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Abstract

In this paper, we introduce the concept of new notions related to n-tupled fixed point
and prove some related results for an asymptotically regular one-parameter
semigroup I = {F(t) : t € G,where G is an unbounded subset of [0, 00)} of Lipschitzian
self-mappings on [T, X in the case when (X, d) is a complete bounded metric space
with uniform normal structure. Our results extend the results due to Yao and Zeng

(J. Nonlinear Convex Anal. 8(1):153-163, 2007) and Soliman (Fixed Point Theory Appl.
2013:346, 2013; J. Adv. Math. Stud. 7(2):2-14, 2014).
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1 Introduction

The Banach contraction principle is the most natural and significant result of fixed point
theory. In complete metric spaces it continues to be an indispensable and effective tool in
theory and applications, which guarantees the existence and uniqueness of fixed points of
contraction self-mappings besides offering a constructive procedure to compute the fixed
point of the underlying mapping. There already exists an extensive literature on this topic.
Keeping in view the relevance of this paper, we merely refer to [1-5]. In 1987, the idea of
coupled fixed point was initiated by Guo and Lakshmikantham [6]; it was also followed
by Bhaskar and Lakshmikantham [7] wherein authors proved some interesting coupled
fixed point theorems for mappings satisfying the mixed monotone property. Many au-
thors obtained important coupled, tripled and #-tupled fixed point theorems (see [7-16]).
In this continuation, Lakshmikantham and Ciri¢ [13] introduced coupled common fixed
point theorems for nonlinear ¢-contraction mappings in partially ordered complete met-
ric spaces which indeed generalize the corresponding fixed point theorems contained in
Bhaskar and Lakshmikantham [7]. In 2010, Samet and Vetro [17] introduced the concept
of fixed point of n-tupled fixed point (where n = 2,3, 4,...) for nonlinear mappings in com-
plete metric spaces. They obtained the existence and uniqueness theorems for contractive
type mappings. Their results generalized and extended coupled fixed point theorems es-
tablished by Bhaskar and Lakshmikantham [7]. Recently, Imdad et al. [18] introduced a
generalization of n-tupled fixed point and n-tupled coincidence point by considering n
even besides using the idea of mixed g-monotone property on [, X and proved an n-
tupled (where n is even) coincidence point theorem for nonlinear ¢-contraction mappings
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satisfying the mixed g-monotone property. For more information about #-tupled fixed
points, see [10, 17-19].

On the other hand, normal structure is one of the most important aspects of metric
fixed point theory. It was introduced by Brodskii and Milman in [20]. They found the first
application of normal structure to fixed point theory. In 1965, Kirk [21] introduced the
following theorem: Every nonexpansive self-mapping on a weakly compact convex subset
of a Banach space with normal structure has a fixed point. In 1969, Kijima and Takahashi
[22] established the metric space version of Kirk’s theorem [21]. Subsequently, many au-
thors successfully generalized certain fixed point theorems and structure properties from
Banach spaces to metric spaces. For example, Khamsi [23] defined normal and uniform
normal structure for metric spaces and proved that if (X, d) is a complete bounded metric
space with uniform normal structure, then it has the fixed point property for nonexpan-
sive mappings and a kind of intersection property which extends a result of Maluta [24] to
metric spaces. In 1995, Lim and Xu [25] proved a fixed point theorem for uniformly Lips-
chitzian mappings in metric spaces with both property (P) and uniform normal structure,
which extended the result of Khamsi [23]. This is the metric space version of Casini and
Maluta’s theorem [2]. In 2007, Yao and Zeng [26] established a fixed point theorem for an
asymptotically regular one-parameter semigroup of uniformly k-Lipschitzian mappings
with property (x) in a complete bounded metric space with uniform normal structure,
which extended the results of Lim and Xu [25]. Recently, the idea of coupled and tripled
fixed point results in a complete bounded metric space X with uniform normal struc-
ture was initiated by Soliman [27, 28]. He proved that every asymptotically regular one-
parameter semigroup I = {F(£) : £ € G, } of Lipschitzian mappings on X x X has a coupled
fixed point and on X x X x X has a tripled fixed point.

In the present paper, we prove an n-tupled fixed point theorem for asymptotically reg-
ular Lipschitzian one-parameter semigroups 3 = {F(¢) : t € G} on [].; X, where X is a
complete bounded metric space with uniform normal structure. Also, some corollaries of

our main theorem are presented.

2 Preliminaries
Definition 2.1 [7] Anelement (x,y) € X x X is called a coupled fixed point of the mapping
F:XxX—Xif

F(x,y)=x and F(y,x)=y.

Definition 2.2 [7] Let (X, <) be a partially ordered set and F: X x X — X. We say that F
has the mixed monotone property if F(x, y) is monotone nondecreasing in x and is mono-
tone nonincreasing in y, that is, for any x,y € X, x1,% € X, 21 <%y = F(x1,y) < F(x2,7)
and y1,y2 € X, 1 <y2 = F(x,31) = F(x,92).

Theorem 2.1 [7] Let (X, <) be a partially ordered set and suppose that there is a metric
d on X such that (X,d) is a complete metric space. Let F : X x X — X be a continuous
mapping having the mixed monotone property on X. Assume that there exists a constant
k €[0,1) with

N A

d(F(x,y),F(u,v)) < =[dxu) +dy,v)] Vx>u,y=<v.
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If there exist xo,y0 € X such that xy < F(xo,0) and yo > F(yo, %), then there exist x,y € X
such that x = F(x,y) and y = F(y, x).

Definition 2.3 [17] An element (x,7,2z) € X x X x X is called a tripled fixed point of the
mapping F: X x X x X — X if

F(x,v,z) = x, F(y,z,x)=y and F(z,x,5) =z

Definition 2.4 [10] Let X be a nonempty set. An element (x',x%x%,...,x") € []_, X is
called an r-tupled fixed point of the mapping F: []_; X — X if

xt =F(x',x%,4%,...,%7),

K
Il

2 F(xz,x?’,...,x’,xl),

& =F(x%,... 4%, %%),

x" = F(x’,xl,xz, . ,x"l).

Definition 2.5 [23] Suppose that (X, d) is a metric space, and let i denote a nonempty
family of subsets of X. Then u defines a convexity structure on X if it is stable under

intersection.

Definition 2.6 [23] Let i be a convexity structure on a metric (X, d). Then u has property
(R) if any decreasing sequence {C,} of nonempty bounded closed subsets of X with C,, €
has a nonempty intersection.

Definition 2.7 [5] A subset of X is said to be admissible if it is an intersection of closed
balls.

Remark 2.1 Let A(X) be a family of all admissible subsets of X. Then we note that A(X)
defines a convexity structure on X.

In this paper any other convexity structure p on X is always assumed to contain A(X).
Let M be abounded subset of X. Following Lim and Xu [25], we shall adopt the following
notations:
B(x, r) is the closed ball centered at x with radius r,
r(x, M) = sup{d(x,y): y € M} for x € X,
3(M) = sup{r(x, M) : x € M},
R(M) = inf{r(x, M) : x € M}.
For a bounded subset A of X, we define the admissible hull of A, denoted by ad(A), as
the intersection of all those admissible subsets of X which contain A4, i.e.,

ad(A) =" )(B:A S B € X with B admissible}.
Proposition 2.1 [25] For a point x € X and a bounded subset A of X, we have

r(x, ad(A)) =r(x,A).

Page3of 16
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Definition 2.8 [23] A metric space (X, d) is said to have normal (resp. uniform normal)
structure if there exists a convexity structure u on X such that R(A) < §(A) (resp. R(A) <
¢ - 8(A) for some constant ¢ € (0,1)) for all A € u which is bounded and consists of more

than one point. In this case u is said to be normal (resp. uniformly normal) in X.

We define the normal structure coefficient N(X) of X (with respect to a given convexity
structure p) as the number

R(A)
S VT &
L5
where the supremum is taken over all bounded A € F with §(A) > 0. X then has uniform
normal structure if and only if N(X) < 1.

Khamsi proved the following result that will be very useful in the proof of our main
theorem.

Proposition 2.2 [23] Let X be a complete bounded metric space and p be a convexity

structure of X with uniform normal structure. Then (v has property (R).

Definition 2.9 [26] Let (X,d) be a metric space and J = {F(¢) : t € G} be a semigroup on
[T, X. Let us write the set

w(oo) = {{tn} {t,} C Gand ¢, — oo}.
Lemma 2.1 [26] If{t,} € w(o0), then {t,.1 —t,} € w(0).

Definition 2.10 [25] A metric space (X, d) is said to have property (P) if given any two
bounded sequences {x,} and {z,} in X, one can find some z € (-, ad{z; : j > n} such that

limsup d(z,x,,) < limsuplim sup d(z;, x,,).

n—00 j— 00 n—00

3 Main results
Let G be a subsemigroup of [0, co) with addition ‘+” such that

t—se€G Vt,se Gwitht>s.

This condition is satisfied if G = [0, 00) or G = Z*, the set of nonnegative integers. Let J =
{E(¢) : t € G} be a family of self-mappings on []’_; X. Then  is called a (one-parameter)
semigroup on [];_; X if the following conditions are satisfied:
(i) FO)(xh,x%,x3,...,47) =a%, FO)(x2,43,...,a",x1) = &2, ..., FO)(x", L, 42, ... ,6 ) =«
Val, a2, 43,4 € X;
(i) FG)F@) (el a%43,..,4), F@) (%3, ..., 47,40, .., FO)(", x4, 42,...,4 1) =
F(s+6)(xh a2, x3,...,4") Vs, t € Gand &, %%, %3,..., 4" € X;
(iil) Val,x2,43,...,4" € X, the self-mappings ¢ — F(£)(x!, 2%, 45,...,47),
t— F(O)(x%43,...,x45,4Y), ..., t = F(O)(x", x4, 2, ..., 4 1) from G into X are

continuous when G has the relative topology of [0, 00).
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Definition 3.1 A semigroup I = {F(¢): ¢ € G} on []._, X is said to be asymptotically reg-
ular at a point (x',2%,%%,...,2") € []., X if

lim d(F(¢ + h)(x', 6%,4°,...,2"), F(¢) (x", 4%,4°,...,4)) =0 VheG. 1)
t—00

If 3 is asymptotically regular at each (x',x%,%%,...,2") € [\, X, then I is called an asymp-
totically regular semigroup on []._; X.

A semigroup {F(n): n € N (the set of all natural numbers)} on []._; X is called simplest
asymptotically regular at a point (x',x%,%%,...,2") € [, X if

lim d(F™! (x, 2%, 4%, ...,2"), F*(x',4%,%°,...,2")) =0 Va',a®,a%,...,4 e X.
n—00

Definition 3.2 A semigroup I = {F(¢) : £ € G} on [[\_; X is called a uniformly Lipschitzian

semigroup if
sup{k(t) (te G} =k <00,

where

d(F(O) (0%, 53,2 ), FOOL Y495 9))
[d(xl,j/l) + d(xz,yz) S d(xr’yr)] ?/0

k(t)=r sup{

xl,xz,...,x’,yl,yz,...,y’GX}. (2)

The simplest uniformly Lipschitzian semigroup is a semigroup of iterates of a mapping
F:[]; X — X with

supf{k, :n € N} = k < 0o,

d(Fn(xl’x2,x3;-~~,xr),Fn()/1,y2,y3,---’yr)) 1 2

kn: XX el r’ 1, 2’“., rext
rsup{ [d(xl,yl)+d(x2,y2)+...+d(xr’yr)]7/0 XX xX,y,Y y e }

Val, a2, .. ,x5 9L 9% .,y € X, where F'(x!,x%,4%,...,47) = PN F(x!, 2%, 4%,...,47), F(x?,

x5, 5x0x0), . F(,xh 2, a0 h).

Definition 3.3 A mapping F(¢) : [[_, X — X has an r-tupled fixed point (x',x% %%,
coxt) € [T X if &t = F@)(h, 2%, 43, ..., 47), &2 = F() (6%, 43,..., 27,4, &3 = F(£)(x°,..., 4",

xL,x2), .., & = F@) (", ah 2%, ...,x D).

Definition 3.4 Let (X, d) be a complete bounded metric space and J = {F(f) : £t € G} be a
semigroup on [[;_; X. Then J has property (x) if for each x € X and each {¢,} € w(c0), the
following conditions are satisfied:

(a) the sequences {F(t,)(x},x%,4%,...,2")},..., (F(t,)(x", 2", %%,...,4 1)} are bounded;
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3

(b) for any sequence {s.} in ad{F(t,)(x",x%%%,...,x") : n > 1}, there exists some

steMy ad{s} :j > n} such that
limsupd(s', F(t,) (+',4%, 4, ..., 2"))
n—00

<limsuplim supd(s},F(t,,)(xl,xz,x3, ... ,x’)),

Jj—00 n—00

for any sequence {s},} in ad{F(t,)(®",x",4%,...,&") : n > 1}, there exists some
s" €, ad{s] :j > n} such that

limsupd(s', F(t,) (', «",4,...,4" ")) < limsuplimsupd(s}, F(t,) («", 2",&%,...,&"")).

n—00 j—00 n—00

Remark 3.1 If X is a complete bounded metric space with property (P), then each semi-
group I = {F(¢) : t € G} on [];_; X has property (x).

Lemma 3.1 Let (X,d) be a complete bounded metric space with uniform normal struc-
ture, and let I = {F(t) : t € G} be a semigroup on [|;_; X with property (x). Then, for each
x € X, each {t,} € w(c0) and for any constant N(X) < ¢, the normal structure coefficient
with respect to the given convexity structure i, there exist some a* € (-, ad{a} /1
a e, ad{a; :j = n} satisfying the following properties:

D

limsupd(a', F(t,)(x', 4% 4%,...,a")) < c- Ai({F(t,) (6", 4%, %°,...,2")}),

n—00

lim sup d(a’, F(tn)(x',xl,xz, ... ,x’_l)) <c- A,({F(t,,)(x’,xl,xZ, ... ,x"l) }),

n—00

where

Al({F(t,,)(xl,x2,x3, i) })

=limsup{d(F(&)(x', 4% %%,...,&"), F@) (&', 6%, %°, ..., 2")) i, = n},

n— 00

A ({F&) (x5 2%, 6 ™) ]

=limsup{d(F(&)(«", 4", 4% ...,&" ), F(t;) («", 2", 4%, ..., a"")) i, = n}s

n—0o0

(ID)
d(a',w) <limsupd(E(t,)(x", 2% 4%,...,47), w),

n—00

d(a’,w) < limsupd(F(tn)(x',xl,xz,...,x”l),w) forallwe X.

n— 00
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Proof For each integer n > 1, let AL, = {F(8))(x', 2%, %%,...,4") : j > n}, A% = {F(t;)(x?, %%, %,

X x> n), L AL = (F() (2 42, .., 2 1 j > n). Then {A}}, {A2)},..., {A],} are de-
creasing sequences of admissible subsets of X hence A' := (2, AL # ¢, A> := (72| A2 #
¢,..., A" := (72 Al # ¢ by Proposition 2.2. From Proposition 2.1, it is not difficult to
see that §(AL) = S({F(t;) (&, 4%, 4%,...,&7) 1 i > n}), 8(A2) = SUF (&) (%, x3,x%, ..., a7, x1) i >
n}), ..., 8(A7) = SUF(t;)(x", 2%, %%,...,2™ ) : i > n}). Indeed, observe that

8(A}) =sup{r(w,A4;) :weAl}

= sup supd(w, F(t)(x", 4%, %°,...,x"))

weAl, jzn

= sup sup d(w,F(tj)(xl,xz,xs,...,x’))

i 1
JZN weA}

= sup r(F(tj)(xl,x2,x3, . ..,x’),A,lq)

jzn

= sup sup d(F(t,»)(xl,xz,xs, .. ,x’),F(ti)(xl,xz,xs, .. ,x’))
j=n i>n

= 8({F(ti)(xl,x2,x3,...,x’) 10> n})

Similarly, one can obtain

5(4) = S([Fe) (&, 2,2, i = m)).
On the other hand, for any a' € A" and any w € X, we have

supd(w, F(t, )(x x2,x°,. ,xr))=r(w,Ai)Zr(w,Al)zd(w,al).

jzn

Therefore,

d(w, ozl) < limsup d(w, F(t,,)(xl,xz,xg, ... ,x’)).

n—00

Also, one can deduce that for any a® € A%,..., a" € A" and any w € X, we have

d(w, az) < limsup d(w, F(t,,)(xz,xB,x4, ... ,x’,xl)),

n—00

d(w,a’) <limsupd(w,E(t,)(x", %}, 4%,...,% 1)),

n—00

from which (II) follows.
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We now suppose that for each n > 1, there exist a, € A}, a € A%, ..., al, € A? such that

r(ay,AL) <c-S({F()(x', 4% %%,...,2") :j = n}), (3)
r(aﬁ,Aﬁ) <c- 8({F(tj)(x2,x3,x4,...,x’,xl) > n}), (4)
r(al,Ay) <c-S({F) (2" 4%, ...,a"") 1j = n}). (5)

Indeed, if S({F(5)(x",x%,4%,...,2") : j > n}) = 0, then §(AL) = SUF(H) (", 4%, 4%,...,47)
j = n}), we conclude that (3) holds. Without loss of generality, we may assume that
SU{F(t)(x',x%,%%,...,") : j > 0}) > 0. Then, for N(X) < ¢, we choose € > 0 so small that
it satisfies the following:

N(X)B({F(tj)(xl,xZ,xB,...,x') > n}) +€

5c~8({F(tj)(x1,x2,x3,...,x’z) :jzn}). (6)
From the definition of R(AL), one can find 4!, € A}, such that

r(ay,A}) <R(A}) +€ < NX)S(A})) + €
= N(X)S({F(tj)(xl,xz,xg,...,x’) ij> n}) +€

<c- 8({F(t/)(x1,x2,x3,...,x’) > n}),
which implies that (3) holds. Obviously, it follows from (3) that for each n > 1,

lim sup r(ai,xj) <c- 8({F(tj)(x1,x2,x3,...,x’) > n}),

Jj—o00
which implies

lim sup lim sup r(aL,F(tj(xl,xz,xB, ... ,x’))) <c-Al ({F(t,,)(xl,xz,xs, ... ,x’) }), 7)

n—00 j—oo

where AY({F(t,)(x!, 4%, %%, ..., 47)}) = {d(F() (6", 2%, %%, ..., "), F(6) (6, 6%, 63, .., 7)) ] >
n}. Noticing

ozfq EA; C ad{F(tj)(xl,xz,xB,...,x’) > n} for eachn >1,
we know that property (x) yields a point ' € "2, ad{a; :j > n} such that

limsupd(a', F(t;)(x", #%,%°,...,%")) <limsuplimsupr(ay, F(4)(x', 4% %%, ...,5")). (8)

j—oo n—>o00  j—>00
Since {a} j>ny CAL al € A =02 ad{F () (x", x%,4%,...,4") :j > n} and satisfies

hmsupd(a F(t )(x 22,45, .. ,xr))5c-Al({F(t/)(xl,xz,xs,...,x’)}), by (7),

]%OO

Page 8 of 16
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similarly one can obtain that

limsupd(a®, F(t) (5% %°,...,2",x")) < c- A>({F(&) (>, 4%, ....4",5")}),

j—o00

lim sup d(a’, F(t,»)(x’,xl,xz, e ,x’_l)) <c- A’({F(tj)(x’,xl,xz, ... ,x’_l) }),

j—o00

where a® € A = (02, ad{F(t;)(x*,%%,...,a", 1) :j > n}, ..., a" € A" = (", ad{F(t;) (", x", 52,
x> )
Therefore (I) holds. a

We are ready to prove our main theorem for this paper.

Theorem 3.1 Let (X, d) be a complete bounded metric space with uniform normal struc-
ture, and let I = {F(t) : t € G} be an asymptotically regular uniformly Lipschitzian semi-
group of self-mappings on [|._, X with property (x) and satisfying

~ 1
k-k<——,

N(X)
where k = liminf,_, o, k(¢) and % = lim SUpP,_, o k(2).

Then there exist some x',x%,x%,..., 5" € X such that F(£)(x%, 2,43, ...,4") =\, ..., F(£) (%%,

x3,..,x,xY) =2 and F(t)(x", x4, %2,...,5" 1) =x" forall t € G.

Proof First, we choose a constant ¢ such that N(X) << 1and kk < % We can select a se-
quence {£,} € w(co), from Lemma 2.1 we find that {¢,,; — t,} € w(co) and lim,,_, , k(£,,) = k.
Now fix x},%3,x3,...,x, € X. Then, by Lemma 3.1, we can inductively construct se-
quences {x] 1, (%217, ..., {x]}%°, C X such that x},, € (72, ad{F(t;)(x},x7,%7,...,x]) i >
n}, &7, € (oo ad{F(&) (0, %3, ..., x),x)) 1> n}, ..., &), € (oo ad{F (&) (%], %], %7, ..., %) :
i > n} for each integer [ > 0,
(1)

limsup d(F (&) (%7, 27,57, .., %)), x7,,) < ¢ AY({F@) (%7, %7505, %)) }),

n—00

limsupd(F(t,,)(xlz,xls,...,x?,x}),xil) < c.A2({F(tn)(x12’x13»~"xlr’x})})’

n—0oQ0

limsup d(F (&) (%], %, %7 ..., %), 4,1) < A" ({F (&) (%], 27,75, %) }),

n—0o0
where

AV ({F(t) (), 57,47, %5) })

= limsup{d(F(&:)(x],57, %], ..., %), F&) (5], %7, %} ..., %])) 1 i,j = n},

n— 00
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A*({F(tn) (57,7, ..o x5 %1) })

= limsup{d(F(&) (57, %], ..., %, %), F&) (57, %} ..., %}, %7)) 1 i,j = n},
n—00

A ({F@) (], %5577 })

= lim sup{d(F(t;) (x], %], %7 ..., %), F@G) (], %, %7, 677")) 16, = m};

n— o0

(Iv)

d(x},,w) <limsupd(F(t,) (%}, 7, %7,...,%]), w),
n— 00

d(x7,1,w) < limsupd(F(t,) (57,5}, ..., %], %), w),

n—0o0

d(x],,,w) <limsupd(F(t,)(x], %}, 47,....% "), w) VweX.

n—0o0

Let

Dy = limsup|d ()1, F(tx) (], 57, %5, %)) ) + -+ + d (%], F (&) (%], %], %7, ..., %)) ],

n—00

and h=c-kk<l
Observe that for each i > j > 1, using (IV) we have

d(E(&) (%, 57,3, ..., %)), F(&) (%), %7, %7, %))
= d(F(t;) (%, %7, %}, ....&)), F&)F(t; — ;) (%], 57, %7, ..., %))
=d(F@t) (], 47,57, %]), Ft) (F(t; — ) (%], %7, %} ..., %),
F(ti =) (67,57, %0, %7), .., F(t = £) (%], 20,47 .., %) 71)))

< @[d(x},l—"(ti — ) (%], 27, %55 X)) +

+d(x], F(ti — ) («], 6], 67,4 ")) ]

< k) lim sup[d(F(t,) (%]_y, 871, %715 - %)), F(t = ) (%], %7, %7, ..., %]))
n— 00

+ d(F(tn) (57157 15815211 ), E (b = 6) (%7, 567 .o %], %)) + -+

+ d(F(tn) (] %115 %7 15 o8]0 ), F (6 — ) (8], %557, %)) ] 9)
By the asymptotic regularity of I = {F(¢) : t € G} on [[,_; X, we see that

limsup[d (F (&) (%11, %710 %] 15+ o %)) F(tn + £ = ) (8]_1, %71, %7 15, %]_1))] = 0,
n—00

lim sup[d(F(tu) (671,87 15+ X181 ), F(tn + ti = §) (871,571 %)_1,%1)) ] = O,

n—0oQ0
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lim sup[d (F(tn) (¥_1, %187 15X ) E(tn + = ) (¥_pp %1 %715+ %) 1)) ] = 0,

n—00

which implies

limsup d (F(£x) (¥_1, %7187 15+ %) ), F (& = ) (%], 57, %, .., %)) )
n—00

< limsup d(F(t,,)(x}_l,xlz_l,xls_l, .. ;x;_l);F(tn +ti - tj)(x}_l’x?_pxls—l’ .o rxlr_1))
n— 00

+limsupd(F(ty + ti — &) (%_1, %71 %) 15+ 8]0 ), F(ti = ) (6], 57, %7, ..., %))
n—00

<limsupd(F(t; — ) (F(tn) (%]_1> X710 %7 15+ s %1 ) F (&) (5710 X515 oo o X1 X )

n—0o0

Ftn) (%15 %1087 15 - % 1) ) F(t = ) (%], %7, %7 .., %))

< @[d(F(t,,)(x}_l,xlz_l,xlS_l,...,xf_l),x})
+ d(Ft) (6708715 X1 5)1 ) 67) + -+ + A(F () (%], X1 671 %1 )87 ]
Ma=bp, (10)
r

Similarly, one can show that

limsup d(F(t,) (%7_1,%7 15 - %)), F(6 = ) (67,57, ], x7) )
n—00
k(ti—t
= ( : ])Dl—lr (11)
r

lim sup d(F(tu) (¥_1 %), %75 %) ), F(ti = ) (], %, %7 .., %))

n—00

k(t; - t;)
r

=<

Dp. (12)

Then it follows from (9), (10), (11) and (12) that for each i >j > 1,

A(F (&) (%, 57,7 ..., %)), F(&) (%], %7, 7., %)) ) <

k(t;
k5) -k(ti—t) - Dy,
r

which implies that for each n > 1,

sup{d(F(t:)(x}, 57, %, %), Ft) (5}, 67, %} ..., %])) 1 i,j = n}
= sup{d(F(ti)(x},xlz,x?,...,xf),F(tj)(x},le,x?,...,x;)) i>j> n}

k(t;
§sup{ﬁok(t,r—tj)~Dl1:i>/’2n}
r

< ? -sup{k(t) :j > n} - sup{k(t;— ) :i>j > n)

< % . sup{k(tj) j> n} . sup{k(t) GOt >ty - tn}. (13)
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Hence, by using (III) and (9), we have

Dy = limsup[d(x},1, F(t) (%], 57,57, ..., %)) + d (7,1, F (&) (%7, 567 ..., %], %)) + -+

(] Fltn) (5,7, % 7)]
= - [A (P (a1, 51,20, o 20) ) + AP ({F @) (o o), o) }) + -
+ AT ({F ) (5, b, o) D]

<c-limsup{d(F(&;)(x},47,%],...,%)), (&) (x],57,%7,...,%]))
n—00

+d(F(t) (67,27 ..o x0, %7 ), F@) (67,67 .., 4], 7)) + -+
+ d(F(t) (%], %1, 875, %), F@) (%], 2, %7, %) 1)) 2 j = m)

<c-Dj-limsupk(t,) - lim sup{k(t) G2t >ty — t,,}

n— 00 n— 00
<c-kk-Dpy <hDiy <h*Diy<---

= 1'D,. (14)
Hence, by the asymptotic regularity of I on [];_; X, we have, for each integer n > 1,

15 = A E ) e 0 ) + o E ) e s )
< d(x), F(tn) (x],57, %7, ..., %))

+ lim sup d(F () (¥_1, %7167 15+ o %)_1 ), F(6) (%], 47,75 .., %]) )

m— 00
< d(x),, F(tn) (x],57, %7, ..., %))

+ limsup d(F(tm) (x}_l, XL K] 1o xf_l),

m—> 00

E(tm + ) (X1 8715 %7150 %]1))

r

+ limsup d(F (b + tn) (X157 1% 1+ 8)1 ), F(t) (6], 57, 57,5, %)) )

m— 00
< d(x),, F(tn) (x],57, %7, ..., %))
k(&) . 1 12 3 r
+ lim sup[d (], F(6m) (%]_1 %71, %7 15> %]_1))
r m—00

+d(x?,F(tm)(x12_1,x§’_l, XX D))+
+ d(x;’F(tm)(x;mx}fvxlfv N/ 1))]
k(zn)

< d(x}H,F(tn)(x},xf,x?,...,x;)) (15)

which implies

d(x},1,7) < limsup[d(x],1, F(t,) (%}, %7, %] ..., %]))

n— 00
+ d(x?ﬂ,F(tn)(x%,x?, .- ,x;,x})) PR

+ d(x;ﬂ’F(tn)(xlr,x},xlz, . ’xlr—l))]
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1
+-Dy_; - limsupk(z,)
14 n— 00

1
<D+t okDp (16)
r

It follows from (14) that

1 1 k
d(x}ﬂ,x}) <Dj+--k-Di1 < (hl + —kh”)Do < ! - 2Dy max{h, - }
r r r

Similarly, one can deduce that

k
d(x,,x7) < ' 2D, max{h, - }, (17)
r

k
d(x],1,%7) <™ - 2Dg maX{h, ;( } a18)

Thus, we have Y ) d(x},,,x]) < 2Do max{h, é} Yok <00, Yo d,, %)) < oo,
Consequently, {x;},..., {x]} are Cauchy and hence convergent as X is complete. Let x' =
limy_, o0 &}, ..., & = lim;_, o %], then, for each s € G, by the continuity of F(s) we have

Jim A(Fs)(x,%7,%7, ..., %)), F(s) (6", 6%, %%,...,47)) = 0,

llim A(FG) (%757, ..., %, %), F(s)(%], %} ..., %], %])) = 0,
—00

llim d(F(s)(x;,x},xf,...,x;’l),F(s)(x;,x},xlz,,..,x;’l)) =0.
— 00

On the other hand, from (15) we have actually proven the following inequalities:

t, 1
i) by < L )n s,
r

limsup d(F(t,) (%}, %7, %7, ..., %] ),%;) <
n—00

1
limsup d(F(t) (57,57, 2,%1),%7) < ~k(&)h'"™' Do,
r

n—00

1
limsup d(F(t,) (%], x},7, ..., "), &]) < =k(t,)h' ' Dy.
r

n—00

Since lim,,_, « k(£,,) = k, it follows that

lim supd(xl,F(t,,)(xl,xz,xs, e ,x’))

n—0o0

=d(x", %)) +limsupd(x}, F(£,) (%], %7, %7, ..., %))
n—00

+limsup d(F(t,) (%], 67,27 ..., %)), F(6) (%], %7, %7, ..., &]))

n—0o0

Page 13 0of 16
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1
<d(x',x}) + - limsup k(¢,)h' Dy

V' n—oo

1
< d(xl,x}) + —khl‘lDo —0, [— o0
r
Similarly, one can obtain that

limsupd(x®, F(t,) (x*4%,...,2",%")) <d(x*%7) + %thDo -0, [— oo
n—0o0

limsupd(x, F(t,) (¢, ', 6%, ..., ")) <d(x, %)) + %thDO -0, [— oo

n—00

i.e., limy,_ oo d(x!, F(£,) (61, 6%, 23,...,27) = 0,..., lim, 00 d(x", F(t,) (2", &, 22%,..., 2" 1)) = 0.

Hence, for each s € G, by the continuity of F(s), we deduce

d(xl,F(s)(xl,x2,x3,...,x’))
= lim d(x}, F(s) (%], %7, %7, ...,%]))
— 00
< lim limsupd (], F(ty + 8) (%], %71, %1, ., %))
— X p—>o0

< lim limsupd (], F(6,) (%_1 %7 1% 1., %]1))

— X p—o00

+ llirglo lirrlrigp d(F(t,,)(x}_l,x%_l, e ,xf_l),F(t,, + s)(x}_l,xlz_l, ... ,xl’_l))

< lim Dy, < lim A7'Dy = 0.
l—o00 l—o0
Similarly, we get that

d(xz,F(s)(xz,xs,...,x',xl)) =0,

d(xs,F(s)(xB,x4,...,x’,xl,xz)) =0,

d(x", E(s)(x", %", 4%,...,6" 1)) = 0.

Then we have d(x!, F(s)(x',x%,%%,...,%7) = 0,..., d&x* F(s)(x%4%,...,47,41)) = 0, ie,
F(s)(x', 2,43, ., 27) = x4, F(s)(x%, 23, ..., a7, x%) = 22, ..., F(s) (%", &b, &2, ..., 2 1) = &” for each
seaq. O

The following corollary is related to the simplest uniformly Lipschitzian semigroup de-
fined in Definition 3.2.

Corollary 3.1 Let (X,d) be a complete bounded metric space with uniform normal struc-
ture, and let I = {F" : n € N} be the simplest asymptotically regular uniformly Lipschitzian
semigroup of self-mappings on []._, X with property (P) and satisfying

1

k< .
N(X)
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Then there exist some x*,x%,x>,...,x" € X such that F(x,x%,x%,...,6") =x, ..., F(x*%3,...,
X, xY) = x% and F(x", x4, 4%, ..., 2" ) =« forall t € G.

From Remark 2.1 and Theorem 3.1, we immediately obtain the following corollary.

Corollary 3.2 Let (X, d) be a complete bounded metric space with property (P) and uni-
form normal structure, and let I = {F(t) : t € G} be an asymptotically regular semigroup
on [i_, X satisfying

~ 1
k% .
SN

Then there exist some x',x%,x°,...,x" € X such that F(s)(x},x%,x°%,...,x") = &%, F(s)(x, 43,
ek ) = a2, F(s) T xh xt, L x ) =& forall t € G.

For r=1,2,3 in Theorem 3.1, we get the following two corollaries which are due to Soli-
man [27].

Corollary 3.3 [27] Let (X,d) be a complete bounded metric space with property (x) and

uniform normal structure, and let I = {F(t) : t € G} be an asymptotically regular semigroup
on X x X x X satisfying

1

k'k<N(X)‘

Then there exist some x,y,z € X such that F(s)(x,y,z) = x, F(s)(y,z,x) = yand F(s)(z,x,y) = z
forallteG.

Corollary 3.4 [27] Let (X,d) be a complete bounded metric space with property (P) and
uniform normal structure, and let I = {F(¢t) : t € G} be an asymptotically regular semigroup
on X x X x X satisfying

1

k-k<—= .
N(X)

Then there exist some x,y,z € X such that F(s)(x,y,z) = x, F(s)(y,z,x) = yand F(s)(z,x,y) = z
forallteG.

Remark 3.2 It is well known that the Lipschitzian mapping is uniformly continuous. It
is natural to ask if there is a contractive mapping definition which does not force it to be
continuous. It was answered affirmatively by Kannan. It is clear that Lipschitzian mappings
are always continuous and Kannan type mappings are not necessarily continuous. It will
be interesting to establish Theorem 3.1 for representative ¥ = {F(¢) : ¢ € G} on [[;_; X
satisfying the following condition:

d(F(t)(xl,xz, . ..,x’),F(t)(yl,yz, ... ,y’))

=< é[d(xl,F(t)(xlyxZ,“',xr)) " d(yl,F(t)(yl,y2,..,,y’))

+d(&? F(6) (6%, 4%, ...,2",2")) + d(2, FO (7702, .7 00Y))
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+d(x", F(O)(«", ", ....&" ) +d(y, OO 95....0 )]

for all x%,%2,...,4",9%,9%...,5 € Xand 0 < B.
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