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Abstract
First, a new concept, positive Hilbert spaces, is introduced and some fundamental
inequalities which are applied to studying the properties of the resolvent operator
associated for (γG,λ)-weak-GRD set-valued mappings are introduced and discussed in
positive Hilbert spaces. Next, by using the resolvent operator and fixed point theory,
an existence theorem and an approximation algorithm to solve a new class of general
nonlinear ordered inclusions are established and suggested. In this field, the results
obtained seem to be general in nature.
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1 Introduction
Generalized nonlinear variational inclusion was introduced and studied by Hassouni and
Moudafi []; it is useful and important in, for example, optimization and control, nonlin-
ear programming, economics,mathematics, physics and engineering sciences. From ,
Chang and Zhu [], Chang and Huang [], Ding and Jong [], Ding and Luo [], Jin [],
Li [], Ahmad and Bazán [], Chang [], Cho et al. [] and in recent years, Huang and
Fang [, ], Chang and Huang [], Fang et al. [], Lan et al. [] and others studied
the properties of many kinds of resolvent operators (generalized m-accretive mappings,
generalized monotone mappings, maximal η-monotone mappings, H-monotone opera-
tors, (H ,η)-monotone operators, (A,η)-accretive mappings) and variational inequalities
(inequalities, equalities, quasi-variational inclusions, quasi-complementarity) for fuzzy
mappings, generalized random multivalued mappings etc.
On the other hand, in , a number of solutions of nonlinear equations were intro-

duced and studied by Amann []; and in recent years, the nonlinear mapping fixed point
theory and application have been intensively studied in ordered Banach spaces [–].
Therefore, it is very important and natural for generalized nonlinear ordered variational
inequalities (ordered equation) to be studied and discussed.
In , the author introduced the generalized nonlinear ordered variational inequal-

ities (the ordered equations) and studied an approximation algorithm and an approxi-
mation solution for a class of generalized nonlinear ordered variational inequalities and
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ordered equations in ordered Banach spaces []. In , by using the B-restricted-
accretive method of the mapping A with constants α, α, the author introduced and
studied a new class of general nonlinear ordered variational inequalities and equations
and established an existence theorem and an approximation algorithm of solutions for
this kind of generalized nonlinear ordered variational inequalities (equations) in ordered
Banach spaces []. In , by using the resolvent operator associated with an RME set-
valued mapping, the author introduced and studied a class of nonlinear inclusion prob-
lems for ordered RME set-valued mappings to find x ∈ X such that  ∈ M(x) (M(x) is a
set-valued mapping), and the existence theorem of solutions and an approximation al-
gorithm for this kind of nonlinear inclusion problems for ordered extended set-valued
mappings in ordered Hilbert spaces []. In , the author introduced and studied a
class of nonlinear inclusion problems for ordered (α,λ)-NODM set-valued mappings and
then, applying the resolvent operator associated with (α,λ)-NODM set-valued mappings,
established the existence theorem on the solvability and a general algorithm applied to
the approximation solvability of the nonlinear inclusion problem of this class of nonlinear
inclusion problems, based on the existence theorem and the new (α,λ)-NODM model in
an ordered Hilbert space []. In Banach spaces, the author proved sensitivity analysis of
the solution for a new class of general nonlinear ordered parametric variational inequal-
ities to find x = x(λ) : � → X such that A(g(x,λ),λ) + f (x,λ) ≥ θ (A(x), g(x) and F(·, ·) are
single-valued mappings) in  []. In this field, the obtained results seem to be general
in nature.
Very recently, in , the author introduced and studied characterizations of ordered

(αA,λ)-weak-ANODD set-valued mappings, which was applied to solving an approximate
solution for a new class of general nonlinear mixed order quasi-variational inclusions in-
volving ⊕ operator in ordered Banach spaces [] and GNM ordered variational inequal-
ity system with ordered Lipschitz continuous mappings in ordered Banach spaces []. In
, a class of nonlinear mixed ordered inclusion problems for ordered (αA,λ)-ANODM
set-valued mappings with strong comparison mapping A [] and sensitivity analysis for
GSV parametric OVI with (α,λ)-NODSM mappings in ordered Banach spaces [] were
introduced and studied. Now, it is excellent that we are introducing positive Hilbert spaces
and studying the properties of (γG,λ)-weak ordered GRD set-valued mappings, which is
applied to finding a solution for a new class of general nonlinear ordered inclusion frame-
works involving a strong comparison mapping in positive Hilbert spaces. For details, we
refer the reader to [–] and the references therein.

2 Fundamental inequalities in positive Hilbert spaces
In this paper, unless specified otherwise, X expresses a real ordered Hilbert space with an
inner product 〈·, ·〉, a norm ‖ · ‖, a zero element θ , a normal cone P with normal constant
N >  and a partially ordered relation ≤ defined by a normal cone P. For x, y ∈ X, x and
y are said to be comparable to each other if and only if x ≤ y (or y ≤ x) holds (denoted by
x ∝ y for x ≤ y and y≤ x) [].CB(X) expresses the family of all nonempty closed bounded
subsets of X.

Lemma. ([]) Let X be an orderedHilbert space and≤ be a partially ordered relation.
(i) If x ∝ y, then lub{x, y} and glb{x, y} exist, x – y∝ y – x, and θ ≤ (x – y)∨ (y – x);
(ii) If x∨ y = lub{x, y}, x∧ y = glb{x, y}, x⊕ y = (x – y)∨ (y – x), x
 y = (x – y)∧ (y – x),

then the following relations hold:
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() x⊕ y = y⊕ x, x⊕ x = θ , x
 y = y
 x = –(x⊕ y);
() let λ be real, then (λx)⊕ (λy) = |λ|(x⊕ y);
() let (x + y)∨ (u + v) exist, and if x∝ u, v and y∝ u, v, then

(x + y)⊕ (u + v)≤ (x⊕ u + y⊕ v)∧ (x⊕ v + y⊕ u);
() if x≤ y and u≤ v, then x + u ≤ y + v;
() if x ∝ y, then x⊕ y = θ if and only if x = y;
() x∨ y = x + y – (x∧ y);
() αx⊕ βx = |α – β|x if x ∝ θ .

Definition . An ordered Hilbert space X is said to be a positive Hilbert space with
a partially ordered relation ≤ (denoted by XP) if for any x, y ∈ X, x ≥ θ and y ≥ θ , then
〈x, y〉 ≥ .

Example . Let X = Rn be a real n-dimensional ordered inner product space with or-
thogonal basis {αi}ni=. Setting P = {β =

∑n
i= kiαi|ki ≥ ,ki ∈ Rn ( ≤ i ≤ n)}, it is a normal

cone, then Rn
P is a positive Hilbert space.

Theorem . (Inequalities I) If X is an ordered Hilbert space, for x, y, z,w ∈ X, then
() x ≤ x∨ y, y ≤ x∨ y, x∧ y ≤ x, x∧ y ≤ y, x
 y ≥ x⊕ y;
() x ≤ y if and only if –y≤ –x;
() x – (y∨ z) ≤ (x – y)∧ (x – z), x + (y∨ z) ≤ (x + y)∨ (x + z);
() x – (y∧ z) ≥ (x – y)∨ (x – z), x + (y∧ z) ≤ (x + y)∧ (x + z);
() if θ ≤ x, θ ≤ y, then x⊕ y≤ x∨ y, x
 y ≤ x∧ y;
() (x + y)⊕ (z +w) ≥ ((x⊕ z) – (y⊕w))∨ ((x⊕w) – (y⊕ z)).

Proof Obviously, ()-() hold for Lemma . and Definition ..
For x, y, z,w ∈ X, we have (x+ y)⊕ (z+w) + (y⊕w)≥ (x+ y– z–w)∨ (z+w– x– y) + (y–

w)∨ (w–y) ≥ (x+y–z–w)+(w–y) ≥ x–z; in the sameway, (x+y)⊕ (z+w)+(y⊕w) ≥ z–x.
Therefore,

(x + y)⊕ (z +w) ≥ (x⊕ z) – (y⊕w),

and hence () holds for x + y = y + x and x⊕ y = y⊕ x. �

Theorem . (Inequalities II) If Xp is a positive Hilbert space, for x, y, z,w ∈ X, then
() if x≤ y, θ ≤ z, then 〈y, z〉 ≥ 〈x, z〉;
() if θ ≤ z, then 〈x∨ y, z〉 ≥ 〈x, z〉 ∨ 〈y, z〉, 〈x, z〉 ∧ 〈y, z〉 ≥ 〈x∧ y, z〉;
() if θ ≤ z, then 〈x + y, z〉 ≥ 〈x, z〉 ∨ 〈y, z〉 + 〈x∧ y, z〉;
() if θ ≤ z, then 〈x∨ y, z〉 ≥ 〈x, z〉 + 〈y, z〉 – 〈x, z〉 ∧ 〈y, z〉;
() if θ ≤ z, then 〈x⊕ y, z〉 ≥ 〈x, z〉 ⊕ 〈y, z〉.

Proof From Lemma ., Definition . and Theorem . it follows that ()-() hold. Let
θ ≤ z, by () in Lemma . and ()-() in Theorem ., hold

〈x⊕ y, z〉 = 〈
(x – y)∨ (y – x), z

〉
=

〈
(x – y), z

〉
+

〈
(y – x), z

〉
–

〈
(x – y)∧ (y – x), z

〉
= –

〈
(x – y)∧ (y – x), z

〉
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≥ –
[〈
(x – y), z

〉 ∧ 〈
(y – x), z

〉]
= –

[(〈x, z〉 – 〈y, z〉) ∧ (〈y, z〉 – 〈x, z〉)]
=

(〈x, z〉 – 〈y, z〉) ∨ (〈y, z〉 – 〈x, z〉)
= 〈x, z〉 ⊕ 〈y, z〉.

It follows that () holds. �

3 Properties of (γG,λ)-weak-GRD set-valuedmappings in positive Hilbert
spaces

Definition . Let X be a real ordered Hilbert space, let G : X → X be a strong compar-
ison and β-ordered compressed mapping [], and let M : X → CB(X) be a set-valued
mapping.
() []M is said to be an ordered rectangular mapping if for each x, y ∈ X , any

vx ∈M(x) and any vy ∈M(y), 〈vx 
 vy, –(x⊕ y)〉 =  holds;
() M is said to be a γG-ordered rectangular mapping with respect to G if there exists a

constant γG ≥ ; for any x, y ∈ X , there exist vx ∈M(G(x)) and vy ∈M(G(y)) such
that

〈
vx 
 vy, –

(
G(x)⊕ (y)

)〉 ≥ γG
∥∥G(x)⊕G(y)

∥∥

holds, where vx and vy are said to be γG-elements, respectively;
() M is said to be a weak comparison mapping with respect to G if for any x, y ∈ X ,

x∝ y, then there exist vx ∈M(G(x)) and vy ∈ M(G(y)) such that x ∝ vx, y∝ vy and
vx ∝ vy, where vx and vy are said to be weak comparison elements, respectively;

() M with respect to G is said to be a λ-weak ordered different comparison mapping
with respect to G if there exists a constant λ >  such that for any x, y ∈ X , there
exist vx ∈M(G(x)), vy ∈ M(G(y)), λ(vx – vy) ∝ x – y holds, where vx and vy are said to
be λ-elements, respectively;

() A weak comparison mappingM with respect to B is said to be a (γG,λ)-weak-GRD
mapping with respect to B ifM is a γG-ordered rectangular and λ-weak ordered
different comparison mapping with respect to B and (G + λM)(X) = X for λ > , and
there exist vx ∈ M(G(x)) and vy ∈M(G(y)) such that vx and vy are (γG,λ)-elements,
respectively.

Remark . Let X be a real ordered Hilbert space, let G : X → X be a single-valued map-
ping, and letM : X → CB(X) be a set-valued mapping, then the following obviously hold:

(i) A λ-ordered monotone mapping must be λ-weak ordered different
comparison [];

(ii) If G = I (identical mapping), then a γI-ordered rectangular mapping must be
ordered rectangular in [];

(iii) An ordered RME mapping must be λ-weak-GRD in [].

Theorem . Let XP be a real positive Hilbert space with normal constant N , let G be
a strong comparison and β-ordered compressed mapping, and let M : X → CB(X) be an
αI -weak ordered rectangular set-valuedmapping that I is an identicalmapping.Let amap-
ping JGM,λ = (G + λM)– : X → X be an inverse mapping of (G + λM).

http://www.fixedpointtheoryandapplications.com/content/2014/1/146
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() If αIλ > β > , then JGM,λ is a single-valued mapping;
() If λ(αI ∧ γG) > β > , andM : X → CB(X) is a (γG,λ)-weak-GRD set-valued

mapping with respect to JGM,λ, and vx ∈ M(JGM,λ(x)) and vy ∈M(JGM,λ(y)) are αI , γG and
λ-elements, respectively, then the resolvent operator JGM,λ ofM is a comparison, and

∥∥JGM,λ(x)⊕ JGM,λ(y)
∥∥ ≤ 

γGλ – β
‖x⊕ y‖. (.)

Proof Certificate (): Let u ∈ X and x, y ∈ JGM,λ(u) = (G + λM)–(u). Since M is an αI-weak
ordered rectangular mapping so that there exist vx = 

λ
(u – G(x)) ∈ M(x) and vy = 

λ
(u –

G(y)) ∈M(y) such that

〈
vx 
 vy, –(x⊕ y)

〉 ≥ α‖x⊕ y‖,

where vx and vy are αI-elements, respectively.
Since G is a β-ordered compressed mapping so that

〈
vx 
 vy, –(x⊕ y)

〉
=

〈

λ

(
u –G(x)

) 
 
λ

(
u –G(y)

)
, –(x⊕ y)

〉

=

λ

〈
–
(
G(x)⊕G(y)

)
, –(x⊕ y)

〉

≤ 
λ

〈
β(x⊕ y), (x⊕ y)

〉
=

β

λ
‖x⊕ y‖,

and αI‖x ⊕ y‖ ≤ β

λ
‖x ⊕ y‖ for Theorems . and .. It follows that x = y = JGM,λ(u) and

JGM,λ(u) is a single-valued mapping from αIλ > β > .
Certificate (): Since M : X → CB(X) still is an λ-weak ordered different comparison

mapping so that λ(vx – vy) ∝ (x– y) and x∝ JGM,λ(x), where vx and vy are αI and λ-elements
(∀x, y ∈ X), such that vx = 

λ
(x – G(JGM,λ(x))) ∈ M(JGM,λ(x)) and vy = 

λ
(y – G(JGM,λ(y))) ∈

M(JGM,λ(y)), respectively, then

λ(vx – vy) – (x – y) =G
(
JGM,λ(x)

)
–G

(
JGM,λ(y)

)
.

Hence, G(JGM,λ(y))∝ G(JGM,λ(x)), and JGM,λ(y) ∝ JGM,λ(x) by strong comparability of G.
LetM be a (γG,λ)-weak-GRDmapping with respect to JGM,λ(x), then for any x, y ∈ X and

λ > , vx = 
λ
(x – G(JGM,λ(x))) ∈ M(JGM,λ(x)) and vy = 

λ
(y – G(JGM,λ(y))) ∈ M(JGM,λ(y)) are αI , λ

and γG-elements, respectively. Hence, by Definition .(), Theorems . and . and the
comparability of JGM,λ, we have

γG
∥∥JGM,λ(x)⊕ JGM,λ(y)

∥∥

≤
〈

λ

(
x –G

(
JGM,λ(x)

)) 
 
λ

(
y –G

(
JGM,λ(y)

))
, –

(
JGM,λ(x)⊕ JGM,λ(y)

)〉

=
〈

λ

[(
x –G

(
JGM,λ(x)

)) ⊕ (
y –G

(
JGM,λ(y)

))]
,
(
JGM,λ(x)⊕ JGM,λ(y)

)〉

≤
〈

λ

[(
G

(
JGM,λ(x)

) ⊕G
(
JGM,λ(y)

))
+ (x⊕ y)

]
,
(
JGM,λ(x)⊕ JGM,λ(y)

)〉
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=

λ

〈(
G

(
JGM,λ(x)

) ⊕G
(
JGM,λ(y)

))
,
(
JGM,λ(x)⊕ JGM,λ(y)

)〉

+

λ

〈
(x⊕ y),

(
JGM,λ(x)⊕ JGM,λ(y)

)〉

≤ β

λ

〈(
JGM,λ(x)⊕ JGM,λ(y)

)
, JGM,λ(x)⊕ JGM,λ(y)

〉

+

λ

〈
(x⊕ y),

(
JGM,λ(x)⊕ JGM,λ(y)

)〉
.

It follows that

λγG
∥∥JGM,λ(x)⊕ JGM,λ(y)

∥∥ ≤ β
∥∥JGM,λ(x)⊕ JGM,λ(y)

∥∥ +
〈
(x⊕ y),

(
JGM,λ(x)⊕ JGM,λ(y)

)〉

and

(γGλ – β)
∥∥JGM,λ(x)⊕ JGM,λ(y)

∥∥ ≤ ‖x⊕ y‖∥∥JGM,λ(x)⊕ JGM,λ(y)
∥∥,

by the condition λ(αI ∧ γG) > β > , then there is

∥∥JGM,λ(x)⊕ JGM,λ(y)
∥∥ ≤ 

γGλ – β
‖x⊕ y‖. �

4 Approximation solution for GNOVI frameworks
In this section, by using Theorems . and . and Theorem ., we study a new class of
GNOVI frameworks in positive Hilbert spaces.
Let XP be a real positive Hilbert space with a normal constant N , a norm ‖ · ‖, an inner

product 〈·, ·〉 and zero θ . LetM : X → CB(X) and ρM(x) = {ρv|v ∈M(x)} be two set-valued
mappings. We consider the problem: For w ∈ X and ρ > , find x ∈ X such that

w ∈ ρM(x), (.)

which is called a new class of general nonlinear ordered variational inclusion frameworks
(GNOVI) in positive Hilbert spaces.

Remark . IfM(x) = A(g(x)) is single-valued, w = θ and ρ = , then (.) reduces to (.)
in []; when M(x) = A(x) ⊕ F(x, g(x)), w = θ and ρ = , then (.) reduces to (.) in [];
if w = θ , then (.) in [] or [] can be obtained as special cases of (.) as ρ = .

Lemma . Let XP be a real positive Hilbert space with normal constant N , let G be
a strong comparison and β-ordered compressed mapping, and let M : X → CB(X) be a
(γG,λ)-weak ordered GRD set-valued mapping with respect to JGM,λ. Then the inclusion
problem () has a solution x∗ if and only if x∗ = JGM,λ(G(x∗) + λ

ρ
w) in X.

Proof For ρ > , take notice of the fact that w ∈ ρM(x) if and only if w
ρ

∈M(x), this directly
follows from the definition of JGM,λ and problem (.). �

Theorem . Let XP be a real positive Hilbert space with normal constant N , let G be
a strong comparison and β-ordered compressed mapping, and let M : X → CB(X) be an
αI -ordered rectangular and (γG,λ)-weak-GRD set-valued mapping with respect to JGM,λ(x).

http://www.fixedpointtheoryandapplications.com/content/2014/1/146
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Let vx ∈M(JGM,λ(x)) and vy ∈M(JGM,λ(y)) be αI , λ and γG-elements, respectively. If β satisfies

 < β < λ

(
γG


∧ αI

)
∧ , (.)

β +
aN

 –N( – a)
β < γGλ ( < a < ), (.)

then there exists a solution x∗ of GNOVI (.),which is a fixed point of JGM,λ, that is converged
strongly by a sequence {xn}∞n= generated by the following algorithm:
For any given x ∈ X and any  < a < , set

xn+ = ( – a)xn + aJM,λ

(
G(xn) +

λ

ρ
w

)
(n = , , . . .). (.)

Proof Let XP be a positive Hilbert space with normal constant N , let G be a strong com-
parison and β-ordered compression mapping, and let M(x) = {v|v ∈ M(x)} : X → CB(X)
(ρ > ) be a (γG,λ)-weak-GRD set-valued mapping with respect to JGM,λ.
Since αI ,β ,γG,λ >  and by condition (.) we have

λ(αI ∧ γG) ≥ λ

(
γG


∧ α

)
= λ

γG


∧ λαI > β >  and  >

β

γGλ – β
> .

By Theorem .(), if x ∝ x, then JGM,λ(G + λ
ρ
w)(x)∝ JGM,λ(G + λ

ρ
w)(x) for x,x ∈ X, and

∥∥∥∥JGρM,λ

(
G +

λ

ρ
w

)
(x)⊕ JGρM,λ

(
G +

λ

ρ
w

)
(x)

∥∥∥∥
≤ 

γGλ – β

∥∥∥∥
(
G +

λ

ρ
w

)
(x)⊕

(
G +

λ

ρ
w

)
(x)

∥∥∥∥
≤ 

γGλ – β

∥∥G(x)⊕G(x)
∥∥ ≤ β

γGλ – β
‖x ⊕ x‖. (.)

It follows that JGM,λ(G + λ
ρ
w) has a fixed point x∗, which is a solution x∗ for GNOVI (.),

from Lemma . and (.).
For any x ∈ X and  < a < , by using (.), (.) and Theorem ., the following hold:

θ ≤ xn+ ⊕ xn

=
(
( – a)xn + aJM,λ

(
G(xn) +

λ

ρ
w

))
⊕

(
( – a)xn– + aJM,λ

(
G(xn–) +

λ

ρ
w

))

and

‖xn+ ⊕ xn‖ =
∥∥∥∥( – a)(xn ⊕ xn–) + a

(
JM,λ

(
G(xn) +

λ

ρ
w

)
⊕ JM,λ

(
G(xn–) +

λ

ρ
w

))∥∥∥∥
≤ N

[
( – a)‖xn ⊕ xn–‖ + a

β

γGλ – β

∥∥G(xn)⊕G(xn–)
∥∥]

≤ δN‖xn ⊕ xn–‖, (.)

where δ = –a+a β

γGλ–β
. It follows that ‖xm–xn‖ ≤ ∑m–

i=n ‖xi+–xi‖ ≤N‖x–x‖∑m–
i=n δi ×

Ni for any m > n > ,  > δN >  and (.), and hence {xn}∞n= is a Cauchy sequence in a

http://www.fixedpointtheoryandapplications.com/content/2014/1/146
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complete space X by condition (.) and ‖xn – xn–‖ ≤ δnNn‖x – x‖. Let xn → x∗ as
n→ ∞ (x∗ ∈ X), by (.) we get

x∗ = lim
n→∞xn+ = lim

n→∞ JM,λ

(
G(xn) +

λ

ρ
w

)
= JM,λ

(
G

(
x∗) + λ

ρ
w

)
,

then the sequence {xn}∞n= converges strongly to a solution x∗ of problem (.), which is
generated by (.). This completes the proof. �

Remark . (i) For a suitable choice of the mappingsG,M and constant ρ , we can obtain
several known results of [] and [] as special cases of Theorem ..
(ii) There exists β >  satisfying (.). In fact, if we change (.) to β + Nβ < γGλ as

 < a ↑ , then
√
+NγGλ–

 > β >  holds.
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