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Abstract
Recently, Choudhury et al. proved a coupled coincidence point theorem in a partial
order fuzzy metric space. In this paper, we give a new version of the result of
Choudhury et al. by removing some restrictions. In our result, the mappings are not
required to be compatible, continuous or commutable, and the t-norm is not
required to be of Hadžić-type. Finally, two examples are presented to illustrate the
main result of this paper.
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1 Introduction
The concept of fuzzy metric spaces was defined in different ways [–]. Grabiec [] pre-
sented a fuzzy version of Banach contraction principle in a fuzzy metric space of Kramosi
and Michalek’s sense. Fang [] proved some fixed point theorems in fuzzy metric spaces,
which improve, generalize, unify, and extend somemain results of Edelstein [], Istratescu
[], Sehgal and Bharucha-Reid [].
In order to obtain aHausdorff topology, George andVeeramani [, ]modified the con-

cept of fuzzy metric space due to Kramosil and Michalek []. Many fixed point theorems
in complete fuzzy metric spaces in the sense of George and Veeramani [, ] have been
obtained. For example, Singh and Chauhan [] proved some common fixed point theo-
rems for four mappings in GV fuzzy metric spaces. Gregori and Sapena [] proved that
each fuzzy contractive mapping has a unique fixed point in a complete GV fuzzy metric
space in which fuzzy contractive sequences are Cauchy.
The coupled fixed point theoremand its applications inmetric spaces are firstly obtained

by Bhaskar and Lakshmikantham []. Recently, some authors considered coupled fixed
point theorems in fuzzy metric spaces; see [–].
In [], the authors gave the following results.

Theorem. [, Theorem.] Let a∗b > ab for all a,b ∈ [, ] and (X,M,∗) be a complete
fuzzy metric space such that M has n-property. Let F : X × X → X and g : X → X be two
functions such that

M
(
F(x, y),F(u, v),kt

) ≥M(gx, gu, t) ∗M(gy, gv, t)
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for all x, y,u, v ∈ X, where  < k < , F(X × X) ⊆ g(X) and g is continuous and commutes
with F . Then there exists a unique x ∈ X such that x = gx = F(x,x).

Let � = {φ :R+ → R
+}, where R+ = [,+∞) and each φ ∈ � satisfies the following con-

ditions:

(φ-) φ is non-decreasing;
(φ-) φ is upper semicontinuous from the right;
(φ-)

∑∞
n= φn(t) < +∞ for all t >  where φn+(t) = φ(φn(t)), n ∈N.

In [], Hu proved the following result.

Theorem . [, Theorem ] Let (X,M,∗) be a complete fuzzy metric space, where ∗ is a
continuous t-norm of H-type. Let F : X × X → X and g : X → X be two mappings and let
there exist φ ∈ � such that

M
(
F(x, y),F(u, v),φ(t)

) ≥M(gx, gu, t) ∗M(gy, gv, t)

for all x, y,u, v ∈ X, t > . Suppose that F(X × X) ⊆ g(X), and g is continuous; F and g are
compatible.Then there exists x ∈ X such that x = gx = F(x,x), that is, F and g have a unique
common fixed point in X.

Choudhury et al. [] gave the following coupled coincidence fixed point result in a par-
tial order fuzzy metric space.

Theorem . [, Theorem .] Let (X,M,∗) be a complete fuzzy metric space with a
Hadžić type t-norm M(x, y, t) →  as t → ∞ for all x, y ∈ X. Let � be a partial order de-
fined on X. Let F : X × X → X and g : X → X be two mappings such that F has mixed
g-monotone property and satisfies the following conditions:

(i) F(X ×X) ⊆ g(X),
(ii) g is continuous and monotonic increasing,
(iii) (g,F) is a compatible pair,
(iv) M(F(x, y),F(u, v),kt)≥ γ (M(g(x), g(u), t) ∗M(g(y), g(v), t)) for all x, y,u, v ∈ X , t > 

with g(x)� g(u) and g(y) 	 g(v), where k ∈ (, ), γ : [, ] → [, ] is a continuous
function such that γ (a) ∗ γ (a)≥ a for each  ≤ a≤ .

Also suppose that X has the following properties:
(a) if we have a non-decreasing sequence {xn} → x, then xn � x for all n ∈N∪ {},
(b) if we have a non-increasing sequence {yn} → y, then yn 	 y for all n ∈N∪ {}.

If there exist x, y ∈ X such that g(x) � F(x, y), g(y) 	 F(y,x), and M(g(x),F(x, y),
t)∗M(g(y),F(y,x), t) >  for all t > , then there exist x, y ∈ X such that g(x) = F(x, y) and
g(y) = F(y,x), that is, g and F have a coupled coincidence point in X.

Wang et al. [] proved the following coupled fixed point result in a fuzzy metric space.

Theorem . [, Theorem .] Let (X,M,∗) be a fuzzy metric space under a continuous
t-norm ∗ of H-type. Let φ : (,∞) → (,∞) be a function satisfying limn→∞ φn(t) =  for
any t > . Let F : X × X → X and g : X → X be two mappings with F(X × X) ⊆ g(X) and
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assume that for any t > ,

M
(
F(x, y),F(u, v),φ(t)

) ≥M(gx, gu, t) ∗M(gy, gv, t)

for all x, y,u, v ∈ X. Suppose that F(X ×X) is complete and g and F are w-compatible, then
g and F have a unique common fixed point x∗ ∈ X, that is, x∗ = g(x∗) = F(x∗,x∗).

In this paper, by modifying the conditions on the result of Choudhury et al. [], we give
a new coupled coincidence fixed point theorem in partial order fuzzymetric spaces. In our
result, we do not require that the t-norm is of Hadžić-type [], themappings are compati-
ble [], commutable, continuous or monotonic increasing. Our proof method is different
from the one of Choudhury et al. Finally, some examples are presented to illustrate our
result.

2 Preliminaries
Definition . [] A binary operation ∗ : [, ]× [, ] → [, ] is continuous t-norm if ∗
satisfies the following conditions:
() ∗ is associative and commutative,
() ∗ is continuous,
() a ∗  = a for all a ∈ [, ],
() a ∗ b ≤ c ∗ d whenever a ≤ c and b≤ d for all a,b, c,d ∈ [, ].

Typical examples of the continuous t-norm are a ∗ b = ab and a ∗ b =min{a,b} for all
a,b ∈ [, ].
A t-norm ∗ is said to be positive if a ∗ b >  for all a,b ∈ (, ]. Obviously, ∗ and ∗ are

positive t-norms.

Definition . [] The -tuple (X,M,∗) is called a fuzzy metric space if X is an arbitrary
non-empty set, ∗ is a continuous t-norm and M is a fuzzy set on X × (,∞) satisfying
the following conditions for each x, y, z ∈ X and t, s > :

(GV-) M(x, y, t) > ,
(GV-) M(x, y, t) =  if and only if x = y,
(GV-) M(x, y, t) =M(y,x, t),
(KM-) M(x, y, ·) : (,∞) → [, ] is continuous,
(KM-) M(x, y, t + s)≥M(x, z, t) ∗M(y, z, s).

Lemma . [] Let (X,M,∗) be a fuzzy metric space. Then M(x, y,∗) is non-decreasing for
all x, y ∈ X.

Lemma . [] Let (X,M,∗) be a fuzzy metric space. Then M is a continuous function
on X × (,∞).

Definition . [] Let (X,M,∗) be a fuzzy metric space. A sequence {xn} in X is called an
M-Cauchy sequence, if for each ε ∈ (, ) and t >  there is n ∈N such thatM(xn,xm, t) >
 – ε for all m,n ≥ n. The fuzzy metric space (X,M,∗) is called M-complete if every M-
Cauchy sequence is convergent.
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Let (X,�) be a partially ordered set and F be a mapping from X to itself. A sequence
{xn} in X is said to be non-decreasing if for each n ∈N, xn � xn+. A mapping g : X → X is
called monotonic increasing if for all x, y ∈ X with x � y, g(x) � g(y).

Definition . [] Let (X,�) be a partially ordered set and F : X×X → X and g : X → X
be two mappings. The mapping F is said to have the mixed g-monotone property if for
all x,x ∈ X, g(x) � g(x) implies F(x, y) � F(x, y) for all y ∈ X, and for all y, y ∈ X,
g(y) � g(y) implies F(x, y) 	 F(x, y) for all x ∈ X.

Definition . [] An element (x, y) ∈ X ×X is called a coupled coincidence point of the
mappings F : X ×X → X and g : X → X if

F(x, y) = g(x), F(y,x) = g(y).

Here (gx, gy) is called a coupled point of coincidence.

3 Main results
Lemma . Let γ : [, ] → [, ] be a left continuous function and ∗ be a continuous t-
norm. Assume that γ (a) ∗ γ (a) > a for all a ∈ (, ). Then γ () = .

Proof Let {an} ⊆ (, ) be a non-decreasing sequence with limn→∞ an = . By hypothesis
we have

γ (an) ∗ γ (an) > an, n ∈N.

Since γ is left continuous and ∗ is continuous, we get

γ () ∗ γ () ≥ ,

which implies that γ ()∗γ () = . Since γ () ≥ γ ()∗γ (), one has γ () = . This completes
the proof. �

Theorem . Let (X,M,∗) be a fuzzy metric space with a continuous and positive t-norm.
Let� be a partial order defined on X . Let φ : (,∞) → (,∞) be a function satisfying φ(t) ≤
t for all t >  and let γ : [, ]→ [, ] be a left continuous and increasing function satisfying
γ (a) ∗ γ (a) > a for all a ∈ (, ). Let F : X × X → X and g : X → X be two mappings such
that F has the mixed g-monotone property and assume that g(X) is complete. Suppose that
the following conditions hold:

(i) F(X ×X) ⊆ g(X),
(ii) we have

M
(
F(x, y),F(u, v),φ(t)

) ≥ γ
(
M

(
g(x), g(u), t

) ∗M
(
g(y), g(v), t

))
, (.)

for all x, y,u, v ∈ X , t >  with g(x)� g(u) and g(y) 	 g(v),
(iii) if a non-decreasing sequence {xn} → x, then xn � x for all n ∈N∪ {},
(iv) if a non-increasing sequence {yn} → y, then yn 	 y for all n ∈N∪ {}.
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If there exist x, y ∈ X such that g(x) � F(x, y), g(y) 	 F(y,x) and M(g(x),F(x, y),
t)∗M(g(y),F(y,x), t) >  for all t > , then there exist x∗, y∗ ∈ X such that g(x∗) = F(x∗, y∗)
and g(y∗) = F(y∗,x∗).

Proof Let x, y ∈ X such that g(x) � F(x, y) and F(y,x) � g(y). Define the sequences
{xn} and {yn} in X by

g(xn+) = F(xn, yn) and g(yn+) = F(yn,xn), for all n ∈N∪ {}.

Along the lines of the proof of [], we see that

g(xn)� g(xn+) and g(yn) 	 g(yn+), for all n ∈N∪ {}. (.)

By (.) and (.) we have

M
(
g(x), g(x), t

) ≥M
(
g(x), g(x),φ(t)

)

=M
(
F(x, y),F(x, y),φ(t)

)

≥ γ
(
M

(
g(x), g(x), t

) ∗M
(
g(y), g(y), t

))

>M
(
g(x), g(x), t

) ∗M
(
g(y), g(y), t

)
> , ∀t > , (.)

and

M
(
g(y), g(y), t

) ≥M
(
g(y), g(y),φ(t)

)

=M
(
F(y,x),F(y,x),φ(t)

)

≥ γ
(
M

(
g(y), g(y), t

) ∗M
(
g(x), g(x), t

))

>M
(
g(y), g(y), t

) ∗M
(
g(x), g(x), t

)
> , ∀t > . (.)

Since ∗ is positive, we have

M
(
g(x), g(x), t

) ∗M
(
g(y), g(y), t

)
> , ∀t > .

Repeating the process (.) and (.), we get

M
(
g(x), g(x), t

)
>  and M

(
g(y), g(y), t

)
> , ∀t > ,

and further we have

M
(
g(x), g(x), t

) ∗M
(
g(y), g(y), t

)
> , ∀t > .

Continuing the above process, we get, for each n ∈N,

M
(
g(xn), g(xn+), t

)
> , ∀t > ,

and

M
(
g(yn), g(yn+), t

)
> , ∀t > .
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Since ∗ is positive, one has

M
(
g(xn), g(xn+), t

) ∗M
(
g(yn), g(yn+), t

)
> , ∀n ∈N,∀t > .

Now we prove by induction that, for each n ∈N and k ∈N with k ≥ n, one has

M
(
g(xn), g(xk), t

) ∗M
(
g(yn), g(yk), t

)
> , ∀t > . (.)

Obviously (.) holds for k = n. Assume that (.) holds for some k ∈ N with k > n. Then
we have

M
(
g(xn), g(xk+), t

) ≥M
(
g(xn), g(xk), t/

) ∗M
(
g(xk), g(xk+), t/

)
.

SinceM(g(xn), g(xk), t/) > ,M(g(xk), g(xk+), t/) > , and ∗ is positive, we have

M
(
g(xn), g(xk+), t

)
> , ∀t > .

Similarly, we have

M
(
g(yn), g(yk+), t

)
> , ∀t > .

Therefore, (.) holds for all k ∈N with k ≥ n.
Now we use the method of Wang [] to show that both {g(xn)} and {g(yn)} are Cauchy

sequences. Fix t > . Let

an = inf
k≥n

M
(
g(xn), g(xk), t

) ∗M
(
g(yn), g(yk), t

)
.

For k ≥ n + , by (.) and (.) we have

M
(
g(xn+), g(xk), t

) ≥M
(
g(xn+), g(xk),φ(t)

)

≥ γ
(
M

(
g(xn), g(xk–), t

) ∗M
(
g(yn), g(yk–), t

))
.

Similarly,

M
(
g(yn+), g(yk), t

) ≥ γ
(
M

(
g(xn), g(xk–), t

) ∗M
(
g(yn), g(yk–), t

))
.

So, by (.) and the hypothesis we have

M
(
g(xn+), g(xk), t

) ∗M
(
g(yn+), g(yk), t

)

≥ ∗(γ (
M

(
g(xn), g(xk–), t

) ∗M
(
g(yn), g(yk–), t

)))

≥M
(
g(xn), g(xk–), t

) ∗M
(
g(yn), g(yk–), t

)
> , (.)

which implies that

an+ ≥ an > .
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Since {an} is bounded, there exists a ∈ (, ] such that limn→∞ an = a. Assume that a < .
Since γ is increasing, we have

∗(γ (
M

(
g(xn), g(xk–), t

) ∗M
(
g(yn), g(yk–), t

)))

≥ ∗
(
γ
(
inf

k≥n+

(
M

(
g(xn), g(xk–), t

) ∗M
(
g(yn), g(yk–), t

))))

and further

inf
k≥n+

∗(γ ((
M

(
g(xn), g(xk–), t

) ∗M
(
g(yn), g(yk–), t

))))

≥ ∗
(
γ
(
inf

k≥n+

(
M

(
g(xn), g(xk–), t

) ∗M
(
g(yn), g(yk–), t

))))
. (.)

From (.) and (.) it follows that

inf
k≥n+

(
M

(
g(xn+), g(xk), t

) ∗M
(
g(yn+), g(yk), t

))

≥ ∗
(
γ
(
inf

k≥n+

(
M

(
g(xn), g(xk–), t

) ∗M
(
g(yn), g(yk–), t

))))
,

i.e.,

an+ ≥ γ (an) ∗ γ (an), ∀n ∈N.

Since γ is left continuous, by hypothesis we get

a ≥ γ (a) ∗ γ (a) > a.

This is a contradiction. So a = .
For any given ε > , there exists n ∈N such that

 – an < ε for all n ≥ n.

Thus for each k ≥ n≥ n,

M
(
g(xn), g(xk), t

) ∗M
(
g(yn), g(yk), t

)
>  – ε,

which implies that

min
{
M

(
g(xn), g(xk), t

)
,M

(
g(yn), g(yk), t

)}
>  – ε.

It follows that both {g(xn)} and {g(yn)} are Cauchy sequences. Since g(X) is complete, there
exist x∗, y∗ ∈ X such that g(xn) → g(x∗) and g(yn) → g(y∗) as n→ ∞.
By hypothesis, we have

g(xn)� g
(
x∗) and g(yn) 	 g

(
y∗), n ∈N. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/153
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Now, for all t > , by (.) and (.) we have

M
(
F
(
x∗, y∗), g(x∗), t) ≥M

(
F
(
x∗, y∗),F(xn, yn), t/

) ∗M
(
F(xn, yn), g

(
x∗), t/)

≥M
(
F
(
x∗, y∗),F(xn, yn),φ(t/)

) ∗M
(
F(xn, yn), g

(
x∗),φ(t/))

≥ γ
(
M

(
g
(
x∗), g(xn), t/

) ∗M
(
g
(
y∗), g(yn), t/

))

∗M
(
F(xn, yn), g

(
x∗),φ(t/)). (.)

Since γ is left continuous and ∗ is continuous, letting n→ ∞ in (.), we get

M
(
F
(
x∗, y∗), g(x∗), t) ≥ lim

n→∞
[
γ
(
M

(
g
(
x∗), g(xn), t/

) ∗M
(
g
(
y∗), g(yn), t/

))

∗M
(
F(xn, yn), g

(
x∗),φ(t/))]

= γ ( ∗ ) ∗  = , ∀t > .

It follows that F(x∗, y∗) = g(x∗). Similarly, we can prove that F(y∗,x∗) = g(y∗). This com-
pletes the proof. �

If φ(t) = t for all t >  in Theorem ., we get the following corollary.

Corollary . Let (X,M,∗) be a fuzzy metric space with a positive t-norm. Let � be a
partial order defined on X. Let γ : [, ] → [, ] be a left continuous and increasing func-
tion satisfying γ (a) ∗ γ (a) > a for all a ∈ (, ). Let F : X × X → X and g : X → X be two
mappings such that F has mixed g-monotone property and assume that g(X) is complete.
Suppose that the following conditions hold:

(i) F(X ×X) ⊆ g(X).
(ii) We have

M
(
F(x, y),F(u, v), t

) ≥ γ
(
M

(
g(x), g(u), t

) ∗M
(
g(y), g(v), t

))
,

for all x, y,u, v ∈ X , t >  with g(x)� g(u) and g(y) 	 g(v).
(iii) If we have a non-decreasing sequence {xn} → x, then xn � x for all n ∈N∪ {}.
(iv) If we have a non-increasing sequence {yn} → y, then yn 	 y for all n ∈N∪ {}.

If there exist x, y ∈ X such that g(x) � F(x, y), g(y) 	 F(y,x) and M(g(x),F(x, y),
t)∗M(g(y),F(y,x), t) >  for all t > , then there exist x∗, y∗ ∈ X such that g(x∗) = F(x∗, y∗)
and g(y∗) = F(y∗,x∗).

Letting g(x) = x for all x ∈ X in Theorem . and Corollary ., we get the following
corollaries.

Corollary . Let (X,M,∗) be a complete fuzzy metric space with a positive t-norm. Let
� be a partial order defined on X. Let φ : (,∞) → (,∞) be a function satisfying φ(t) ≤ t
for all t >  and let γ : [, ] → [, ] be a left continuous and increasing function satisfying
γ (a) ∗ γ (a) > a for all a ∈ (, ). Let F : X × X → X and assume F has mixed monotone
property. Suppose that the following conditions hold:
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(i) We have

M
(
F(x, y),F(u, v),φ(t)

) ≥ γ
(
M(x,u, t) ∗M(y, v, t)

)
,

for all x, y,u, v ∈ X , t >  with x� u and y 	 v.
(ii) If we have a non-decreasing sequence {xn} → x, then xn � x for all n ∈N∪ {}.
(iii) If we have a non-increasing sequence {yn} → y, then yn 	 y for all n ∈N∪ {}.

If there exist x, y ∈ X such that x � F(x, y), y 	 F(y,x) and M(x,F(x, y), t) ∗
M(y,F(y,x), t) >  for all t > , then there exist x∗, y∗ ∈ X such that x∗ = F(x∗, y∗) and
y∗ = F(y∗,x∗).

Corollary . Let (X,M,∗) be a complete fuzzy metric space with a positive t-norm. Let
� be a partial order defined on X. Let γ : [, ]→ [, ] be a left continuous and increasing
function satisfying γ (a) ∗ γ (a) > a for all a ∈ (, ). Let F : X × X → X and assume F has
mixed monotone property. Suppose that the following conditions hold:

(i) We have

M
(
F(x, y),F(u, v), t

) ≥ γ
(
M(x,u, t) ∗M(y, v, t)

)
,

for all x, y,u, v ∈ X , t >  with x� u and y 	 v.
(ii) If we have a non-decreasing sequence {xn} → x, then xn � x for all n ∈N∪ {}.
(iii) If we have a non-increasing sequence {yn} → y, then yn 	 y for all n ∈N∪ {}.

If there exist x, y ∈ X such that x � F(x, y), y 	 F(y,x), and M(x,F(x, y), t) ∗
M(y,F(y,x), t) >  for all t > , then there exist x∗, y∗ ∈ X such that x∗ = F(x∗, y∗) and
y∗ = F(y∗,x∗).

First, we illustrate Theorem . by modifying [, Example .] as follows.

Example . Let (X,�) is the partially ordered set with X = [, ] and the natural ordering
≤ of the real numbers as the partial ordering �. DefineM : X × (,∞) by

M(x, y, t) = e–|x–y|/t , ∀x, y ∈ X,∀t > .

Let a ∗ b = ab for all a,b ∈ [, ]. Then (X,M,∗) is a (complete) fuzzy metric space.
Let ψ(t) = t for all t >  and γ (s) = s 

 for all s ∈ [, ]. It is easy to see that γ (s) ∗ γ (s) > s
for all s ∈ (, ).
Define the mappings g : X → X by

g(x) = x, ∀x ∈ X,

and F : X ×X → X by

F(x, y) =
x – y


+


, ∀x, y ∈ X.

Then F(X ×X) ⊆ g(X), F satisfies the mixed g-monotone property; see [, Example .].
Obviously g(X) is complete.
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Let x =  and y = , then g(x) ≤ F(x, y) and g(y) ≥ F(y,x); see [, Example .].
Moreover,M(g(x),F(x, y), t) ∗M(g(y),F(y,x), t) >  for all t > .
Next we show that for all t >  and all x, y,u, v ∈ X with g(x) ≤ g(u) and g(y) ≥ g(v), i.e.,

x ≤ u and y ≥ v, one has

M
(
F(x, y),F(u, v), t

) ≥ (
M

(
g(x), g(u), t

)
M

(
g(y), g(v), t

)) 
 . (.)

We prove the above inequality by a contradiction. Assume

M
(
F(x, y),F(u, v), t

)
<

(
M

(
g(x), g(u), t

)
M

(
g(y), g(v), t

)) 
 .

Then

e–|(x–y)/–(u–v)/|/t < e–(|x
–u|+|y–v|)/t ,

i.e.,

∣∣(x – u
)
–

(
y – v

)∣∣ > ∣∣x – u
∣∣ + ∣∣y – v

∣∣.

This is a contradiction. Thus, (.) holds. Therefore, all the conditions of Theorem . are
satisfied. Then byTheorem.we conclude that there exist x∗, y∗ such that g(x∗) = F(x∗, y∗)
and g(y∗) = F(y∗,x∗). It is easy to see that (x∗, y∗) = (

√

 ,

√

 ), as desired.

Example . Let (X,�) is the partially ordered set with X = [, ) ∪ {} and the natural
ordering ≤ of the real numbers as the partial ordering �. Define a mapping M : X ×
(,∞) byM(x,x, t) = e–|x–y| for all x, y ∈ X and t > . Let a ∗ b = ab for all a,b ∈ [, ]. Then
(X,M,∗) is a fuzzy metric space but not complete.
Define the mappings g : X → X and F : X ×X → X by

g(x) =

⎧⎨
⎩


 ( – x), if  ≤ x < ,

, if x = ,

and F(x, y) = y–x
 + 

 for all x, y ∈ X. Then F(X × X) ⊆ g(X), F satisfies the mixed g-
monotone property, and g(X) is complete. Take (x, y) = (  ,


 ). By a simple calcula-

tion we see that g(x) ≤ F(x, y) and g(y) ≥ F(y,x). Moreover, M(g(x),F(x, y), t) ∗
M(g(y),F(y,x), t) >  for all t > .
Let φ(t) = t for all t > . Let γ be a function from [, ] to [, ] defined by

γ (s) =

⎧⎨
⎩

√s, if  ≤ s≤ 
 ,

√s, if 
 < s≤ .

Obviously, γ is left continuous and increasing, and γ (s) ∗ γ (s) > s for all s ∈ (, ).
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Let t >  and x, y,u, v ∈ X with g(x)≤ g(u) and g(y) ≥ g(v), i.e., u ≤ x and y ≤ v, since

M
(
F(x, y),F(u, v),φ(t)

)
= e–|F(x,y)–F(u,v)| = e–| x–y – u–v

 |

≥max
{
e–

|x–y|+|y–v|
 , e–

|x–y|+|y–v|


}

≥ γ
(
M

(
g(x), g(u), t

) ∗M
(
g(y), g(v), t

))
.

Hence (.) is satisfied. Therefore, all the conditions of Theorem . are satisfied. Then by
Theorem . F and g have a coincidence point. It is easy to check that (x∗, y∗) = (  ,


 ).

The above two examples cannot be applied to [, Theorem .], since ∗ is not of Hadžić-
type, or g is not monotonic increasing or continuous, or M(x, y, t) �  as t → ∞ for all
x, y ∈ X.

4 Conclusion
In this paper, we prove a new coupled coincidence fixed point result in a partial order
fuzzy metric space in which some restrictions required in [, Theorem .] are removed,
such that the conditions required in our result are fewer than the ones required in [,
Theorem .]. The purpose of this paper is to give some new conditions on the coupled
coincidence fixed point theorem. Our result is not an improvement of [, Theorem .],
sincewe add someother restrictions such as requiring that the function γ is increasing and
M(g(x),F(x, y), t)∗M(g(y),F(y,x), t) >  for all t > . As pointed out in the conclusion
part of [], it still is an interesting open problem to find simpler or fewer conditions on
the coupled coincidence fixed point theorem in a fuzzy metric space.
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