proved the contraction mapping principle in b-metric spaces that is an extension of the
famous Banach contraction principle in metric spaces. Since then, a number of authors
have investigated fixed point theorems in b-metric spaces (see [8—11] and the references

therein).

Definition 1.1 (Bakhtin [8], Czerwik [12]) Let X be a nonempty set, and let the functional
d: X x X — [0, 00) satisfy:

(bl) d(x,y) =0 if and only if x = y;

(b2) d(x,y) =d(y,x) for all x,y € X;

(b3) there exists a real number s > 1 such that d(x, z) < s[d(x,y) + d(y, z)] for all

x,9,z€X.

Then d is called a b-metric on X and a pair (X, d) is called a b-metric space with coeffi-
cient s.
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Remark 1.2 If we take s = 1 in the above definition, then b-metric spaces turn into ordi-
nary metric spaces. Hence, the class of b-metric spaces is larger than the class of metric

spaces.
For examples of b-metric spaces, see [7, 8, 12—14].

Example 1.3 The set [,(R) with 0 < p < 1, where [,(R) := {{x,,} CR | Yoo, [x4]” < 00},
together with the functional 4 : [,(R) x /,(R) — [0, c0),

d(x:y) = (Z [ %, —Yn |p> »

n=1

1
where x = {x,,},y = {y4} € [,(R), is a b-metric space with coefficient s = 27 > 1. Notice that

the above result holds for the general case [,(X) with 0 < p < 1, where X is a Banach space.

Example 1.4 Let X be a set with the cardinal card(X) > 3. Suppose that X = X; U X is a
partition of X such that card(X;) > 2. Let s > 1 be arbitrary. Then the functional 4 : X x
X — [0, 00) defined by

0, x=y,
dx,y):=12s, xy€X,

1, otherwise,
is a b-metric on X with coefficient s > 1.

Definition 1.5 (Boriceanu et al. [14]) Let (X, d) be a b-metric space. Then a sequence {x,,}
in X is called:

(a) convergent if and only if there exists x € X such that d(x,,x) — 0 as n — oc;

(b) Cauchy if and only if d(xy, %) — 0 as m, n — oo.

Lemma 1.6 (Czerwik [12]) Let (X,d) be a b-metric space, and let {xi};_, C X. Then
A(x0, %) < sd(x0,%1) + -+ + 8" d (X2, %021) + 8" d (X1, %)

Definition 1.7 (Rus [15]) A mapping ¥ : [0,00) — [0, 00) is called a comparison function
if it is increasing and ¥"(¢) — 0 as n — oo for any ¢ € [0, 00), where /" is the nth iterate

of .

Lemma 1.8 (Rus [15], Berinde [16]) Ify : [0,00) — [0, 00) is a comparison function, then
(1) ¥"is also a comparison function;
(2) W is continuous at 0;
(3) ¥(2) <tforanyt>0.

The concept of (c)-comparison function was introduced by Berinde [16] in the following
definition.
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Definition 1.9 (Berinde [16]) A function v : [0, 00) — [0, 00) is said to be a (c)-compari-
son function if
(1) ¢ is increasing;
(2) there exist ng € N, k € (0,1) and a convergent series of nonnegative terms Y .-, €,
such that ¥"*1(¢) < ky"(¢) + €, for n > ng and any ¢ € [0, 00).

Here we recall the definitions of the following class of (b)-comparison functions as given

by Berinde [17] in order to extend some fixed point results to the class of b-metric spaces.

Definition 1.10 (Berinde [17]) Lets > 1 be a real number. A mapping v : [0, 00) — [0, 00)
is called a (b)-comparison function if the following conditions are fulfilled:
(1)  is increasing;
(2) there exist ng € N, k € (0,1) and a convergent series of nonnegative terms Y ., €,
such that s"* /" 1(¢) < ks"yr"(¢) + €, for n > ng and any ¢ € [0, 00).

In this work, we use ¥}, to denote the class of all (b)-comparison functions ¥ : [0, 00) —
[0,00) unless and until it is stated otherwise. It is evident that the concept of (b)-

comparison function reduces to that of (c)-comparison function when s = 1.

Lemma 1.11 (Berinde [13]) If ¢ : [0,00) — [0,00) is a (b)-comparison function, then the
following assertions hold:

(i) the series Y oo s"y"(¢) converges for any t € [0,00);

(ii) the function S : [0,00) — [0, 00) defined by S(t) = > oo s"Y" () for ¢ € [0,00) is

increasing and continuous at 0.

1.2 The generalized Ulam-Hyers stability

Stability problems of functional analysis play the most important role in mathematics anal-
ysis. They were introduced by Ulam [18], he was concerned with the stability of group ho-
momorphisms. Afterward, Hyers [19] gave a first affirmative partial answer to the question
of Ulam for a Banach space, this type of stability is called Ulam-Hyers stability. Several au-
thors have considered Ulam-Hyers stability results in fixed point theory, and remarkable
results on the stability of certain classes of functional equations via fixed point approach
have been obtained (see [20—26] and the references therein).

We recall the following definitions in the class of b-metric spaces.

Definition 1.12 Let (X, d) be a b-metric space with coefficient s, and let f : X — X be an

operator. By definition, the fixed point equation
u=fu), ueX (1.1)
is said to be generalized Ulam-Hyers stable in the framework of a b-metric space if there

exists an increasing operator ¢ : [0, 00) — [0, 00), continuous at 0 and ¢(0) = 0, such that

for each ¢ > 0 and an &-solution v* € X, that is,

d(v*,f(v*)) <eg, 1.2)
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there exists a solution u* € X of the fixed point equation (1.1) such that
d(v,u*) < g(se). (1.3)

If ¢(t) := ct for all ¢ € [0,00), where ¢ > 0, then (1.1) is said to be Ulam-Hyers stable in
the framework of a b-metric space.

Remark1.13 Ifs =1, then Definition 1.12 reduces to the generalized Ulam-Hyers stability
in metric spaces. Also, if ¢(t) := ct for all ¢ € [0,00), where ¢ > 0, then it reduces to the
classical Ulam-Hyers stability.

1.3 a-Admissible mappings

In 2012, Samet et al. [27] introduced the concept of «-admissible mappings and estab-
lished fixed point theorems for such mappings in complete metric spaces. Moreover,
they showed some examples and applications to ordinary differential equations. There are
many researchers who improved and generalized fixed point results by using the concept
of a-admissible mapping for single-valued and multivalued mappings (see [28—33]).

Definition 1.14 (Samet et al. [27]) Let X be a nonemptyset, f: X — X and o : X x X —
[0, 00). We say that f is an a-admissible mapping if it satisfies the following condition:

forx,yeX, axy)>1 = oa(f®),/()=1

Example 1.15 (Samet et al. [27]) Let X = (0,00). Definef : X — X and @ : X x X — [0,00)
by

fx)=In(x) forallxe X
and

2, ifx>y;
alx,y) =
0, ifx<y.

Then f is w-admissible.

Example 1.16 Let X = R. Define f: X — X and o : X x X — [0, 00) by

In(x* +1), ifx>1;

fx) = g, if0<x<1;
X, otherwise
and
1, ifx,y € [0,1];
ax,y) =

In1.5, otherwise.

Then f is w-admissible.
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Recently Bota et al. [34] proved the existence and uniqueness of fixed point theorems.
They also studied the generalized Ulam-Hyers stability results via an «-admissible map-
ping in a b-metric space. The purpose of this paper is to establish the existence and unique-
ness of fixed point theorems for some new types of contractive mappings via «-admissible
mappings. We also give some examples to show that our fixed point theorems for new
types of contractive mappings are independent. The generalized Ulam-Hyers stability and
well-posedness of a fixed point equation for these classes in the framework of b-metric
spaces are proved.

2 Fixed point results in b-metric spaces
In this section, we prove the existence and uniqueness of fixed point theorems in a b-
metric space.

Theorem 2.1 Let (X,d) be a complete b-metric space with coefficient s, let f : X — X and
a: X x X — [0,00) be two mappings and € V. Suppose that the following conditions
hold:

(a) f is a-admissible;

(b) there exists xo € X such that a(xo, f(x0)) > 1;

(c) forallx,y € X, we have

a(xf@)a(nf0)d(fx).f ) < ¥ (dx); 21

(d) if{xn} is a sequence in X such that x, — x as n — 00 and «(x,,f(x,)) > 1 for all
neN, then a(x,f(x)) > 1.
Then f has a unique fixed point x* in X such that o(x*,f(x*)) > 1.

Proof Let xy € X such that «(xo,f(x0)) > 1 (from condition (b)). We define the sequence
{x,} in X such that

%y =f(x,_1) forallmeN.
Since f is ¢-admissible and
a(xo,x1) = & (%0, f (%0)) = 1,
we deduce that
a(x,f (1) = a(f (%), f(%1)) = 1.
By induction, we get
a(x,,_l,f(x,,_l)) >1 forallmeN.
Next, we will show that {x,} is a Cauchy sequence in X. For each n € N, we have

ALy Xp11) = d(f(xn—l)rf(xn))
= O[(xn—le(xn—l))a(xn’f(xn))d(f(xn—l):f(xn))
= w(d(xn—l:xn))'
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By repeating the process above, we get
A%y %ni1) < ¥ (d(x0,%1)) forallmeN.
For m, n € N with m > n, we have

A%y Xm) < A%, X041) + 52 A X1, Xsa) + - - + 8" 2 A X3, %_2)
+ 8" Ad(Xpr2y K1) + " AX1, Xom)
< sy (d(wo, :1)) + Y (d(wo, 1)) + -+ + 8" 2Y " (d(xo, x1))
I A1) + 87 dron)

n—-1

+8" " (d(xo, 41)) ]

= [ (o, )+ o, )+ 7 )

Define S, := Y 1 s'(d(x0,%1)) for all € N. This implies that

1

A %m) <

[Syi—1 —Sy-1] forall n,m € N with m > n.

By Lemma 1.11 we know that the series ) -, s'y*(d(x0,%1)) converges. Therefore, {x,} is a
Cauchy sequence in X. By the completeness of X, there exists x* € X such that x,, — x* as
n — oo. Using condition (d), we get (x*,f(x*)) > 1. From (2.1), we have

a(f (), x") < s[a(F (")) + ()]
= S[d(f ()£ ) + d )]
= sl (") oo o D) (5°)f510) + )
< s[ (" 0)) + ()]

“

Q

for all n € N. Letting n — o0, since ¥ is continuous at 0, we obtain

d(f(x*),x*) =0.

It implies that f(x*) = x*, that is, x* is a fixed point of f such that o(x*, f (x*)) > 1.
Next, we prove the uniqueness of the fixed point of f. Let y* be another fixed point of f
such that

a(yf(r) =1
It follows that

d(x"y") =d(f(").f (v"))
<a(@f(@))a (S (0F))a(f (x).f (7))
<y(d(x".y"))
<d(x".y"),

Page 6 of 17
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*

which is a contradiction. Therefore, x* is the unique fixed point of f such that o(x*,

f(x*)) > 1. This completes the proof. O
Theorem 2.2 Let (X,d) be a complete b-metric space with coefficient s, let f : X — X and
a: X x X — [0,00) be two mappings and € V. Suppose that the following conditions
hold:

(@) f is a-admissible;

(b) there exists xy € X such that a(xo, f(x0)) > 1;

(c) there exists & > 1 such that

[d(f(x),f(y)) + E]a(xf(x))a(y,f(y)) S w(d(x,y)) + % (2'2)
Jorall x,y € X;
(d) if{xn} is a sequence in X such that x, — x as n — 00 and o(x,,f(x,)) > 1 for all
neN, then a(x,f(x)) > 1.
Then f has a unique fixed point x* in X such that o(x*,f(x*)) > 1.

Proof Let xy € X such that a(xg,f(x0)) > 1 (from condition (b)). We define the sequence
{x,} in X such that

%y =f(x,-1) forallmeN.
Since f is a-admissible and a(xg,x1) = (%0, f (x0)) > 1, we get
a(f(xo),f(x1)) = a (1, (%1)) > 1.
By induction, we get
a(xn,l,f(xn,l)) >1 forallmeN.
Next, we will show that {x,} is a Cauchy sequence in X. For each #n € N, we have

A(Xp, Xpi1) + & = d(f(xn—l),f(xn)) +§
< [d(f(xn—l)vf(xn)) + g]a(xn,lf(xn,l))a(xnf(xn))

< Y (d(Xn-1,%4)) + %

< Y (d(n-1,%4)) +&.
Now, we get
d(xnrxnﬂ) = W(d(xn—lixn)) = Wn(d(xo,xl)) foralln e N.

Following the proof of Theorem 2.1, we know that {x,} is a Cauchy sequence in X. Since
(X,d) is complete, there exists x* € X such that x, — x* as » — oco. By condition (d), we
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have o (x*,f(x*)) > 1 for all n € N. From (2.2), we get

a(f (), x") + & < s[d(f (x) %) + d(xna") ] + &
S[Af (7)o Gena)) + &+ d(30,57)
S[(d(f(x*) S (o ) ) & f (-1, f (6n-1)) +d(x,,,x*)]

(@ ) + % +d(5°)
< ]

*

I /\

x*

IA

IA

for all n € N. Letting n — oo and ¥ be continuous at 0, we obtain that

d(f(x*),x*) =0.

This implies that f(x*) = x*, that is, x* is a fixed point of f such that o(x*, f(x*)) > 1.
Next, we prove the uniqueness of the fixed point of f. Let y* be another fixed point of f
such that

a7 f(7) =1

It follows that

This shows that

d(x",y?) =¥ (d(x"y")) <d="y"),

which is a contradiction. Therefore, x* is the unique fixed point of f such that o(x*,
f(x*)) > 1. This completes the proof. O

Theorem 2.3 Let (X,d) be a complete b-metric space with coefficient s, let f : X — X and
a: X x X — [0,00) be two mappings and € V. Suppose that the following conditions
hold:

(a) f is a-admissible;

(b) there exists xo € X such that a(xo,f (x0)) > 1;

(c) there exists & > 1 such that

(@(xf®)a (1, () -1+ &)V < guid (2.3)

forallx,y € X;
(d) if{xn} is a sequence in X such that x, — x as n — 00 and «(x,,f(x,)) > 1 for all
neN, then a(x,f(x)) >1
Then f has a unique fixed point x* in X such that o(x*,f(x*)) > 1.
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Proof Let xy € X such that «(xg,f(x9)) > 1 (from condition (b)). We define the sequence
{x,} in X such that

%y =f(x,_1) forallmeN.

Since f is a-admissible and «/(xo,%1) = a(xo,f(x0)) > 1, we get
a(f(xo).f (%) = a(x1,f (%)) > L.

By induction, we get
o (%-1,f (%4-1)) =1 forallmeN.

Next, we will show that {x,} is a Cauchy sequence in X. For each n € N, we have

gd(xn:xnﬂ) — %‘d(f(xn—l)f(xn))

< (0 (s f n2)) @ (s f () — 1+ &)W 0T G

< gV o),

Since & > 1, we get
d(xnrxnﬂ) =< w'(d(xn—l:xn)) =< wn(d(xO:xl)) forallm e N.

Following the proof of Theorem 2.1, we know that {x,} is a Cauchy sequence in X. Since
(X,d) is complete, there exists * € X such that x, — x* as n — oco. By condition (d), we
have a(x*,f(x*)) > 1 for all n € N. From assumption (2.3), we get

Sd(f(x*),x*) < %-S[d(f(x*),xnﬂd(xn,x*)]
- gS(d(f(x*)J(xnfl)))g(d(x;«,x*))

= (Ed(f(x*)if(xn—l)))s(Ed(xn:x*))s

< ((Ot(xn_1,f(xn_1))0!(x*,f(x*)) 1+ g)d(/(x*)f(xn—l)))s(gd(xn,x*))s
< (%—w(d(x*,xn-ﬂ))s(sd(xn,x*))s

- SS[l/f(d(x*,xn_1)>+d(xmx*)]

for all » € N. Since & > 1, it implies that

d(f(x*),x*) < s[lp (d(x*,x,,_l)) + d(x,,,x*)].

Letting n — 00, since ¥ is continuous at 0, we obtain that

d(f (x*),x*) = 0.

It implies that f(x*) = x*, that is, x* is a fixed point of f such that o:(x*, f (x*)) > 1.
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Next, we prove the uniqueness of the fixed point of f. Let y* be another fixed point of f
such that

a(yf(r) = 1.
It follows that

EAE D) _ gdf S0

< (@ f (5"))a(y", £ (")) = 1 + £) 00D
< gy,

Since & > 1, we have
d(x",y") =¥ (d(x",y7)) <dx" ),

which is a contradiction. Therefore, x* is a unique fixed point of f such that o (x*, f (x*)) > 1.
This completes the proof. d

If we set a(x,y) =1 for all x,y € X in Theorems 2.1 or 2.2 or 2.3, we get the following
results.

Corollary 2.4 Let (X,d) be a complete b-metric space with coefficient s, let f : X — X and
v eV, we have

d(f(x),f () < ¥ (d(x,) (2.4)
forallx,y € X. Then f has a unique fixed point in X.

If the coefficient s =1 in Corollary 2.4, we obtain immediately the following fixed point
theorems in metric spaces.

Corollary 2.5 (Berinde [35]) Let (X,d) be a complete metric space, f : X — X be a map-

ping, ¥ : [0,00) — [0, 00) be a (c)-comparison function such that

d(f(%),f () < ¥ (d(x)) (2.5)
forallx,y € X. Then f has a unique fixed point in X.

Remark 2.6 If y(¢) = k¢, where k € (0,1) in Corollary 2.5, we obtain the Banach contrac-
tion mapping principle.

Next, we give some examples to show that the contractive conditions in our results are
independent. Also, our results are real generalizations of the Banach contraction principle
and several results in literature.
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Example 2.7 Let X = [0,00) and define d : X x X — [0,00) as
dx,y) =« —y|2 for all x,y € X.
Then (X, d) is a complete b-metric space with coefficient s = 2 > 1, but it is not a usual

metric space.
Let us define f : X — X by

floy = T ®E01)
10x, «xe€(1,00).

Also, define o : X x X — [0,00) and ¥ : [0,00) — [0,00) by

1, xyel0,1],
ax,y) =
0, otherwise

and ¥ (f) = %t for all £ > 0. Clearly, f is an o-admissible mapping. For all x,y € X, we have

a(xf () (y.f0))d(f %)) < ¥ (dx ).

Moreover, all the conditions of Theorem 2.1 hold. In this example, 0 is a unique fixed point
of f.
Next, we show that the contractive condition in Theorem 2.2 cannot be applied to this

example. For x = 0 and y = 1, we obtain that

[A(f@.£0)) + €] 5y () + %

where £ =1 and s = 2. This claims that Theorem 2.2 cannot be applied to f. Also, by a
similar method, we can show that Theorem 2.3 cannot be applied to f.

Moreover, results from usual metric spaces and the Banach contraction principle are
not applicable while Theorem 2.1 is applicable.

3 The generalized Ulam-Hyers stability in b-metric spaces
In this section, we prove the generalized Ulam-Hyers stability in b-metric spaces which

corresponds to Theorems 2.1, 2.2 and 2.3.

Theorem 3.1 Let (X,d) be a complete b-metric space with coefficient s. Suppose that all
the hypotheses of Theorem 2.1 hold and also that the function ¢ : [0,00) — [0, 00) defined
by ¢(t) := t — sy (¢) is strictly increasing and onto. If o (u*, f (u*)) > 1 for all u* € X, which is
an g-solution, then the fixed point equation (1.1) is generalized Ulam-Hyers stable.

Proof By Theorem 2.1, we have f(x*) = x*, that is, x* € X is a solution of the fixed point
equation (1.1). Let ¢ > 0 and y* € X be an e-solution, that is,

diy . f(y)) <e.
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Since x*,y* € X are an g-solution, we have

a(xf(x))=1 and «(y~f(*)) =1

Now, we obtain

It follows that

d(x",y") = s(¥ (d(x",y7))) < se.
Since ¢(£) i= £ — sy (1), we have

o(d(x",y")) =d(x",y") - sy (d(x",y")).
This implies that

d(x*,y*) < g7 (se).

Notice that ¢! : [0,00) — [0, 00) exists, is increasing, continuous at 0 and ¢~1(0) = 0.
Therefore, the fixed point equation (1.1) is generalized Ulam-Hyers stable. d

Theorem 3.2 Let (X,d) be a complete b-metric space with coefficient s. Suppose that all
the hypotheses of Theorem 2.2 hold and also that the function ¢ : [0,00) — [0, 00) defined
by ¢(t) := t — sy (¢) is strictly increasing and onto. If a(u*, f (u*)) > 1 for all u* € X, which is
an g-solution, then the fixed point equation (1.1) is generalized Ulam-Hyers stable.

Proof By Theorem 2.2, we have f(x*) = x*, that is, x* € X is a solution of the fixed point
equation (1.1). Let £ > 0 and y* € X be an e-solution, that is,

d(y.f(y)) <e.
Since x*,y* € X are an g-solution, we have
a(x*f(x*)) =1 and o(y"f(y")) =1L

Now, we obtain

d(x*y*) +& = d(f(x*),y") +&
<s[d(f(x").f (") +d(f(7").5")] + &
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It follows that
d67) =slwldlo )+ ]
and then
457) - (o o)) < .
Since ¢(t) := ¢ — sy (£), we have
o(d(x",y")) = d(x",y") = s (d(x",5"))-
It implies that
d(x*,y%) < 97 (se).

Notice that ¢! : [0,00) — [0, 00) exists, is increasing, continuous at 0 and ¢~}(0) = 0.
Therefore, the fixed point equation (1.1) is generalized Ulam-Hyers stable. O

Theorem 3.3 Let (X,d) be a complete b-metric space with coefficient s. Suppose that all
the hypotheses of Theorem 2.3 hold and also that the function ¢ : [0,00) — [0, 00) defined
by () := t — sy () is strictly increasing and onto. If a(u*, f (u*)) > 1 for all u* € X, which is
an g-solution, then the fixed point equation (1.1) is generalized Ulam-Hyers stable.

Proof By Theorem 2.3, we have f(x*) = x*, that is, #* € X is a solution of the fixed point
equation (1.1). Let ¢ > 0 and y* € X be an e-solution, that is,

d(y".f(y")) <e.

Since x*,y* € X are an g-solution, we have

a(x*f(x*)) =1 and o(y"f(y")) =1L
Now, we obtain

EAE ) d( )y
< GG+ ))]

= (EUEHONY (54007’
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= (@@ f@)alr £ (7)) -1+ O (g 0000y
< (EV DY (£4007)?

= Wy NGyl

Since & > 1, we have

d(x",y") < s[w(d(x"y")) +d(f(5),")]
< S[l// (d(x*,y*)) + 8].

It follows that
d(x"y") - s(v (d(x",y7))) < se.
Suppose that ¢(t) := t — sy (£), we have
o(d(x",y")) = d(x",y") - sy (d(x",57))-
It implies that
d(x*,y*) < @7 (se).

Notice that ¢! : [0,00) — [0, 00) exists, is increasing, continuous at 0 and ¢~1(0) = 0.
Therefore, the fixed point equation (1.1) is generalized Ulam-Hyers stable. g

4 Well-posedness of a function with respect to «-admissibility in b-metric
spaces

In this section, we present and prove well-posedness of a function with respect to an «-

admissible mapping in b-metric spaces.

Definition 4.1 Let (X,d) be a b-metric space with coefficient s, and let f : X — X, o :
X x X — [0,00) be two mappings. The fixed point problem of f is said to be well posed
with respect to « if:

(i) f hasa unique fixed point #* in X such that o (x*,f(x*)) > 1;

(ii) for a sequence {x,} in X such that d(x,,f(x,)) — 0 as n — oo, then x,, — x* as

n— Q.

In the following theorems, we add a new condition to assure the well-posedness via o -
admissibility.
(S) If {x,} is a sequence in X such that d(x,,f(x,)) — 0 as n — oo, then a(x,,f(x,)) > 1
forallme N.

Theorem 4.2 Let (X,d) be a complete b-metric space with coefficient s, let f : X — X and
a: X x X — [0,00) be two mappings and € V. Suppose that all the hypotheses of Theo-
rem 2.1 and condition (S) hold. Then the fixed point equation (1.1) is well posed with respect

to «.
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Proof By Theorem 2.1, there is a unique point x* € X such that f(x*) = x* and «(x*,
f(x*)) > 1. Let {x,} be a sequence in X such that d(x,,f(x,)) — 0 as # — 0o. By condi-
tion (S), we get

(0, f(xn) = 1.

Now, we have

d (o x*) = d(nf (7))

s[d (@ f () +d(f (). f (x7))]

< s f ) or (6",f (6%)) @ (F o), f (7)) + s f ()]
s[¥ (@, a")) + d (o f (@) ]

IA

IA

Since v is continuous at 0 and d(x,,f(x,)) — 0 as n — oo, it implies that x, — x* as
n — 00. Therefore, the fixed point equation (1.1) is well posed with respect to «. O

Theorem 4.3 Let (X,d) be a complete b-metric space with coefficient s, let f : X — X and
a: X x X — [0,00) be two mappings and € V. Suppose that all the hypotheses of Theo-
rem 2.2 and condition (S) hold. Then the fixed point equation (1.1) is well posed with respect

to o.

Proof By Theorem 2.2, there is a unique point x* € X such that f(x*) = »* and «(x*,
f(x*)) > 1. Let {x,} be a sequence in X such that d(x,,f(x,)) — 0 as n — oo. By condi-
tion (S), we get

o (%, f (x0)) = 1.

Now, we have

d(onx") +& = d(wnf(x7)) +&
< s[d (20 f () +d(f (%), f (x7)) + €]
S[(d(f xn ( )) )a(xnf(xn))a(x*,f(x*)) +d(xn,f(xn))]
< s[t/f(d(xn,x*)) + % + d(xn,f(x,,))i|
<s w(d(xn,x*)) + d(xn,f(xn))] +

Since ¥ is continuous at 0 and d(x,,f(x,)) — 0 as n — oo, it implies that x, — x* as
n — 00. Therefore, the fixed point equation (1.1) is well posed with respect to «. O

Theorem 4.4 Let (X, d) be a complete b-metric space with coefficient s, let f : X — X and
a: X x X — [0,00) be two mappings and € V. Suppose that all the hypotheses of Theo-
rem 2.3 and condition (S) hold. Then the fixed point equation (1.1) is well posed with respect

to «.
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Proof By Theorem 2.3, there is a unique point x* € X such that f(x*) = x* and «(x*,
f(x*)) > 1. Let {x,} be a sequence in X such that d(x,,f(x,)) — 0 as n — co. By condi-
tion (S), we get

oz(xn,f(xn)) > 1

Now, we have

%-d(xn,x*) - gd(xnf(x*))
< ES[d(an’(xn)Hd(f(xn)f(x*))]

= g:Sd(f(xn),f(x*))gsd(xnf(xn))

(gd(f(xn)f(x*)))s (sd(xnf(xn)))s

(@ (o f ) (3 f (x7)) — 1+ &) VO EDV) gonsten)s
< (E W(d(xn,x*)))s (%—d(xnf(xn)))s

IA

— gsw(d(xmx*))gsd(xnﬂxn))

- 58[1//(d(xn,x*))+d(xnf(xn))].

Since & > 1, we have

d(x,,,x*) < s[w(d(x,,,x*)) + d(x,,,f(x,,))],

and ¥ is continuous at 0 and d(x,, f(x,)) — 0 as n — oo. Itimplies that x,, — x* as n — oo.
Therefore, the fixed point equation (1.1) is well posed with respect to «. d
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