
Karapınar and Samet Fixed Point Theory and Applications 2014, 2014:126
http://www.fixedpointtheoryandapplications.com/content/2014/1/126

RESEARCH Open Access

A note on recent fixed point results involving
g-quasicontractive type mappings in partially
ordered metric spaces
Erdal Karapınar1,2* and Bessem Samet3

*Correspondence:
erdalkarapinar@yahoo.com;
ekarapinar@atilim.edu.tr
1Department of Mathematics,
Atilim University, İncek, Ankara
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Abstract
In this note, we establish the equivalence between recent fixed point theorems
involving quasicontractive type mappings in metric spaces endowed with a partial
order.
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1 Introduction
Let (X,d) be a metric space and let f , g : X → X be two self-maps on X. Let

M(f , g,x, y) :=max
{
d(gx, gy),d(gx, fx),d(gy, fy),d(gx, fy),d(gy, fx)

}
for all x, y ∈ X.

Suppose that X is endowed with a partial order �. We say that f is an ordered g-
quasicontraction (see [, ]) if

d(fx, fy) ≤ λM(f , g,x, y) for all x, y ∈ X such that gy� gx

for some constant λ ∈ (, ). If g = idX (the identity map on X), then f is said to be an
ordered quasicontraction.
In [], the authors established the following result.

Theorem . Let (X,d) be a metric space endowed with a certain partial order �. Let
f , g : X → X be two self-maps on X satisfying the following conditions:

(i) fX ⊆ gX ;
(ii) gX is complete;
(iii) f is g-nondecreasing, i.e., gx � gy�⇒ fx � fy;
(iv) f is an ordered g-quasicontraction;
(v) there exists x ∈ X such that gx � fx;
(vi) if {gxn} is a nondecreasing sequence (w.r.t. �) that converges to some gz ∈ gX , then

gxn � gz for each n ∈N.
Then f and g have a coincidence point, i.e., there exists z ∈ X such that fz = gz.
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Taking g = idX in Theorem ., we obtain immediately the following result.

Theorem. Let (X,d) be a completemetric space endowedwith a certain partial order�.
Let f : X → X be a self-map on X satisfying the following conditions:
(iii) f is nondecreasing, i.e., x � y�⇒ fx � fy;
(iv) f is an ordered quasicontraction;
(v) there exists x ∈ X such that x � fx;
(vi) if {xn} is a nondecreasing sequence (w.r.t. �) that converges to some z ∈ X , then

xn � z for each n ∈N.
Then f has a fixed point.

Let us denote by � the set of functions ψ : [,∞) → [,∞) satisfying the following
conditions:

(�) ψ is nondecreasing;
(�) ψ is subadditive, i.e., ψ(s + t) ≤ ψ(s) +ψ(t), for every s, t ≥ ;
(�) ψ is continuous;
(�) ψ(t) =  ⇐⇒ t = .

In [], the authors established the following result.

Theorem . Let (X,d) be a metric space endowed with a certain partial order �. Let
f , g : X → X be two self-maps on X satisfying the following conditions:

(i) fX ⊆ gX ;
(ii) gX is complete;
(iii) f is g-nondecreasing;
(iv) there exists ψ ∈ � such that

ψ
(
d(fx, fy)

) ≤ λmax
{
ψ

(
d(gx, gy)

)
,ψ

(
d(gx, fx)

)
,ψ

(
d(gy, fy)

)
,

ψ
(
d(gx, fy)

)
,ψ

(
d(gy, fx)

)}

for all x, y ∈ X such that gy� gx;
(v) there exists x ∈ X such that gx � fx;
(vi) if {gxn} is a nondecreasing sequence that converges to some gz ∈ gX , then gxn � gz for

each n ∈N.
Then f and g have a coincidence point.

The aim of this note is to prove that Theorems ., . and . are equivalent.

2 Main result
Our main result in this note is the following.

Theorem . We have the following equivalence:

Theorem . ⇐⇒ Theorem . ⇐⇒ Theorem ..

Proof We consider three steps in the proof.
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� Step . Theorem . �⇒ Theorem ..
Suppose that all the assumptions of Theorem . are satisfied. Recall that if S : X → X

is a given map, then there exists a subset E of X such that SE = SX and S : E → X is one-
to-one. For the proof of this result, we refer to []. Due to this remark, there exists E ⊆ X
such that gE = gX and g : E → X is one-to-one. Let us define the map T : gE → gE by

T(gx) = fx, x ∈ E.

Notice that themappingT is well defined since g is one-to-one on E. From condition (ii) of
Theorem ., the metric space (gE,d) is complete. From condition (iii) of Theorem ., the
mapping T is nondecreasing. Observe also that T is an ordered quasicontraction. Indeed,
if u, v ∈ gE such that v � u, from condition (iv) of Theorem . and the definition of gE,
there exist x, y ∈ E with v = gy� gx = u such that

d(Tu,Tv) = d(fx, fy)

≤ λM(f , g,x, y)

= λmax
{
d(gx, gy),d(gx, fx),d(gy, fy),d(gx, fy),d(gy, fx)

}

= λmax
{
d(u, v),d(u,Tu),d(v,Tv),d(u,Tv),d(v,Tu)

}
.

From condition (v) of Theorem ., there exists x ∈ X such that gx � fx. Let u = gx ∈
gE, we have u � Tu. Finally, from condition (iv) of Theorem ., if {un} ⊂ gE is a non-
decreasing sequence that converges to some u ∈ gE, then un � u for each n ∈ N. Thus we
proved that T satisfies all the conditions of Theorem .. Then we deduce that T has a
fixed point u∗ ∈ gE. This means that there exists some x∗ ∈ X such that fx∗ = T(gx∗) = gx∗,
that is, x∗ ∈ X is a coincidence point of f and g .

� Step . Theorem . �⇒ Theorem ..
Suppose that all the assumptions of Theorem . are satisfied. Define the function dψ :

X ×X → [,∞) by

dψ (x, y) := ψ
(
d(x, y)

)
for all x, y ∈ X.

In [], we proved that dψ is ametric onX.Moreover, (X,d) is complete if and only if (X,dψ )
is complete. Then from condition (iv) of Theorem ., we deduce that f is an ordered g-
quasicontraction with respect to the new metric dψ . More precisely, we have

dψ (fx, fy) ≤ λmax
{
dψ (gx, gy),dψ (gx, fx),dψ (gy, fy),dψ (gx, fy),dψ (gy, fx)

}

for all x, y ∈ X such that gy � gx. Now, applying Theorem . with themetric space (X,dψ ),
we obtain the result of Theorem ..

� Step . Theorem . �⇒ Theorem ..
Taking g = idX and ψ(t) = t in Theorem ., we obtain immediately the result of Theo-

rem .. �
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