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Abstract
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1 Introduction
Let E be a real Banach space with norm | - || and let E* denote the dual space of E. We use
— and — to denote strong and weak convergence, respectively. We denote the value of
feE*atxeEby (x,f).

We use J to denote the normalized duality mapping from E to 2°, which is defined by

Jei= |f €E*: nf) = IIxI? = IfI?), x€E.

Itis well known that ] is single-valued if E* is strictly convex. Moreover, J(cx) = ¢Jx, for Vx €
E and ¢ € R'. We call J weakly sequentially continuous if each {x,} C E which converges
weakly to x implies that {Jx,} converges in the sense of weak* to Jx.

Let C be a nonempty, closed, and convex subset of E and Q be a mapping of E onto C.
Then Q is said to be sunny [1] if Q(Q(x) + t(x — Q(x))) = Q(x), for allx € Eand ¢ > 0.

A mapping Q of E into E is said to be a retraction [1] if Q*> = Q. If a mapping Q is a
retraction, then Q(z) = z for every z € R(Q), where R(Q) is the range of Q.

A mapping T : C — C is said to be nonexpansive if | Tx — Ty|| < ||x — y|, for Vx,y € C.
We use F(T') to denote the fixed point set of T, that is, F(T) := {x € C: Tx = x}. A mapping
T:EDD(T)— R(T) C E is said to be demiclosed at p if whenever {x,} is a sequence in
D(T) such that x, — x € D(T) and Tx,, — p then Tx = p.

A subset C of E is said to be a sunny nonexpansive retract of E [2] if there exists a sunny
nonexpansive retraction of E onto C and it is called a nonexpansive retract of E if there
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exists a nonexpansive retraction of E onto C. If E is reduced to a Hilbert space H, then the
metric projection P¢ is a sunny nonexpansive retraction from H to any closed and convex
subset C of H. But this is not true in a general Banach space. We note that if E is smooth
and Q is a retraction of C onto F(T), then Q is sunny and nonexpansive if and only if for
Vxe C,ze F(T), (Qx—x,J(Qx—2z)) <0 [3].

A mapping T : C — C is called pseudo-contractive [2] if there exists j(x — y) € J(x — y)
such that (Tx — T¥,j(x — y)) < |l — y||> holds for all x,y € C.

Interest in pseudo-contractive mappings stems mainly from their firm connection with
the important class of nonlinear accretive mappings. A mapping A : D(A) C E — E is said
to be accretive if ||x; — x2|| < [|x1 — %2 + r(y1 — y2)||, for Vx; € D(A), y; € Ax;, i =1,2, and
r> 0. If A is accretive, then we can define, for each r > 0, a nonexpansive single-valued
mapping J4 : R(I +rA) — D(A) by J4 := (I+rA)~!, which is called the resolvent of A. We also
know that for an accretive mapping A, N(A) = F(J4), where N(A) = {x € D(A) : Ax = 0}. An
accretive mapping A is said to be m-accretive if R(I + AA) = E, for VA > 0.

It is well known that if A is an accretive mapping, then the solutions of the problem
0 € Ax correspond to the equilibrium points of some evolution equations. Hence, the
problem of finding a solution x € E with 0 € Ax has been studied by many researchers
(see [4—12] and the references contained therein).

One classical method for studying the problem 0 € Ax, where A is an m-accretive map-
ping, is the following so-called proximal method (cf [4]), presented in a Hilbert space:

xo €H, X,41 %];ix,,, n=>0, (1.1)

where ]2 := (I +r,A)™L. It was shown that the sequence generated by (1.1) converges weakly
or strongly to a zero point of A under some conditions.

On the other hand, one explicit iterative process was first introduced, in 1967, by
Halpern [13] in the frame of Hilbert spaces:

ueC, xeC, xpq=au+l-o,Tx,, n=>0, (1.2)

where {a,} C[0,1] and T : C — C is a nonexpansive mapping. It was proved that under
some conditions, the sequence {x,} produced by (1.2) converges strongly to a point in
E(T).

In 2007, Qin and Su [6] presented the following iterative algorithm:

x1€C,

Vn = Bun + (1= ,Bn)];:xm 1.3)
Xnsl = Oplh + (1 - Oln))’w
They showed that {x,} generated by (1.3) converges strongly to a point in N(A).
Motivated by iterative algorithms (1.1) and (1.2), Zegeye and Shahzad extended their

discussion to the case of finite m-accretive mappings. They presented in [14] the following

iterative algorithm:

X0 € C: Xn+l = Oplh + (1 - an)ernt n= 0) (14)
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where S, = aol +aja, +asja, +- - - +aya, with Ju, = I +A;)" and ZLO a;=1. IfﬂLlN(Ai) #
@, they proved that {x,} generated by (1.4) converges strongly to the common point in
N(A;) (i=1,2,...,1) under some conditions.

The work in [14] was then extended to the following one presented by Hu and Liu in
[15]:

x0 €C,  xp =l + Buxy + 9,5,%,, n=0, (L5)

where S, = apl + aljﬁf + azlﬁf +oee 4 aIJ;:’ with ];:i = +r,A;)"" and Zz{:o a;=1. We
have {a,},{B,}, {®.} € (0,1) and o, + B, + ¥, = 1. If ﬂle N(A;) # 9, they proved that {x,}
converges strongly to the common point in N(4;) (i = 1,2,...,[) under some conditions.

In 2009, Yao et al. presented the following iterative algorithm in the frame of Hilbert
space in [16]:

X1 € C,
Yn = PC[(l - an)xn]x (16)

X1 = (L= Bu)xy + Bu Ty, n=>1.

Here T : C — C is a nonexpansive mapping with F(T) # @. Suppose {o,,} and {8,} are two
real sequences in (0,1) satisfying

(@) Y oo ey = +00 and lim,_o = 0;

(b) 0 <liminf,_, B, <limsup,_, . B. <1

Then {x,} constructed by (1.6) converges strongly to a point in F(T).

The following lemma is commonly used in proving the convergence of the iterative al-

gorithms in a Banach space.

Lemma 1.1 ([17]) Let E be a real uniformly smooth Banach space, then there exists a non-
decreasing continuous function f : [0, +00) — [0, +00) with lim;—o+ B(£) = 0 and B(ct) <
cB(t) for ¢ = 1, such that for all x,y € E, the following inequality holds:

ll2+ 1> < llacl® + 2(y, Je) + max{ [l[l, Iyl B(lIy1])-

Motivated by the work in [14] and [16], and after imposing an additional condition on

the function 8 in Lemma 1.1 that

Bl < — -

~ max({1,2r}’ 17)

where 7; > 0 is a constant satisfying some conditions, Shehu and Ezeora presented the

following result.

Theorem 1.1 ([2]) Let E be a real uniformly smooth and uniformly convex Banach space,
and let C be a nonempty, closed, and convex sunny nonexpansive retract of E, where Qc is
the sunny nonexpansive retraction of E onto C. Supposed the duality mapping J : E — E*

is weakly sequentially continuous. For each i=1,2,...,N, let A; : C — E be an m-accretive
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mapping such that ﬂf\il N(A;) # 9. Let {a,},{Bs} C (0,1) satisfy (a) and (b). Let {x,} be
generated iteratively by
X1 € C,
Yn = QC[(l - an)xn]7 (18)
Xn+l = (1 - ,Bn)xn + lgnSNyn: n= 1.
Here Sy := aol +aija, +azja, ++ - +anay with Ja, = [+ A;) ™, fori=1,2,...,N.O<ax <1,

fork=0,1,2,...,N, and Z]/:io ay = 1. Then {x,} converges strongly to the common point in
N(A;), wherei=1,2,...,N.

How do we show the convergence of the iterative sequence {x,} in (1.8) if B loses the
additional condition (1.7)? How about the convergence of {x,} if different A; has different
coefficient in (1.8)?

To answer these questions, Wei and Tan presented the following iterative scheme in [18]:

X1 € C,
Up = QC[(I = 0t) (X + en)]:

vy =(1- ﬁn)xn + BuSutty,

(1.9)

Xn+l = YnXn + (1 - yn)San n>1,

where {e,} C E is the error sequence and {A;}Y, is a finite family of m-accretive mappings.
Sy i=aol + aljf}:l +dy 2?2 +ot aN]qu}{,,]fj;,. = +r, A fori=1,2,...,N, Z]/:]:o ar =1,
O<ag<l,fork=0,1,2,...,N. Some strong convergence theorems are obtained.

In this paper, our main purpose is to extend the discussion of (1.9) from one family of
m-accretive mappings {A;}Y; to that of two families of m-accretive mappings {A;}Y, and
{Bj}j-‘fl. We shall first present and study the following three-step iterative algorithm (A)

with errors {e,} C E:

X1 € C,
Uy = QC[(1 - an)(xn + 6',,,)],

vy =(1- Bn)%n + BuSnthn,

(A)

Xn+l = Vn¥kn t (1 - Vn)WnSan n= 1,
where S, := a01+a1];‘21 +a2]f:fz o +uN];:§(], and W, := bol + bl]sli:l +by ffz et bM];if‘fw.
Fori=1,2,...,N, ],/:fi =W +r,A)t Forj=12,...,M, sn{,' = (I +s,B)7". ag,an,...,an
and by, by, ..., by are real numbers in (0,1) and Zf\:[o a; =1, Zj\fo bj=1r,;>0,fori=
1,2,...,N,ands,;>0,forj=1,2,..., Mand n > 1.

Later, we introduce and study the following one:

xleC,

Up = QC[(l = o) (% + en)]v (B)

Page 4 of 18
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Vo = (1= B)xy + BuSultn,

X+l = Yn¥n t (1 - Vn)unSan n>1,

where U, := C01+01]£:l +Cz]532]£:1 T +cM]£:‘§4 f:yv;_ll .. -]f:l, €o,C1,...,Cp are real numbers
in (0,1), Z}[‘\fo ¢j=1,and ]ﬁ’} =( +t,;B) " and t,; >0, forj=1,2,...,Mand n > 1.

More details will be presented in Section 3. Some strong convergence theorems are ob-
tained, which can be regarded as the extension of the work done in [2, 6, 14, 15, 18], etc. As
a consequence, some new iterative algorithms are constructed to converge strongly to the

common fixed point of two finite families of pseudo-contractive mappings from C to E.

2 Preliminaries
Now, we list some results we need in sequel.

Lemma 2.1 ([19]) Let E be a real uniformly convex Banach space and let C be a nonempty,
closed, and convex subset of E and T : C — C is a nonexpansive mapping such that
F(T) # 0, then I — T is demiclosed at zero.

Lemma 2.2 ([15]) Let E be a strictly convex Banach space which has a uniformly Gdateaux
differential norm, and let C be a nonempty, closed, and convex subset of E. Let {Ai}fil be
a finite family of accretive mappings with ﬂf\il N(A)) # 0, satisfying the following range
conditions:

DA)cCCcC ﬂR(1+rAi), i=1,2,...,N.

r>0

Let ag,ay,...,ayn be real numbers in (0,1) such that ZZO a;=landS,, =aol + alj;‘:‘ +
azl;iz oot aN];iN, where ];:i =(I+r,A) " andr, >0, then S,, is nonexpansive and F(S,,) =
ML N ().

Lemma 2.3 ([12]) In a real Banach space E, the following inequality holds:
o+ y11* < x> + 20, j(x + ), Vx,y €E,
where j(x +y) € J(x + y).

Lemma 2.4 ([20]) Let {a,}, {b,}, and {c,} be three sequences of nonnegative real numbers
satisfying

ap1 < (L=cy)ay +byc,, Yn=>1,

where {c,} C (0,1) such that (i) c, — 0 and y -, ¢, = +00, (ii) either limsup,_, ., b, <0 or
Yo bycyl < +00. Then lim,_, » ay, = 0.

Lemma 2.5 ([21]) Let {x,} and {y,} be two bounded sequences in a Banach space
E such that x,, = Buxy + (1 — Bu)yw, for n > 1. Suppose {B,} C (0,1) satisfying 0 <
liminf,_, ;0 By < limsup, ., By <L Iflimsup, , o (1¥ne1 = Yull = I%ns1 — %4 l) < O, then
limy o0 Y0 — %ull = 0.
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Lemma 2.6 ([22]) Let E be a Banach space and let A be an m-accretive mapping. For ). > 0,
> 0,and x € E, we have

Jix =], (%x ¥ (1 - %)Ax),

where J, = (I + M) and ], = (I + pA)™.

3 Main results

Lemma 3.1 ([2]) Let E be a real uniformly smooth and uniformly convex Banach space.
Let C be a nonempty, closed, and convex sunny nonexpansive retract of E, and Q¢ be the
sunny nonexpansive retraction of E onto C. Let T : C — C be nonexpansive with F(T) # 0.
Suppose that the duality mapping ] : E — E* is weakly sequentially continuous. If for each
t€(0,1), define T; : C — C by

Tyx:= TQc[(1 - )x]. (3.1)
Then T, is a contraction and has a fixed point z,, which satisfies ||z, — Tz;|| — 0, as t — 0.

Lemma 3.2 ([2]) Under the assumptions of Lemma 3.1, suppose further that B in
Lemma 1.1 satisfies (1.7), where r1 > 0 is a sufficiently large constant such that z, € C(\{z €
E:|z—x*| <n},x*isin F(T) and t € (0,1), then lim,_, ¢ z; = zg € F(T).

Remark 3.1 Lemma 1.1 with additional condition (1.7) is employed as a key tool to prove
Lemma 3.2. In the following lemma, we shall show that Lemma 2.3 can be used instead of

Lemma 1.1, which simplifies the proof and weakens the assumption.

Lemma 3.3 Only under the assumptions of Lemma 3.1, the result of Lemma 3.2 is true,
which ensures that the assumption is weaker than that in Lemma 3.2.

Proof To show that lim;_,¢z; = zg € F(T), it suffices to show that for any sequence {t,}
such that ¢, — 0, we have lim,,_, 2, = 2o € F(T).

In fact, Lemma 3.1 implies that z, € F(T) such that z; = TQ¢[(1 - t)z], ¢ € (0,1). By using
Lemma 2.3, we have for Vp € F(T),

lz: - pII* = | TQc[(1 - )z:] - TQep|?

2
<llze —p -tz

<llze = plI* = 2¢tllze - p - tze||* = 2t{p + tz0, ) (20 — p — t21)).
This implies that
lze —p = tzel* < (] (P + tze — 2.)) + t{ze, ] (0 + 120 — 22)). (3.2)
In particular,

Ize, = p = tnze, |* < (0T (P + tuze, — 20,)) + tal20,, T + tuze, — 21,))- (3.3)
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Since Vp € F(T),

lze = pll = | TQc[( - t)z:] - TQcp|
< Qc[@-8z] - Qcp|
<|a-tz-p|=|Q-0)z-p) -tp|

<@ -z -pll +tlpl,

{z:} is bounded.
Without loss of generality, we can assume that {z;,} converges weakly to zy. Using
Lemma 3.1 and Lemma 2.1, we have zg € F(T).

Substituting zy for p in (3.3), we obtain
126, — 20 = tuze, |I* < (20,J (20 + tuz, — Z2,)) + tnl22,0 T (20 + EnZt,, — 22,))- (3.4)

Then from (3.4) and the weak convergence of /, we have z;, — zo — t,z;,, — 0, as n — 00.
Then from ||z;, — zo || < ||zs, — 20 — tnzs, || + tall2s, ||, We see that z,, — zo, as 1 — oo.
Suppose there exists another sequence z;, — %o, as t,, — 0 and m — oc. Then from

Lemma 3.1 that ||z;,, — Tz, || — 0 and I — T is demi-closed at zero, we have x, € F(T).

Moreover, repeating the above proof, we have z,, — %o, as m — c0. Next, we want to

show that zg = xp.
Using (3.2), we have

126, = 20 = tinze 1> < (20,T (20 + bzt = Ztm)) + tin(2tmr T (20 + bzt = Z0))- (3.5)
By letting m — o0, (3.5) implies that

llxo = zolI* < {20,J (20 — %0)). (3.6)
Interchanging xo and z, in (3.6), we obtain

llzo = %0ll* < (0,7 (0 — 20)). (3.7)
Then (3.6) and (3.7) ensure

2llx0 = zoll* < llxo — zol%, (3.8)

which implies that xy = zo.

Therefore, lim,_, ¢ z; = zg € F(T).
This completes the proof. O

Lemma 3.4 Let E be a strictly convex Banach space and let C be a nonempty, closed, and
convex subset ofE. Let A;: C — E (i =1,2,...,N) be a finite family of m-accretive mappings
such that (X, N(4;) # 0.

Let ag,ai,...,an be real numbers in (0,1) such that Zﬁo a;=1and S, = agl + aljﬁfl +
612];:22 oot aN];if}’v, where];:fi = +r,A) Yandr,; >0, fori=1,2,...,N,and n > 1, then
S, : C — C is nonexpansive and F(S,) = ﬂfilN(Ai),for n>1.

Page 7 of 18
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Proof The proof is from [18]. For later use, we present the proof in the following.
It is easy to check that S, : C — C is nonexpansive and ﬂf\il N(A;) C E(Sy).
On the other hand, for Vp € F(S,), thenp = S,p = aop + aljﬁt‘ﬁp + azf;i,zzp oot aN]f:}{[p.
For Vq € ﬂZIN(Ai) C F(S,,), we have

lp - gl <aollp—qll +ar | p—ql| + - +ax|JiN.p - 4|

<(ag+a +---+an)llp—ql +an|/Np—4q|

=1 -an)llp - gl +ax ||\, 4|

<lp-aqll.

Therefore, [|p - gll = (1 —ax) |p — qll + ax ;.Y p — qll, which implies that [|p - gl| = [[/;,},p -

q|l. Similarly, ||jp — ¢l = ||]f}:1p_q|| == IIJfﬁ,p—qll.
A A A .
Then llp - qll = lls¥ - Urop = @) + § - Urop = @) + - + 58 - Urp = @), which
implies from the strict convexity of E that p — g = ];3:1 p—q= ];:22 p-g=---= ]f}ﬁl p—q.
Therefore, ]ﬁzfip =p, fori=12,...,N. We have p € ﬂfilN(A,«), which completes the
proof. 0

Similar to Lemma 3.4, we have the following lemma.

Lemma 3.5 Let E and C be the same as those in Lemma 3.4. Let {Bj};‘fl be a finite family
of m-accretive mappings such that ﬂj\fl N(Bj) #0.

Let by, by, ...,by be real numbers in (0,1) such that Z;\fo bj=1and W, = bol + bljs]ifl +
bzlfé o +bM]£1f‘/’\[4, whereff; = +sn;B) " ands,;>0,forj=1,2,...,M,then W, : C — C
is nonexpansive and F(W,,) = ﬂ?le(Bj),for n>1.

Lemma 3.6 Let E, C, S, and W, be the same as those in Lemmas 3.4 and 3.5. Suppose
D= (ML NA) N (N NB)) # 0. Then W,S,,S,W,, : C — C are nonexpansive and
F(Wnsn) =F($,Wy)=D.

Proof From Lemmas 3.4 and 3.5, we can easily check that W,,S,,S, W, : C — C are non-
expansive and F(S,) N F(W,,) = D. So, it suffices to show that F(S,) N F(W,,) D F(W,.S,)
since F(S,)) N F(W,,) C F(W,.S,,) is trivial.

For Vp € F(W,,S,), then p = W,,S,p.

For Vq € F(S,) N F(W,,) C F(W,,S,), then g = W,,S,,q. Now,

lp—qll < ISwp = Sugll <aollp—qll + ar |[Jip =g +- -+ an [N p—ql.-
Then repeating the discussion in Lemma 3.4, we know that p € F(S,)). Thenp = W,,S,,p =
W,p, thus p € F(W,,), which completes the proof. d

Theorem 3.1 Let E be a real uniformly smooth and uniformly convex Banach space. Let
C be a nonempty, closed, and convex sunny nonexpansive retract of E, where Qc is the
sunny nonexpansive retraction of E onto C. Let A;,B; : C — E be m-accretive mappings,
wherei=1,2,...N,j=1,2,...,M. Suppose that the duality mapping ] : E — E* is weakly
sequentially continuous and D := (ﬂfilN(Ai)) N (ﬂ?fl N(B))) # 9. Let {x,} be generated
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by the iterative algorithm (A), where S, := aol + 611/;:,11 + 612];:22 4ot aN];?ﬁ[, and ]’:‘::i =
(I + 1 A)7Y, fori=1,2,...,N, O <ay <1, for k=0,1,2,...,N, Y oax = 1. W, = bol +
blff}_l + bszfz ot bM]Si%, where J,. = (I + $niB)7L, for j=1,2,...,M, 0 < by <1, for

Sn,j

k=0,1,2,...,M, Zﬁo by =1. Suppose {e,} C E, {a,,}, {Bu}, and {y,} are three sequences in

(0,1), and {r,i},{sn,;} C (0,+00) satisfy the following conditions:
(i) @y, —> 0,8, — 0,asn— oo;
(i) D02 ufu = +00;
(iii) 0 <liminf,_ e ¥ <limsup,_, . v <1;
(iv) Y02 |rus1i = Tuil < 400 and ry,; > ¢ >0, forn>1andi=1,2,...,N;
(V) Yooy ISus1) — Snjl < +00 and s,j > € >0, forn>1andj=1,2,...,M;
(vi) ”;—’V’l” — 0,asn— +00,and y ., lle,ll < +00.
Then {x,} converges strongly to a point p, € D.

Proof We shall split the proof into five steps:
Step 1. {x,,}, {#6,}, {Suttn}, {vn}, and {S,x,,} are all bounded.
We shall first show that Vp € D,

n
I = pll <My + Y el
i=1
where M; = max{||x; - pl, |pll}-
By using the induction method, we see that for n =1, Vp € D,
%2 = pll < nillx = pll + @ = y)IIWiSiv1 = pll
<nlx -pll + @ =n)lvn -pl

=nlx—pll+ @ -y)A=B)lIx - pll + Br(1 = y)llur - pll

<yl —pll+ @ =)A= B)llxs —pll + A - 1) |1 - a1)(x1 + 1) —p|
<[1-oBi@ = y)]lx - pll + 1 (1 = ) lipll + A = a1) (1 = y) llen

<M+ |lell.
Suppose that (3.9) is true for n = k. Then, for n = k + 1,

lxke2 = pll < Vi ka1 =PIl + A = Yis) Vi — pl

< Vil = pll + (1= Vi) [ = Bred) 9501 — Il + Bres s — Pl |

< Vs l%ks1 = pll + (1 - yk+1)[(1 = Bres) 11 = pi
+ Bien ” (1= otges1) (Xk41 + €xs1) —P“]
= [1 — 1 B (1 - Vk+1)] k41 =PIl + otrs1 Bisr (L= visd) 12

+ Bra1(1 = o)) (L = Vi)l g

k

<M+ [1- B (1= yiar) ] Z lleill + (1 = atier1) Brar (1 = yisn) e l

i=1
k+1

<M+ |eill.
i=1
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Thus (3.9) is true forall n € N. Since Y .-, [le, || < +00, (3.9) ensures that {x, } is bounded.

For Vp € D, from ||lu, — pll < (1 - &) (% + €2) = pll < l%ull + llenll + l|pll, we see that {u,}
is bounded.

Since [|Suttull < ISuttn = Supll + llpll < llun — pll + llpll, {Sys,} is bounded. Since both
{Suu,} and {x,} are bounded, {v,} is bounded. Similarly, {S,x,}, {S.v.}, {]f:iu,,}, {]f:lfiv,,},
and {[Sli{/Snvn} are all bounded, fori=1,2,...,N;;j=1,2,...,M.

Then we set My = Sup{ ||t |, 157 4l 110l Wi Vil 1St 1Sviell 16l 1 oy Savall 111>
1,i=1,2,...,N;j=1,2,...,M}.

Step 2. limy, o |6, = WySyvy|l = 0 and lim,,— o [|%,41 — x| = 0.

In fact,
1 Wous1Sni1Vie1 = WuSuvall

M
= b0||Sn+1Vn+1 - Snvn” + Zb}|

j=1

o Sus1Viet = Jony Sava - (3.10)

. J J
Next, we discuss ||]sljl+1,/sn+1"n+l —[sli'anv,, Il
If 5,,j < $41» then, using Lemma 2.6,
j j
“[siﬂ,jsnﬂvnﬂ _]ﬁ,jsnvn ||

. Sy, i S, . .
J nj ny J [BI
]:i,i( Sn+1Vn+1 + (1 - ) sn+1,an+1Vn+1) - s,,'anVn

Sn+l,j Sn+lj

Snyj Snj_\ /B
SpiVasel + (1 - sn+1,/Sn+1Vn+l - Suvn
Sn+l,j Sn+lj

Sn,j Sn,j
1Sns1Vii1 = Suvaull + <1 - ) |

Sn+lj Sn+lj

/
Sn+lj

IA

Sni1Vni1 = SV ”

Sn+lj — Snj

IA

||Sn+1Vn+1 - SnVn ” + 2M2 (311)

If 8,141,/ < 51, then imitating the proof of (3.11), we have

i i Snj — Sn+ly
” s,,1+1,/-Sn+1Vn+1 _[an/,anVn ” < ISurVus1 = Spvull + 2My ——.
&

(3.12)
Combining (3.11) and (3.12), we have

j ]Bj
sn+1’1-Sn+1Vn+1 - s,,_/Sn Vn “

|5n,j — Sn+lj |

= ”Sn+1Vn+l - SnVn” + 2]\/12 (313)

Putting (3.13) into (3.10), we have

2M, &
” Wn+15n+1vn+1 - WnSnVn” =< ||Sn+1Vn+1 - SnVn” + T Z |Sn,j - Sn+1,]'|~ (314‘)
j=1
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Similarly, we have

N

2M,
”Sn+1un+1 - Sn”n” = ||Mn+1 - un” + T Z |rn,i — I'n+l,i (315)
i=1
and
M,
”Sn+1Vn+l - SnVn” =< ”Vn+1 - Vn” + T Z |rn,i — I'n41,il- (316)
i=1
Therefore,
1 Wi1Sns1Vier — WuSuvall
M
2M, 2My &
=< ||Vn+1 - Vn” + T Z |Sn,/' _sn+1,j| + ° Z |rn,i - rn+l,i|
j=1 i=1
= ||xn+1 _xn” + ﬂn”xn” + ,Bn+1||xn+l|| + |ﬁn+1 - ,Bnl ||Sn+1un+1|| + ,Bn”Sn+1un+1 - Snun”
2M2
Z |Sn,1 Sn+1,}| + - Z |70 = Tl
< Wnsr = Xull + Bullxnll + Bust%nstll + 181 — BullSns1ttnsrll + Bullttnir — il
4M2
ZV}M rn+lt|+—Z|5n,j sn+1,1|
= ||xn+1 _xn” + ﬂn”xn” + ﬂn+1||xn+1” + |/3n+1 - ﬂn|||Sn+lun+1||
+ By H (1= 0t1) X1 + €41) — (L= ) (x4 + €) ”
4M2
Z |rnz - rn+lt| + - Z |5n,1 Sn+1,}|
<@+ B l%ner = xull + (B + B %]l + (Brst + 2uar Br) 1% |
+ |,Bn+1 - ,Bn| ”Sn+1un+1 ” + ﬁn ”en+1 —€n ” + ,Bn ”an+len+1 - anen”
4M2
Z [Tni = Tnail + - Z |Sn,} Sn+1,/| (3.17)
Thus limsup,,_, , o (| Wii1Sus1Vis1 = WuSuvull = %00 — 24]1) < 0. Using Lemma 2.5, we

have from (3.17) lim,,  ||x, — W, S,v,|l = 0 and then lim,,_, o ||%,11 — %] = lim,,— oo (1 —
VV!)” WuSuvn — x4 =0

Step 3. lim,,, o [, — W, S, 1| = 0

In fact,

”xn - Wnsnxn” = ||xn+l _xn” + ||xn+1 - WnSnxn”
< %ni1 —xull + “ Yuxn + (L= Y) WiSuviy — WSy, ”

=< ||xn+1 - xn” + Vn”xn - WnSnVn” + ” WnSnVn - Wnsnxn”

Page 11 0of 18
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S e = xull + Y llxn = WaSuvill + BullSuttn — %, |l
S M1 = X ll + Yl = WuSpvall + 28,M,. (3.18)

Then (3.18) and step 2 imply that ||x, — W,S,x,| — 0, as n — +00, since 8, — 0.

Step 4. limsup,,_. , . (po,J/(Po — x,)) < 0, where pyg is an element in D.

From Lemma 3.6, we know that W,,S,, : C — C is nonexpansive and F(W,,S,)) = D. Then
Lemma 3.1 and Lemma 3.3 imply that there exists z; € C such that z, = W,,S,,Qc[(1 — £)z]
for t € (0,1). Moreover, z; — pg € D, as t — 0.

Since flz - poll < 1 - )z — poll < (1= Bz - poll + Ipoll, {2} is bounded. Let Ms =

sup{|lz; — x|l : » > 1,¢ > 0}. Then from step 1, we know that M3 is a positive constant.
Using Lemma 2.3, we have

l12e = xall® = 2¢ = WoSutn + WSy — %>
E ”Zt - WnSnxnnz + 2(Wnsnxn - xn’](zt _xn)>
<llz: — WnSnxnnz + 2| W Suxn — %l | 2¢ — x4l
2
= ” (I-1t)z; —x ” + 2{| Wy Snxy — xull|2e — |
=< ”Zt _xn”z - Zt(zt:][(l - t)Zt - xn]) + 2M3” Wnsnxn _xn||~
So (z,,JI(1 = D)z — x,]) < My | WuSux, — x|, which implies that lim;_,¢ limsup,,_, , . (s
J[A -1t)z; —x,]) <0 in view of step 3.
Since {x,} is bounded and J is uniformly continuous on each bounded subset of E,

(po,J(po — xn) = J[(1 = )z —x,]) — 0,as t — 0.
Moreover, noticing the fact that

(po:J(po — %)) = (po, T (po = %) = J[(1 = )z, — %, )
+{po — 2, J[(1 = )z — %)) + (20, J[(1 = )z, — %)),
we have limsup,,_, , . (po,J(po — x,)) <O.

Since (PoJ[Po — %, — (1 —ay)e, + aux,]) = (Po,/[lﬂo —xp— (L—ay)e, + oxy,] _](pO — %)) +
(po,J(po — x,)), and J is uniformly continuous on each bounded subset of E,

lim sup(po,][po —x,— (1 —ay,)e, + a,,xy,]) <0. (3.19)

n—+00

Step 5. x, — po, as 1 — +00, where pg € D is the same as in step 4.

Let My = sup{[|(1 — ;) (%, + €x) — poll : > 1}. By using Lemma 2.3 again, we have

%1 — poll®
< Vull%n = poll* + A= y) v — poll?
< Vull%w = poll” + (1 = ¥) A = B 1% = poll* + (1 = ) Bullttw — poll®
= (1= B+ Buyn)1xn = polI* + (1= ) Bulltn — polI®

< (L= Bu + Bu¥) 1%n = pol® + (1= 7B || (1 = @) (s + €2) = po

Page 12 0of 18
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< (1= B+ Bu¥u)%n = polI* + (1= yu) Bu(1 = @)% — pol|®
+2(1 - yu)Bu(1 - an)(en:][(l — 0t) (% + €) —Po]>
+ 20{n,8n(1 - Vn)(pO)][pO —Xp — (1 - Oln)en + anan
< [1=0uBu@ = y)]llxn = poll? + 21 = y) (L = ) BuMallen]
+ 20, 8,1 - y,,)(po,][po —x,—(1—ay)e, + a,,x,,]). (3.20)
Let ¢, = (1 — ¥u)auBy, then (3.20) reduces to [|lx,.1 —P0||2 < (1 - co)ll®n —P0||2 +
2¢,{(po,J[po — %n — (1 = a)ey + apy]) + (1 - )M, Loely,
From (3.19), (3.20), and the assumptions, by using Lemma 2.4, we know that x,, — po,

as n — +0Q.

This completes the proof. O
If in Theorem 3.1, C = E, then we have the following theorem.

Theorem 3.2 Let E and D be the same as those in Theorem 3.1. Suppose that the duality
mapping ] : E — E* is weakly sequentially continuous. Let A;: E — E (i=1,2,...,N) and
Bi:E— E (j=1,2,...,M) be two finite families of m-accretive mappings. Let {e,} C E,
{an}s {Bu} (v} € (0,1), and {ry;}, {s,;} C (0,+00) satisfy the some conditions presented in
Theorem 3.1.

Let {x,} be generated by the following scheme:

X1 € E,
= (1 - an)(xn + en)y

= (1 - ﬁn)xn + BuSnthn,

(©

Xpel = Yn¥n + (1- Vn) WuSuVn, n=1

Then {x,} converges strongly to a point py € D, where S, and W, are the same as those in
Theorem 3.1.

Lemma 3.7 Let E, C and {Bl} be the same as those in Lemma 3.5. ﬂ N(B)) # 0.
Let cg,ci,...,cy be real numbers in (0,1) such that Z o6 =1land U, = col + let |
]tn thnl -+ CM]tnM]’frAl/\ld RE ]tnl’ where ]ﬁ’]_ =(I +t,B) " and t,,;> 0, forj=1,2,..., M,
and n > 1, then U, : C — C is nonexpansive and F(U,) = ﬂj\fl N(B)), for n > 1.

Proof 1t is easy to check that U,, : C — C is nonexpansive and ﬂ N(Bj) C F(U,).
On the other hand, for Vp € F(U,), then p = U,p = cop + clltnlp + czltw]nlp + -
Bar1 131 '
CM]tnM]tnM 1
For Vq € ﬂ 1N(B) C F(U,), then

BM1

ffqﬁp‘qn +CM|| bn, M tnM 1 ]tnlp_q“

lp - qll < collp - qll + 1
<(co+crt-+enllp-qll +alilp-4|
=(1-a)lp-qll + ol p-q]

<lp-4ll.

Page 13 0f 18
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Therefore, ||p—q||—(1 alllp— q||+cllllfnﬂp gll, which implies that ||P qll = ;" p-al.
Similarly, [lp - q1| = |l mp qn (178 mp al ==, % mp qll.

BM1_

Then |p -4l =I5 Um ol =)+ Jr b~
q)||, which implies from the strict Convex1ty of Ethatp—g = ]tn_1 ]tn s ] aP—q=-=
T T Tk p - 4.

Therefore, ]tn,1p = p, and then we can easily see that ]fi}.p =p,forj=2,...,M. Thusp €
ﬂ?fl N(B)), which completes the proof. O

Lemma 3.8 Let E and C be the same as those in Lemma 3.4. Let S,, and U, be the same
as those in Lemmas 3.4 and 3.7, respectively. Suppose D := (ﬂé\il N(A))N (ﬂ?fl N(B))) #9.
Then S,U,, U,S, : C — C are nonexpansive and F(U,,S,) = F(S,U,) = D.

Proof From Lemmas 3.4 and 3.7, we can easily check that U,,S,, S,U, : C — C are nonex-
pansive and F(S,)) N F(U,) = D. So, it suffices to show that F(S,) N F(U,) D F(U,S,) since
F(S,) NF(U,) C F(U,S,) is trivial.

For Vp € F(U,,S,), then p = U,,S,p.

For Vq € F(S,) N F(U,) C F(U,S,), then g = U,,S,,q. Now,

lp —qll = 1UnSup — qll < ISup —Snqll < llp -4l

Then repeating the discussion in Lemma 3.4, we know that p € F(S,)). Then p = U,S,p =
U,p, thus p € F(U,), which completes the proof. d

Theorem 3.3 LetE, C, Qc, Sy, and D be the same as those in Theorem 3.1. Let A;, Bj : C —
E be m-accretive mappings, for i =1,2,...N, and j = 1,2,...,M. Suppose that the duality
mapping ] : E — E* is weakly sequentially continuous and D # (. Let {x,} be genemted by
the iterative algorithm (B), where U, := col + clijfl + CQ]tn 2]tn1 -+ cM]tnM]ff‘]f/I‘l ]tn1’
and]B (I + t.;B;)” forj:1,2,...,M,0<ck<1,fork:0,1,2,...,M,and2kzock:1.
Suppose {en} CE, {an}, {Bu}, and {y,} are three sequences in (0,1) and {r,,;}, {t.;} C (0,+00)
satisfy the following conditions:
(i) a,— 0, B, — 0,asn— o0;

(i) 3055 B = +00;

(iii) 0 <liminf,_ o0 ¥ <limsup,_, . Vu <1;

(iv) Zzozl |71, — Fuil < +ocand r,; >€>0,forn>1landi=1,2,...,N;

V) Yoo |ty — tujl < +o0 and t,j > € >0, forn >1and j=1,2,...,M;

(vi) Ll 5 0, as n— +00, and o2 llenll < +oo.

oy

Then {x,} converges strongly to a point p, € D.

Proof We shall split the proof into five steps:
Step 1. {x,,}, {t6s}, {Snttn}, {vn}, {Snvy} and {S,x,} are all bounded.
Similar to the proof of step 1 in Theorem 3.1, we can get the result of step 1.
Then {]tMS Vuls { tn2 tn1S 179 S { tnM 2]‘}’\’411 th v,} are all bounded.
Step 2. limy, o |6, — Uy Syvyll = 0 and lim,,—, o ||%41 — % || =
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In fact,

” Un+lsn+lvn+1 - UnSnVn ”

B B
S Co ||Sn+lvn+1 - SnVn ” +C | ][nil,lsn+lvn+l _][,ilsnvn ||

B B By B
+ 6 | ]tnil,thnil,IS”*'lvn*'l _]tn?ZJtnTIS”Vn ” te
Byt Byl By Byr-1
+ CM‘]tnﬂM]thM 1 ]tn+1,1S"+1V”+1 ]tnM]tnM 1 tnl‘s Vn H (3.21)

Similar to (3.13), we know that

B B |Ens11 = tual
]tnlJrLlSn+1Vn+l _]tn;S”V” ” < 1Sns1Vie1 = Suvull + 2Ms - . (3.22)

BM1
)” tnM tan ]tnl‘s Vn” Vl>1}

where M5 = sup{||S,vall, ||]tn15 Vall, |l t,,zjt,,ls Valls..
Repeating (3.22), we have

” tne1,2 tn+11 Sns1Vns1 _]tnz tnls Vn H
=<|

Then (3.22) and (3.23) imply that

2M.
B B 5
]:nil,lsn+lvn+l _]:nflsnvn || + T|tn+1,2 - tn,2|- (323)

|| Ln41,2 [n+11 ”+lvn+1 _]th tnlS Vn H

2Ms
=< ||Sn+1Vn+1 - SnVn ” + T (|tn+1,2 - tn,2| + |tn+1,1 - tn,ll)' (324')
By induction, we have

Bai_1 Bar-1
]tml M]tVHIM 1 ]tnl n+1Vntl = ]tnM]tnM 1 tn 1S Vn ”

= ||Sn+1Vn+1 - SnVn”
2Ms
+ T(|tn+1,M = byl + o |12 = B2l + |En11 — tn,1|)' (3.25)

Going back to (3.21), we have

” un+lsn+1 Vil — UnSn Vn ”

= ||Sn+1Vn+1 - SnVn ”

M
2M5
ch|tnl Lus1al + ch|tn,2 —tual + o+ eultust — tml ). (3.26)

Therefore, similar to (3.17), we have

” Un+15n+1 Vnil — UnSn Vn ”

N

2M,
< Va1 = vull + T Z [P0 = T,
i=1
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M M
2Ms
- E Giltny = tuil + E Giltna = turral + - + Cmltm — Eurrml
j=1 j=2

= (1 + ﬂn)”xnﬂ - xn” + (ﬁn + anﬁn)”xn” + (ﬁn+1 + O5;’1+1ﬂr1)”x;«1+1”

+ |,3n+1 - ﬂn| ”Srl+1un+1 ” + ﬁn ”en+1 — €y ” + ,Bn ||an+1en+1 - anen”

N
4M,
+ TZ|Vn,i_rn+l,i|

i=1
M M
2Ms
+— (Z Giltn1 = tnirtl + ch|tn,2 = burr2l + -+ ealtum — n+1,M|)- (3.27)
¢ \'a j=2
Thus limsup,,_, , o (|1 Un+1Su+1Vni1 — UnSuvull = |¥041 — %4]1) < 0. Using Lemma 2.5, we

have from (3.27) lim,,_, o ||%, — U,S,v,| = 0 and then lim,,_ o [[%,41 — %5 || = limy,_ oo (1 —
Yl UnSnvy — x|l = 0.

Similar to Theorem 3.1, we have

Step 3. limy,— oo ||, — U, Syuxy || = 0.

Step 4. limsup,,_, , . (Po,J/ (o — %)) < 0, where py is an element in D.

From Lemma 3.8, we know that U/,,S,, : C — C is nonexpansive and F(U,S,) = D. Then
Lemma 3.1 and Lemma 3.3 imply that there exists z; € C such that z; = U,,S,,Qc[(1 — £)z]
for ¢ € (0,1). Moreover, z; — po € D, ast — 0. Then copy step 4 in Theorem 3.1, the result
follows.

Step 5. x, — po € D, which is the same as that in step 4.

Copy step 5 in Theorem 3.1, the result follows.

This completes the proof. O

If in Theorem 3.3, C = E, then we have the following theorem.

Theorem 3.4 Let E and D be the same as those in Theorem 3.3. Suppose that the duality
mapping ] : E — E* is weakly sequentially continuous. Let A;: E — E (i=1,2,...,N) and
Bj:E— E (j=1,2,...,M) be two finite families of m-accretive mappings. Let {e,} C E,
{an}; 1B} {yn} C (0,1) and {r,;},{t.;} C (0, +00) satisfy the some conditions presented in
Theorem 3.3.

Let {x,} be generated by the following scheme:

X1 € E,
Uy = (1 - O(n)(xn + en)r

Vi = (1= Bu)%n + BuSultu,

(D)

Xn+l = Vnkn t (1 - yn)UnSnVn; n=> 1.

Then {x,} converges strongly to a point py € D, where S,, and U, are the same as those in
Theorem 3.3.

Next, we apply Theorems 3.1 and 3.3 to the cases of finite pseudo-contractive mappings.

Theorem 3.5 Let E be a real uniformly smooth and uniformly convex Banach space. Let C
be a nonempty, closed, and convex sunny nonexpansive retract of E, where Qc is the sunny
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nonexpansive retraction of E onto C. Let Tl) : C — E be pseudo-contractive map-
pings such that (I — Tl ) and (I - T] ) are m- accretwe, wherei=1,2,...N,j=1,2,...,M.
Suppose that the duality mapping ] : E — E* is weakly sequentially continuous and D :=

ﬂfvlF(Tm) N (ﬂlMlF (2))) # (. Let {x,} be generated by the itemtive algorithm (A),

(1 (1) (1)
T T ~Ty 1y7—
where S, = agl + alﬂ + ap ,"’22 + -+ ay ,nN , and ]}Im =+ ry(I - ())] 1

fori=1,2,...,N, 0<ap <1, for k=0,12,...,N, YN a =1L Wn—b01+b]1
(2)

bzl;:ZTg) bt bM];[;;’(‘?[), where]sl};Tj =[I+s,;(I- T} )]‘l,forj =12,...,M,0< by <1, for
k=0,1,2,...,M, Z;(Vio by =1. Suppose {e,} C E, {a,,}, {Bu}, and {y,} are three sequences in
(0,1) and {1y}, {su;} C (0, +00) satisfying the following conditions:

(i) a,— 0, B,— 0,asn— o0;

(i) D ooy @By = +00;

(iii) 0 <liminf,_ o ¥ <limsup,_, . v <1;

(iv) Y02 st = Tuil < 400 and ry,; > e >0, forn>1andi=1,2,...,N;

(V) Yooy ISus1) — Snjl < +00 and s,j > € >0, forn >1andj=1,2,...,M;

(vi) ”e”” — 0,asn— +00,and y ., lle,l| < +00.

Then {x,,} converges strongly to a point po € D.

Proof Let A; = (I - Ti(l)) and B; = (I - Tj(z)), fori=1,2,...,Nandj=12,...,M. Then the
result follows from Theorem 3.1. a

Similarly, from Theorem 3.3, we have the following result.

Theorem 3.6 Let E, C, Q¢ and D be the same as those in Theorem 3.5. Let Tl-(l), Tj(z) :
C — E be pseudo-contractive mappings such that (I — Tl.(l)) and (I — Tj(2)) are m-accretive
mappings, where i =1,2,...N, j=1,2,..., M. Suppose that the duality mapping ] : E — E*
is weakly sequentially continuous and D # (. Let {x,} be generated by the iterative al-
gorithm (B ), where S, is the same as that in Theorem 3.5 and U, = col + cljfil 1

M T(Z) ‘T1(2) 177"1‘(2) (2 )
tn2 tnl by, M tnM 1 tn1 ? Where ]tn,j [1 + tnl(l T ) fOr} =

1,2,...,M,0<c¢ <1, for k=0,1,2,...,M, Z;{Vio ¢k = 1. Suppose {e,} C E, {a,,}, {Bn}, and
{yu} are three sequences in (0,1) and {r,;},{t,;} C (0,+00) satisfying the following condi-
tions:
(i
(i) D02 uPu = +00;

) o
)

(ili) 0 <liminf,— 00 ¥ <limsup,_, o ¥u <1;
)

Cy -+ Cp

w— 0,8, —0,asn— oc;

(iv anl |71, — Puil < +ooand ry; > >0, forn>1landi=1,2,...,N;
V) Yooy It — tnjl < +o0 and s,; > €>0, forn>1andj=1,2,...,M;
(vi) ”2—;’” — 0,as n— +00, and Y oo, |le,| < +oo.

Then {x,} converges strongly to a point po € D.
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