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Abstract
In this paper, we introduce and study a new class of over-relaxed (A,η,m)-proximal
point iterative methods with errors for solving general nonlinear operator equations
in Hilbert spaces. By using Liu’s inequality and the generalized resolvent operator
technique associated with (A,η,m)-monotone operators, we also prove the existence
of solution for the nonlinear operator inclusions and discuss the graph-convergent
analysis of iterative sequences generated by the algorithm. Furthermore, we give
some examples and an application for solving the open question (2) due to Li and
Lan (Adv. Nonlinear Var. Inequal. 15(1):99-109, 2012). The numerical simulation
examples are given to illustrate the validity of our results.
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1 Introduction
It is well known that as a mathematical programming tool, variational inequalities have
been extended and generalized in various directions using novel and innovative tech-
niques for solving a wide class of problems arising in different branches of pure and
applied sciences. Nonlinear variational (operator) inclusions, complementarity problems
and equilibriumproblems are useful and important generalizations, which provide uswith
a general and unified framework for studying a wide range of interesting and important
problems arising in mathematics, physics, engineering sciences, economics finance and
other corresponding optimization problems; the proximal point algorithm has been stud-
ied by many authors. For the recent state of the art, see, for example, [–] and the ref-
erences therein.
Recently, Verma [] introduced a general framework for the over-relaxed A-proximal

point algorithm based on the A-maximal monotonicity and pointed out that ‘the over-
relaxed A-proximal point algorithm is of interest in the sense that it is quite application-
oriented, but nontrivial in nature’. Pan et al. [] introduced a general nonlinear mixed
set-valued inclusion framework for the over-relaxedA-proximal point algorithm based on
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the (A,η)-accretive mapping and studied the approximation solvability of a general class
of inclusion problems using the generalized resolvent operator technique associated with
an (A,η)-accretive mapping. They also discussed the convergence of iterative sequences
generated by the algorithm in q-uniformly smooth Banach spaces.
On the other hand, in order to generalize the (H ,η)-monotonicity, A-monotonicity

and other existing monotone operators, Lan [] first introduced a new concept of
(A,η)-monotone (so-called (A,η,m)-maximalmonotone []) operators and studied some
properties of (A,η)-monotone operators and defined resolvent operators associated with
(A,η)-monotone operators. In , Verma [] developed a general framework for a
hybrid proximal point algorithm using the notion of (A,η)-monotonicity and explored
convergence analysis for this algorithm in the context of solving a class of nonlinear in-
clusion problems along with some results on the resolvent operator corresponding to
(A,η)-monotonicity. Very recently, Lan [] introduced and studied a new class of hy-
brid (A,η,m)-proximal point algorithms with errors for solving general nonlinear opera-
tor inclusion problems inHilbert spaces based on (A,η,m)-monotonicity framework. Fur-
thermore, by using the generalized resolvent operator technique associated with (A,η,m)-
monotone operators, the approximation solvability of operator inclusion problems and the
convergence rate of iterative sequences generated by the algorithmwere discussed. Li and
Lan [] introduced and studied the over-relaxed (A,η)-proximal point algorithm frame-
work for approximating the solutions of operator inclusions by using the generalized resol-
vent operator technique associated with (A,η)-monotone operators and by means of two
different methods. Further, some special cases and some open questions are given. In [],
we introduced and studied a new general class of hybrid (A,η,m)-proximal point algo-
rithm frameworks for finding the common solutions of nonlinear operator equations and
fixed point problems of Lipschitz continuous operators inHilbert spaces. Further, by using
the generalized resolvent operator technique associatedwith (A,η,m)-maximalmonotone
operators, we discussed the approximation solvability of operator equation problems and
the convergence of iterative sequences generated by the algorithm frameworks.
Motivated and inspired by the above works, in this paper, we shall introduce and study

a new class of over-relaxed proximal point algorithms for approximating solvability of the
following general nonlinear operator equation in Hilbert space H:
Find x ∈H such that

 ∈ A
(
f (x)

)
– g(x) + ρM

(
f (x)

)
, (.)

whereA, f , g :H →H are three nonlinear operators,M :H → H is a set-valuedmonotone
operator with f (H) ∩ domM(·) �= ∅ and f (H) ∩ domA(·) �= ∅, H denotes the family of all
the nonempty subsets of H and ρ is a positive constant.
Problem (.) can be written as

f (x) – RA
ρ,M

(
g(x)

)
= , (.)

where the resolvent operator RA
ρ,M = (A+ρM)– and η :H×H →H is a nonlinear operator.

Remark . For appropriate and suitable choices of A, f , g , M, η and H, one can know
that a number of general classes of problems of variational character, including minimiza-
tion or maximization (whether constraint or not) of functions, variational problems and
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minimax problems, can be the special cases of problems (.) and (.). For more details,
see [–, , –, –, ] and the references therein, and the following examples.

Example . If g = A, then problem (.) is equivalent to finding x ∈H such that x

 ∈ A
(
f (x)

)
–A(x) + ρM

(
f (x)

)
, (.)

which was studied by Li [].
Further, problem (.) was considered by Lan [], and Li and Lan [] and Verma [,

] when in (.), f ≡ I , the identity operator.

Example . Suppose that A : H → H is r-strongly η-monotone, and that F : H → R is
locally Lipschitz such that ∂F , the subdifferential, ism-relaxed η-monotonewith r–m > .
It is easy to see that

〈
x – y,η(x, y)

〉 ≥ (r –m)‖x – y‖,

where x ∈ A(x) + ∂F(x) and y ∈ A(y) + ∂F(y) for all x, y ∈ H. Thus, A + ∂F is η-
pseudomonotone, which is indeed η-maximal monotone. This is equivalent to stating
that A + ∂F is (A,η,m)-maximal monotone (see []) and problem (.) becomes finding
x ∈H such that

g(x) ∈ ( + ρ)A
(
f (x)

)
+ ρ∂F

(
f (x)

)
.

Moreover, by using the generalized resolvent operator technique associated with
(A,η,m)-monotone operators, the Lipschitz continuity of the generalized resolvent opera-
tor and Liu’s inequality [], we will also discuss the existence of solution for the nonlinear
operator inclusion (.) and the graphical convergence of iterative sequences generated by
the algorithm. Furthermore, we give some (numerical simulation) examples and applica-
tions for solving the open question () in [] and for illustrating the validity of the main
results presented in this paper using software Matlab ..

2 Preliminaries
In order to obtain our main results, some preliminaries must firstly be given as follows.

Definition . Let A, f : H → H and η : H × H → H be single-valued operators, and let
M :H → H be a set-valued operator. Then

(i) f is δ-strongly monotone if there exists a constant δ >  such that

〈
f (x) – f (y),x – y

〉 ≥ δ‖x – y‖ ∀x, y ∈H,

which implies that f is δ-expanding, i.e.,

∥∥f (x) – f (y)
∥∥ ≥ δ‖x – y‖ ∀x, y ∈H;

(ii) A is r-strongly η-monotone if there exists a positive constant r such that

〈
A(x) –A(y),η(x, y)

〉 ≥ r‖x – y‖ ∀x, y ∈H;
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(iii) A is β-Lipschitz continuous if there exists a constant β >  such that

∥∥A(x) –A(y)
∥∥ ≤ β‖x – y‖ ∀x, y ∈H;

(iv) η is τ -Lipschitz continuous if there exists a constant τ >  such that

∥∥η(x, y)
∥∥ ≤ τ‖x – y‖ ∀x, y ∈ H;

(v) M is m-relaxed η-monotone if there exists a constant m >  such that for all
x, y ∈H, u ∈M(x) and v ∈M(y),

〈
u – v,η(x, y)

〉 ≥ –m‖x – y‖;

(vi) M is said to be (A,η,m)-monotone ifM is m-relaxed η-monotone and
R(A + ρM) =H for every ρ > .

Remark . () For appropriate and suitable choices of m, A and η and H, one can
know that the (A,η,m)-monotonicity (so-called (A,η)-monotonicity [], (A,η)-maximal
relaxed monotonicity [], (A,η,m)-maximal monotonicity []) includes the (H ,η)-
monotonicity,H-monotonicity, A-monotonicity, maximal η-monotonicity, classical max-
imal monotonicity (see [–, –, –, –]). Further, we note that the idea of this
extension is close to the idea of extending convexity to invexity introduced by Hanson in
[], and the problem studied in this paper can be used in invex optimization and also
for solving the variational-like inequalities as a direction for further applied research, see
related works in [, ] and the references therein.
() Moreover, the operator M is said to be generalized maximal monotone (in short

GMM-monotone) if:
(i) M is monotone;
(ii) A + ρM is maximal monotone or pseudomonotone for ρ > .

Example . ([]) Suppose that A : H → H is r-strongly η-monotone, and that f : H →
R is locally Lipschitz such that ∂f , the subdifferential, is m-relaxed η-monotone with
r –m > . Clearly, we have

〈
x – y,η(x, y)

〉 ≥ (r –m)‖x – y‖,

where x ∈ A(x) + ∂f (x) and y ∈ A(y) + ∂f (y) for all x, y ∈ H. Thus, A+ ∂f is η-pseudomono-
tone, which is indeed maximal η-monotone. This is equivalent to stating that A + ∂f is
(A,η,m)-monotone.

Lemma . ([]) Let η : H × H → H be τ -Lipschitz continuous, A : H → H be an r-
strongly η-monotone operator and M : H → H be an (A,η,m)-monotone operator with
m < r. Then the resolvent operator RA,η

ρ,M :H →H defined by

RA,η
ρ,M(x) = (A + ρM)–(x) ∀x ∈H

is τ
r–ρm-Lipschitz continuous.
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3 Graph-convergent analysis
In this section, we shall introduce and study a new class of over-relaxed proximal
point algorithms for solving the general nonlinear operator equation (.) with (A,η,m)-
monotonicity framework in Hilbert spaces. Further, by using the generalized resolvent
operator technique associated with (A,η,m)-monotone operators, the Lipschitz conti-
nuity and Liu’s inequality, the existence of solution for the nonlinear operator inclusion
problem and the graphical convergence of iterative sequences generated by the algorithm
will be discussed.

Definition . Let H be a real Hilbert space,Mn,M :H → H be (A,η,m)-monotone op-
erators on H for n = , , , . . . . Let A :H → H be r-strongly η-monotone and τ -Lipschitz

continuous. The sequence Mn is graph-convergent to M, denoted by Mn
A–G−→ M, if for

every (x, y) ∈ graph(M), there exists a sequence (xn, yn) ∈ graph(Mn) such that

xn → x, yn → y as n → ∞.

By the same method as in Theorem . of [], we have the following result.

Lemma . Let Mn,M :H → H be (A,η,m)-monotone operators on H for n = , , , . . . .

Then the sequence Mn
A–G−→ M if and only if

RA,η
ρ,Mn (x)→ RA

ρ,M(x) ∀x ∈H,

where RA,η
ρ,Mn = (A + ρMn)–, RA

ρ,M = (A + ρM)–, ρ >  is a constant, and A : H → H is r-
strongly η-monotone and τ -Lipschitz continuous.

Lemma . ([]) Let {an}, {bn}, {cn} be three nonnegative real sequences satisfying the
following condition: there exists a natural number n such that

an+ ≤ ( – tn)an + bntn + cn ∀n≥ n,

where tn ∈ [, ],
∑∞

n= tn =∞, limn→∞ bn = ,
∑∞

n= cn < ∞. Then an →  (n→ ∞).

Algorithm . Step . Choose an arbitrary initial point x ∈H.
Step . Choose sequences {αn}, {εn}, {ρn} and {en} such that for n≥ , {αn}, {ρn} ⊂ [,∞)

and {εn} ⊂ (, ) are three sequences satisfying

α = lim sup
n→∞

αn < ,
∞∑
n=

εn < ∞, ρn ↑ ρ ∈
(
,

r
m

)
,

and {en} is an error sequence in H to take into account a possible inexact computation of
the operator point, which satisfies

∑∞
n= ‖en‖ < ∞.

Step . Let {xn} ⊂H be a sequence generated by the following iterative procedure:

A
(
f (xn+)

)
= ( – αn)A

(
f (xn)

)
+ αnyn + en, (.)
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and let yn satisfy

∥∥yn –A
(
RA

ρn ,Mn

(
g(xn)

))∥∥ ≤ εn
∥∥yn –A

(
f (xn)

)∥∥,
where n≥ , RA,η

ρn ,Mn = (A + ρnMn)– and ρn >  is a constant.
Step . If xn and yn (n = , , , . . .) satisfy (.) to sufficient accuracy, stop; otherwise, set

k := k +  and return to Step .

Algorithm . For an arbitrary initial point x ∈H, the sequence {xn} ⊂H can be gener-
ated by the following iterative procedure:

A
(
f (xn+)

)
= ( – αn)A

(
f (xn)

)
+ αnyn + en,∥∥yn –A

(
RA

ρn ,Mn

(
A(xn)

))∥∥ ≤ εn
∥∥yn –A

(
f (xn)

)∥∥,
where n≥ , {αn}, {ρn} ⊂ [,∞) and {εn} ⊂ (, ) are three sequences satisfying

α = lim sup
n→∞

αn < ,
∞∑
n=

εn < ∞, ρn ↑ ρ ∈
(
,

r
m

)
,

and {en} is an error sequence in H to take into account a possible inexact computation of
the operator point, which satisfies

∑∞
n= ‖en‖ < ∞.

Remark . Indeed, Algorithm . becomes Algorithm . in [] when Mn =M, en ≡ 
and αn ≥  for all n ≥ , which includes the algorithm of Theorem . in [].

Theorem . Assume that H is a real Hilbert space, η :H →H is τ -Lipschitz continuous,
g :H →H is κ-Lipschitz continuous,A :H →H is ς -Lipschitz continuous and r-strongly η-
monotone, f :H →H is β-Lipschitz continuous and δ-strongly monotone. LetMn,M :H →
H be (A,η,m)-monotone operators with m < r, f (H) ∩ domM(·) �= ∅, f (H) ∩ domA(·) �= ∅,
f (H)∩ domMn(·) �= ∅ for n = , , , . . . and Mn

A–G−→M. In addition, suppose that
(i) the iterative sequence {xn} generated by Algorithm . is bounded;
(ii) there exists a constant ρ >  such that

{√
 – δ + β + κτ

r–ρm < , rδ > βςτ ( – α),
ρ < r

m – αςκτ

m[rδ–βςτ (–α)] ,

then
() the general nonlinear operator equation (.) based on (A,η,m)-monotonicity

framework has a unique solution x∗ in H;
() the sequence {xn} converges linearly to the solution x∗.

Proof Firstly, for any given ρ > , define F :H →H by

F(x) = x – f (x) + RA
ρ,M

(
g(x)

) ∀x ∈H.

http://www.fixedpointtheoryandapplications.com/content/2014/1/161
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By the assumptions of the theorem and Lemma ., for all x, y ∈ H, we have

∥∥F(x) – F(y)
∥∥ ≤ ∥∥x – y –

[
f (x) – f (y)

]∥∥ +
∥∥RA

ρ,M
(
g(x)

)
– RA

ρ,M
(
g(y)

)∥∥
≤ ϑ‖x – y‖,

where ϑ =
√
 – δ + β + κτ

r–ρm . It follows from condition (ii) that  < ϑ <  and so F is a
contractive mapping, which shows that F has a unique fixed point in H.
Next, we prove conclusion (). Let x∗ be a solution of problem (.). Then, for all ρn > 

and n≥ , it follows from Lemma . that

A
(
f
(
x∗)) = ( – αn)A

(
f
(
x∗)) + αnA

(
RA

ρn ,M
(
g
(
x∗))), (.)∥∥A(

RA
ρn ,Mn

(
g(xn)

))
–A

(
RA

ρn ,M
(
g
(
x∗)))∥∥

≤ ∥∥A(
RA

ρn ,Mn

(
g(xn)

))
–A

(
RA

ρn ,Mn

(
g
(
x∗)))∥∥

+
∥∥A(

RA
ρn ,Mn

(
g
(
x∗))) –A

(
RA

ρn ,M
(
g
(
x∗)))∥∥

≤ ςτ

r – ρnm
∥∥g(xn) – g

(
x∗)∥∥ + ςhn, (.)

where

hn =
∥∥RA

ρn ,Mn

(
g
(
x∗)) – RA

ρn ,M
(
g
(
x∗))∥∥ → . (.)

Let

A
(
f (zn+)

)
= ( – αn)A

(
f (xn)

)
+ αnA

(
RA

ρn ,Mn

(
g(xn)

))
+ en ∀n≥ .

By the assumptions of the theorem, (.) and (.), now we find the estimate

∥∥A(
f (zn+)

)
–A

(
f
(
x∗))∥∥

≤ ( – αn)
∥∥A(

f (xn)
)
–A

(
f
(
x∗))∥∥

+ αn
∥∥A(

RA
ρn ,Mn

(
g(xn)

))
–A

(
RA

ρn ,M
(
g
(
x∗)))∥∥ + ‖en‖

≤ ( – αn)
∥∥A(

f (xn)
)
–A

(
f
(
x∗))∥∥ +

αnςτ

r – ρnm
∥∥g(xn) – g

(
x∗)∥∥ + αnςhn + ‖en‖

≤ ( – αn)
∥∥A(

f (xn)
)
–A

(
f
(
x∗))∥∥ + αn

ςτκ

r – ρnm
∥∥xn – x∗∥∥ + αnςhn + ‖en‖

≤ θn
∥∥xn – x∗∥∥ + αnςhn + ‖en‖, (.)

where

θn = βς ( – αn) + αn
ςτκ

r – ρnm
.

Since

A
(
f (xn+)

)
= ( – αn)A

(
f (xn)

)
+ αnyn + en,

http://www.fixedpointtheoryandapplications.com/content/2014/1/161
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and

A
(
f (xn+)

)
–A

(
f (xn)

)
= αn

(
yn –A

(
f (xn)

))
+ en,

it follows that

∥∥A(
f (xn+)

)
–A

(
f (zn+)

)∥∥
= αn

∥∥yn –A
(
RA

ρn ,Mn

(
g(xn)

))∥∥
≤ αnεn

∥∥yn –A
(
f (xn)

)∥∥
≤ εn

∥∥A(
f (xn+)

)
–A

(
f (xn)

)∥∥ + εn‖en‖. (.)

Now, we estimate using (.) and (.) that

∥∥A(
f (xn+)

)
–A

(
f
(
x∗))∥∥

≤ ∥∥A(
f (xn+)

)
–A

(
f (zn+)

)∥∥ +
∥∥A(

f (zn+)
)
–A

(
f
(
x∗))∥∥

≤ εn
∥∥A(

f (xn+)
)
–A

(
f (xn)

)∥∥ + θn
∥∥xn – x∗∥∥ + αnςhn + ( + εn)‖en‖.

This implies that

∥∥A(
f (xn+)

)
–A

(
f
(
x∗))∥∥

≤ θn

 – εn

∥∥xn – x∗∥∥ + αn
ςhn
 – εn

+
 + εn

 – εn
‖en‖. (.)

It follows from (.) and the strong monotonicity of A and f that

∥∥A(
f (xn+)

)
–A

(
f
(
x∗))∥∥ · τ∥∥f (xn+) – f

(
x∗)∥∥

≥ ∥∥A(
f (xn+)

)
–A

(
f
(
x∗))∥∥ · ∥∥η

(
f (xn+), f

(
x∗))∥∥

≥ 〈
A

(
f (xn+)

)
–A

(
f
(
x∗)),η(

f (xn+), f
(
x∗))〉

≥ r
∥∥f (xn+) – f

(
x∗)∥∥,

i.e.,

∥∥A(
f (xn+)

)
–A

(
f
(
x∗))∥∥ ≥ r

τ

∥∥f (xn+) – f
(
x∗)∥∥

≥ rδ
τ

∥∥xn+ – x∗∥∥,
and

∥∥xn+ – x∗∥∥
≤ τθn

rδ( – εn)
∥∥xn – x∗∥∥ +

αnτςhn
rδ( – εn)

+
τ ( + εn)
rδ( – εn)

‖en‖

≤ ( – tn)
∥∥xn – x∗∥∥ + bntn + cn, (.)

where tn =  – τθn
rδ(–εn) , bn =

αnτςhn
rδ(–εn)–τθn

, cn = τ (+εn)
rδ(–εn)‖en‖.
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Thus, it follows from (.), condition (ii), Lemma . and (.) that the {xn} converges
linearly to the solution x∗. This completes the proof. �

Remark . Condition (ii) of Theorem . holds for some suitable value of constants,
for example, δ = ., β = ., κ = ., τ = ., r = ., m = ., α = .,
ς = . and ρ = ..

From Theorem ., we have the following results.

Theorem . Let A, f ,M, η andH be the same as in Theorem .. If the iterative sequence
{xn} generated by Algorithm . is bounded and there exists a constant ρ >  such that

{√
 – δ + β + ςτ

r–ρm < , rδ > βςτ ( – α),
ρ < r

m – αςτ

m[rδ–βςτ (–α)] ,

then the sequence {xn} converges linearly to the unique solution x∗ of problem (.).

Remark . Conditions in Theorem . are weaker and less than those in Theorem . of
[], and the (graphical) convergence analysis is considered according to (ii) of Remark .
in []. That is, the Lipschitz continuity of the inverse operator M– and the inequality
condition (recalled relative cocoercivity, see []) are replaced by inequality (.).

Remark . It is easy to see that the corresponding results can be obtained if f ≡ I ,
or en ≡ , or Mn = M in Algorithms . and ., or M and Mn for all n ≥  are (H ,η)-
monotone, H-monotone, A-monotone, maximal η-monotone and classical maximal
monotone, respectively. Therefore, the main results presented in this paper improve and
generalize the corresponding results of [, , , , , , ].

Remark . Clearly, it follows from Algorithms . and . that the sequence {yn} is con-
sidered to control the iterative sequence {xn} and can be optimized for increasing conver-
gence rate, which is worthy to be studied in the future.

4 Some examples with applications
In this section, we shall give the following examples to illustrate the validity of our main
results.

Example . Let H be a real Hilbert space, η : H → H be τ -Lipschitz continuous, A :
H → H be σ -Lipschitz continuous and r-strongly η-monotone, and for n = , , , . . . , let

Mn,M :H → H be an (A,η,m)-monotone operator with m < r andMn
A–G−→ M. For an ar-

bitrary initial point x ∈H, suppose that the sequence {xn} ⊂H generated by the following
iterative procedure is bounded:

A(xn+) = ( – αn)A(xn) + αnyn + en,∥∥yn –A
(
RA

ρn ,Mn

(
A(xn)

))∥∥ ≤ εn
∥∥yn –A(xn)

∥∥, (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/161
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where n≥ , {αn}, {ρn} ⊂ [,∞) and {εn} ⊂ (, ) are three sequences satisfying

α = lim sup
n→∞

αn < ,
∞∑
n=

εn < ∞, ρn ↑ ρ ∈
(
,

r
m

)
,

and {en} is an error sequence in H to take into account a possible inexact computation of
the operator point, which satisfies

∑∞
n= ‖en‖ < ∞. In addition, if there exists a constant

ρ >  such that

ρ <
r
m

–max

{
στ

m
,

ασ τ 

m[r – στ ( – α)]

}
, r > στ ( – α),

then the sequence {xn} converges linearly to a solution x∗ of the following nonlinear in-
clusion problem:
Find x ∈H such that

 ∈M(x).

Proof The result can be obtained by the proof of Theorem . and so it is omitted. �

Remark . The corresponding results can be obtained if en ≡  in (.) for all n ≥ , or
the element yn in (.) satisfies respectively the following inequalities:

∥∥yn –A
(
JMn
ρn ,A

(
A(xn)

))∥∥ ≤ εn
∥∥yn –A(xn)

∥∥
and

∥∥yn – JMn
ρn (xn)

∥∥ ≤ εn‖yn – xn‖,

where Mn is of the same monotonicity as M under some conditions for all n ≥ , and
JMn
ρn ,A(A(xn)) = (A + ρnMn)– associates with A-maximal monotonicity and JMn

ρn (xn) = (I +
ρnMn)– associates with classical maximal monotonicity. Furthermore, it follows from Ex-
ample . that the open question () in [] is solved.

Example . Let H = R
, constants δ = ., β = ., κ = ., τ = ., r =

.,m = ., ς = ., α = . and ρ = .. Suppose that for any n ≥ , ρn = ρ·n
+n ,

αn = α·n
+n , εn =


n. , en =

e
+n. ,Mn = M·n

(n+n–) and

e =

(
.
.

)
, M =

(
 –
 

)
, x =

(
.
.

)
, f (x) =

(
x
x

)
,

g(x) =

(
(x + x) arctanx

arctanx
+x

)
, A(x) =

(
x – .(x + arctanx)
x – .(x – arctanx)

)
.

Then A is .-strongly η-monotone, the conditions in Theorem . hold. Further, the
sequence {xn} converges linearly to a solution x∗ = (.,–.) of problem (.)
under termination tolerance –.

http://www.fixedpointtheoryandapplications.com/content/2014/1/161
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Figure 1 Numerical simulation with non-optimized condition.

Figure 2 Numerical simulation with optimized condition.

Moreover, x∗ is also a fixed point of I – f +RA
ρ,M ◦ g and the numerical simulation graphs

for the sequences {xn} and {yn} generated by Algorithm . are given with  iterations
in Figure . Further, the numerical simulation graphs for the sequences {xn} and {yn} gen-
erated by Algorithm . are shown with  iterations in Figure  when the controlling
sequence {yn} has been optimized partly. It is easy to see that the acceleration efficiency is
.%.

5 Conclusions
In this paper, we introduce and study a new class of over-relaxed proximal point perturbed
iterative algorithms for solving the following general nonlinear operator equation with
(A,η,m)-monotonicity framework in Hilbert spaces H:

 ∈ A
(
f (x)

)
– g(x) + ρM

(
f (x)

)
,

whereA, f , g :H →H are three nonlinear operators,M :H → H is an (A,η,m)-monotone
operator with f (H) ∩ domM(·) �= ∅ and f (H) ∩ domA(·) �= ∅, H denotes the family of all
the nonempty subsets of H and ρ is a positive constant.
Further, by using the generalized resolvent operator technique associated with (A,η,m)-

monotone operators, the Lipschitz continuity of the generalized resolvent operator and
Liu’s inequality [], we also discuss the existence of a solution for the nonlinear operator
equation and the graphical convergence of iterative sequences generated by the algorithm.

http://www.fixedpointtheoryandapplications.com/content/2014/1/161
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Finally, we give some examples with applications for solving the open question () in
[]. The numerical simulation examples are given to illustrate the validity of the main
results presented in this paper using software Matlab ..
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