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Abstract
This paper aims to present some uniqueness and well-posedness results for vector
equilibrium problems (for short, VEPs). We first construct a complete metric spaceM
consisting of VEPs satisfying some conditions. Using the method of set-valued
analysis, we prove that there exists a dense everywhere residual subset Q ofM such
that each VEP in Q has a unique solution. Moreover, we introduce and obtain the
generalized Hadamard well-posedness and generic Hadamard well-posedness of
VEPs by considering the perturbations of both vector-valued functions and feasible
sets. As an application, we provide a representation theorem for the solution set to
each VEP inM.
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1 Introduction
The vector equilibrium problem (for short, VEP) is a natural generalization of the equilib-
rium problem for the vector-valued function. It is well known that the vector equilibrium
problem is a unified model of several fundamental mathematical problems, namely, the
vector optimization problem, the vector variational inequality, the vector complementar-
ity problem, the multiobjective game, the vector network equilibrium problem etc. Since
the VEP was proposed at about  lots of peoples have made many contributions to
this problem and hundreds of papers have been published; see, e.g., the collection [] and
the monograph []. However, works on the uniqueness of solutions to VEPs were hardly
seen. The only work we can find about the uniqueness of solutions to VEPs is [], in which
Khanh and Tung established sufficient conditions for the local uniqueness of solutions to
VEPs by using approximations as generalized derivatives under the assumption that the
functions have first and second Fréchet derivatives. The reason why results on uniqueness
are so few is due to the fact that except for a few types of mathematical problems, most of
themathematical problems cannot guarantee the uniqueness of the solution. Therefore, to
consider the generic uniqueness of the solutions may be more suitable, which will answer
the question howmany problems there are in a class of problems having a unique solution.
The generic uniqueness of solutions to VEPs is our main motivation in this paper.
Aswe know, several works have been achieved about the generic uniqueness of solutions

to some optimization-related problems such as optimization problems [, ], two-person
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zero-sum continuous games [], saddle point problems [], large crowding games []. Re-
cently, some new results were obtained. Yu et al. [] obtained the generic uniqueness of
equilibriumpoints for a class of equilibriumproblems. The results in [] showed thatmost
of themonotone equilibriumproblems (in the sense of Baire category) have a unique equi-
librium point and that eachmonotone equilibrium problem can be arbitrarily approached
by a sequence of such equilibrium problems that each of them has a unique equilibrium
point. Moreover, Peng et al. [] provided a unified approach to the generic uniqueness
and applied it to several nonlinear problems. However, the study of the generic uniqueness
of solutions to VEPs has an essential difficulty: that the values of different vector-valued
functions are incomparable. To overcome such a difficulty is one of the main tasks in this
paper.
The stability of solutions to nonlinear problems is also an important topic. The notion

of well-posedness is just one of the approaches to the stability. There have been several
notions of well-posedness about optimization-related problems. We refer to [–] for
more details. For well-posedness of equilibrium problems or vector equilibrium prob-
lems, there are some results. Fang et al. [] investigated thewell-posedness of equilibrium
problems; Kimura et al. [] studied the parametric well-posedness for vector equilibrium
problems; Bianchi et al. [] introduced and studied two types of well-posedness for vec-
tor equilibrium problems; Li and Li [] investigated the Levitin-Polyak well-posedness
of vector equilibrium problems with variable domination structures; Salamon [] ana-
lyzed the Hadamard well-posedness of parametric vector equilibrium problems; Peng et
al. [] investigated several types of Levitin-Polyak well-posedness of generalized vector
equilibrium problems.Most of these works considered the perturbation of the parameters
in the vector-valued functions. Different from these works, we will not only consider the
perturbation of objective functions but also consider the perturbation of feasible sets.
This paper aims to present some generic uniqueness and well-posedness results for

VEPs.We consider both the perturbation of vector-valued functions and the perturbation
of feasible sets. The paper is organized as follows. In Section , we recall some definitions
and preliminaries. In Section , we investigate the uniqueness of solutions to VEPs. We
first construct a complete metric spaceM consisting of VEPs satisfying some conditions.
Thenweprove thatmost of theVEPs (in the sense of Baire category) inM have a unique so-
lution. In Section , the Hadamard well-posedness of VEPs is introduced and studied. The
generalizedHadamardwell-posedness and generic Hadamardwell-posedness of VEPs are
derived. In Section , applying the above results we provide an interesting representation
theorem for the solution set of each VEP in M. Finally, we briefly conclude our results in
Section .

2 Preliminaries
Throughout this section, let H be a Hausdorff topological vector space and C be a
nonempty closed, convex and pointed cone in H with intC �= ∅, where intC denotes the
topological interior of C. We note that intC +C ⊂ intC (see []).
Let X be a nonempty set and φ : X ×X →H be a vector-valued function. The so-called

vector equilibrium problem (for short, VEP) [] is to find x∗ ∈ X such that

φ
(
x∗, y

)
/∈ – intC, ∀y ∈ X.
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We call x∗ a solution of VEP(φ). If H = R, C = (–∞, ], the VEP becomes the Ky Fan
inequality [, ]. Similarly, if H = R, C = [,+∞), the VEP becomes the equilibrium
problem [].

Definition . (see []) Let X be a nonempty subset of a Hausdorff topological vec-
tor space E and f : X → H be a vector-valued function. f is said to be C-upper semi-
continuous at x ∈ X iff for any open neighborhood V of  in H , there exists an open
neighborhood U of x in X such that, for any x′ ∈ U ,

f
(
x′) ∈ f (x) +V –C

(
or equivalently, f (x) ∈ f

(
x′) +V +C

)
;

f is said to be C-upper semi-continuous on X iff f is C-upper semi-continuous at each
x ∈ X; and f is said to C-lower semi-continuous on X iff –f is C-upper semi-continuous
on X.

Definition . Let X be a nonempty subset of a Hausdorff topological vector space E and
φ : X ×X →H be a vector-valued function. φ is said to be C-strictly-quasi-monotone on
X ×X iff for any x, y ∈ X with x �= y,

φ(x, y) /∈ – intC ⇒ φ(y,x) ∈ –C.

Example . Let E =R, X = [–, ] ⊂ E, H =R
 and C =R


+ ⊂H . Define

f(x) :=

{
(, )�, – ≤ x < ,
(, )�,  ≤ x ≤ ;

f(x) := (x,x)�, –≤ x≤ ;

φ(x, y) :=
(|x| – |y|, |x| – |y|)�, –≤ x, y≤ .

One can easily check that f is C-upper semi-continuous on X but not C-lower semi-
continuous at x = ; f is both C-upper semi-continuous and C-lower semi-continuous
on X; φ is both C-upper semi-continuous and C-lower semi-continuous on X × X; φ is
C-strictly-quasi-monotone on X × X; and that x = ± ∈ X are the only two solutions to
VEP(φ).

To investigate the uniqueness of solutions to VEPs, we will use the way of set-valued
analysis. So let us recall some definitions and lemmas about set-valuedmappings; formore
details see [].

Definition . Let X, M be two topological spaces. Denote by X the space of all
nonempty subsets of X. Let S : M → X be a set-valued mapping. Then (i) S is said to
be upper (respectively, lower) semi-continuous at u ∈M iff for each open set G in X with
G ⊃ S(u) (respectively, G∩ S(u) �= ∅), there exists an open neighborhood O of u such that
G ⊃ S(u′) (respectively, G ∩ S(u′) �= ∅) for each u′ ∈ O; (ii) S is said to be continuous at
u ∈ M iff S is both upper semi-continuous and lower semi-continuous at u; (iii) S is said
to be a usco mapping iff S is upper semi-continuous on M and S(u) is compact for each
u ∈ M; (iv) A subset Q of M is called residual iff it contains the intersection of countably
many dense everywhere open subsets ofM.
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Lemma . (see [, ]) Let M be a Baire space, X be a metric space and S :M → X be
a usco mapping, then there exists a dense everywhere residual subset Q of M such that S is
lower semi-continuous at each x ∈Q.

Remark . If there exists a dense everywhere residual subset Q ofM such that, for each
u ∈ Q, a certain propertyP depending on u holds, thenwe say that the property P is generic
onM. SinceQ is a second category set, wemay say that the property P holds formost of the
points (in the sense of Baire category) inM. The research on generic properties (including
generic existence, generic uniqueness, generic stability, generic well-posedness and so on)
has attracted much attention; see, e.g., [–, , , , , ] and the references therein.

Lemma. (see []) Let A and An (n = , , . . .) all be nonempty compact subsets of amet-
ric space X with An → A in the Hausdorff distance topology, then the following statements
hold:

(i)
⋃+∞

n= An ∪A is also nonempty compact subset of X ;
(ii) If xn ∈ An, xn → x, then x ∈ A.

3 Uniqueness of solutions to VEPs
In the rest of this paper, let X be a nonempty and closed subset of a complete metric space
E, (H ,‖ · ‖) be a Banach space, and C be a nonempty, closed, convex, and pointed cone in
H with intC �= ∅. For any ε > , denote by B(ε) := {z ∈ H : ‖z‖ ≤ ε} and B◦(ε) := {z ∈ H :
‖z‖ < ε}. We emphasize that the open neighborhood V in Definition . can be replaced
by B◦(ε) in the case that H is a normed space.
Let a spaceM of VEPs be defined by

M =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
u = (φ,A) :

φ : X ×X →H is C-upper semi-continuous on X ×X;
φ is C-strictly-quasi-monotone on X ×X;
sup(x,y)∈X×X ‖φ(x, y)‖ < +∞;
A is a nonempty compact subset of X;
and ∃x ∈ A such that φ(x, y) /∈ – intC,∀y ∈ A

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

For any u = (φ,A),u = (φ,A) ∈M, define

ρ(u,u) = sup
(x,y)∈X×X

∥∥φ(x, y) – φ(x, y)
∥∥ + h(A,A),

where h is the Hausdorff distance on X.

Lemma . (M,ρ) is a complete metric space.

Proof Clearly, ρ is a metric on M. We only need to show that (M,ρ) is complete. Let
{un = (φn,An)} be aCauchy sequence ofM, then for any ε > , there exists a positive integer
N(ε) such that

ρ(um,un) = sup
(x,y)∈X×X

∥∥φm(x, y) – φn(x, y)
∥∥ + h(Am,An) < ε, ∀m,n≥N(ε).
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Hence

sup
(x,y)∈X×X

∥∥φm(x, y) – φn(x, y)
∥∥ < ε and h(Am,An) < ε, ∀m,n≥N(ε).

SinceH is a Banach space, for any x, y ∈ X, there exists φ(x, y) ∈H such that limm→∞ φm(x,
y) = φ(x, y) and

sup
(x,y)∈X×X

∥∥φn(x, y) – φ(x, y)
∥∥ ≤ ε, ∀n≥N(ε). (.)

Since X is complete, K (X) is also complete, where K (X) denotes the space of all nonempty
compact subsets of X and is endowed with the Hausdorff distance h induced by themetric
on X. Consequently, by h(Am,An) < ε, there exists A ∈ K (X) such that An → A. Next, we
will prove u := (φ,A) ∈ M.
(i) Fix n ≥ N(ε). Since φn is C-upper semi-continuous on X × X, there exists a neigh-

borhood U(x, y)⊂ X ×X of (x, y) such that

φn
(
x′, y′) ∈ φn(x, y) + B◦(ε) –C, ∀(

x′, y′) ∈U(x, y). (.)

Thus, by (.) and (.), for any (x′, y′) ∈U(x, y), we have

φ
(
x′, y′) ∈ φn

(
x′, y′) + B(ε)⊂ φn(x, y) + B◦(ε) –C ⊂ φ(x, y) + B◦(ε) –C.

It follows that φ is C-upper semi-continuous on X ×X.
(ii) For any x, y ∈ X with x �= y, suppose φ(x, y) /∈ – intC. Since intC is open and

limn→∞ φn(x, y) = φ(x, y), we have φn(x, y) /∈ – intC when n is big enough. It follows
from the C-strictly-quasi-monotonicity of φn that φn(y,x) ∈ –C. Since C is closed
and limn→∞ φn(y,x) = φ(y,x), we obtain φ(y,x) ∈ –C. Therefore, φ is C-strictly-quasi-
monotone on X ×X.
(iii) For each n ≥N(ε), we have

sup
(x,y)∈X×X

∥∥φn(x, y) – φ(x, y)
∥∥ ≤ ε and sup

(x,y)∈X×X

∥∥φn(x, y)
∥∥ < +∞.

Hence sup(x,y)∈X×X ‖φ(x, y)‖ ≤ sup(x,y)∈X×X ‖φn(x, y)‖ + ε < +∞.
(iv) Since un = (φn,An) ∈ M for each n = , , . . . , there exists xn ∈ An such that

φn(xn, y) /∈ – intC, ∀y ∈ An. (.)

Since A and An (n = , , . . .) are all compact and An → A, by Lemma .(i),
⋃+∞

n= An ∪A is
also compact. Note that {xn} ⊂ ⋃+∞

n= An ∪A. Without loss of generality, suppose xn → x∗.
By Lemma .(ii), x∗ ∈ A. We shall show that x∗ fulfills

φ
(
x∗, y

)
/∈ – intC, ∀y ∈ A.

Assume, by contradiction, that there exists y ∈ A such that φ(x∗, y) ∈ – intC. Since intC
is open, there exists ε >  such that

φ
(
x∗, y

)
+ B◦(ε) ⊂ – intC. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/115
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For y ∈ A, by virtue of An → A, there exist yn ∈ An (n = , , . . .) such that yn → y. By
(.), it follows from yn ∈ An that

φn(xn, yn) /∈ – intC. (.)

Since φ is C-upper semi-continuous on X × X and xn → x∗, yn → y, there exists N ≥
N(ε) such that

φ(xn, yn) – φ
(
x∗, y

) ∈ B◦(ε) –C, ∀n≥N. (.)

From (.), we derive

φn(xn, yn) – φ(xn, yn) ∈ B(ε), ∀n≥N. (.)

By (.), (.), and (.), we obtain for all n≥N,

φn(xn, yn) = φ
(
x∗, y

)
+

[
φn(xn, yn) – φ(xn, yn)

]
+

[
φ(xn, yn) – φ

(
x∗, y

)]
∈ φ

(
x∗, y

)
+ B(ε) + B◦(ε) –C

⊂ φ
(
x∗, y

)
+ B◦(ε) –C

⊂ – intC –C ⊂ – intC,

which contradicts (.). Hence φ(x∗, y) /∈ – intC for all y ∈ A. Thus we have shown u :=
(φ,A) ∈ M. Consequently, the inequality (.) and h(An,A) →  imply that limn→∞ ρ(un,
u) = . Therefore, (M,ρ) is a complete metric space. �

Lemma . Let f : X → H be C-upper semi-continuous on X, then the set L := {x ∈ X :
f (x) /∈ – intC} is closed in X.

Proof Let xn ∈ Lwith xn → x ∈ X. We only need to prove x ∈ L. Assume, by contradiction,
that x /∈ L, then f (x) ∈ – intC. Note that – intC is open, there exists ε >  such that f (x) +
B◦(ε) ⊂ – intC. Since f : X →H is C-upper semi-continuous at x and xn → x, there exists
N >  such that, for any n >N , we have f (xn) ∈ f (x) +B◦(ε) –C ⊂ – intC –C ⊂ – intC. But
it follows from xn ∈ L that f (xn) /∈ – intC, which is a contradiction. The proof is complete.

�

For each u = (φ,A) ∈ M, by the definition ofM, VEP(φ) must have at least one solution
in A, i.e., ∃x∗ ∈ A such that φ(x∗, y) /∈ – intC for all y ∈ A. Denote by S(u) the set of all
solutions toVEP(φ) in A. Then the correspondence u → S(u) yields a set-valued mapping
S :M → X .

Lemma . S :M → X is a usco mapping.

Proof For each u = (φ,A) ∈M, note that

S(u) =
{
x ∈ A : φ(x, y) /∈ – intC,∀y ∈ A

}
=

⋂
y∈A

{
x ∈ A : φ(x, y) /∈ – intC

}
.
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Since φ is C-upper semi-continuous on X × X, it is also C-upper semi-continuous on
A×A. Moreover, x → φ(x, y) is also C-upper semi-continuous on A. By Lemma ., for
each y ∈ A, the set {x ∈ A : φ(x, y) /∈ – intC} is closed in A. Thus S(u) is closed in A. Fur-
thermore, S(u) is compact since A is compact.
Next, we will prove that S is upper semi-continuous onM.We assume, by contradiction,

that there exists u = (φ,A) ∈ M such that S is not upper semi-continuous at u, then there
exists an open neighborhoodG in X withG ⊃ S(u) such that, for each n = , , . . . and each
open neighborhood Un = {u′ = (φ′,A′) ∈ M : ρ(u′,u) < 

n } of u, there exist un = (φn,An) ∈
Un and xn ∈ S(un) but xn /∈G.
Since un = (φn,An) ∈Un for each n = , , . . . , we have ρ(un,u) < 

n → . Then

φn → φ and An → A. (.)

It follows from xn ∈ S(un) that xn ∈ An and

φn(xn, y) /∈ – intC, ∀y ∈ An. (.)

By Lemma .(i),
⋃+∞

n= An ∪A is compact due to the compactness of An andA. Note that
{xn}+∞

n= ⊂ ⋃+∞
n= An ∪ A. Without loss of generality, we suppose that {xn}+∞

n= is convergent.
Moreover, by Lemma .(ii), the limit x∗ of {xn}+∞

n= belongs to A, i.e., xn → x∗ ∈ A. Mean-
while, xn /∈G andG is open, thus x∗ /∈G. Since S(u)⊂G, we have x∗ /∈ S(u). Consequently,
there exists y ∈ A such that φ(x∗, y) ∈ – intC. Note that – intC is open; then there exists
ε >  such that

φ
(
x∗, y

)
+ B◦(ε)⊂ – intC. (.)

Since An → A and y ∈ A, there exists a sequence {yn}+∞
n= such that yn ∈ An and yn → y.

Since φn → φ, there exists N >  such that, for any n≥N,

φn(xn, yn) – φ(xn, yn) ∈ B◦
(

ε



)
. (.)

Moreover, φ isC-upper semi-continuous on X×X as well as xn → x∗, yn → y, hence there
exists N >N such that, for any n ≥N,

φ(xn, yn) – φ
(
x∗, y

) ∈ B◦
(

ε



)
–C. (.)

By (.)-(.), we have for any n≥N,

φn(xn, yn) = φ
(
x∗, y

)
+

[
φn(xn, yn) – φ(xn, yn)

]
+

[
φ(xn, yn) – φ

(
x∗, y

)]
∈ φ

(
x∗, y

)
+ B◦

(
ε



)
+ B◦

(
ε



)
–C

= φ
(
x∗, y

)
+ B◦(ε) –C ⊂ – intC –C ⊂ – intC,

which is in contradiction with (.). Therefore, S must be upper semi-continuous on M.
The proof is thus complete. �
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Theorem . There exists a dense everywhere residual subset Q of M such that S(u) is a
singleton for each u = (φ,A) ∈Q, that is, VEP(φ) has a unique solution in A.

Proof By Lemma .,M is a complete metric space, so it is a Baire space. Since S :M → X

is a usco mapping (Lemma .) and X is a metric subspace, by Lemma ., there exists a
dense everywhere residual subset Q of M such that S is lower semi-continuous at each
u = (φ,A) ∈ Q.
Assume, by contradiction, that S(u) is not a singleton for some u = (φ,A) ∈Q. Then

there exist at least two points x,x ∈ S(u) ⊂ A with x �= x. Consequently, there exist
two open subsets U and V in X such that x ∈U , x ∈ V and U ∩V = ∅.
Define a function g : X →R as follows:

g(x) =
d(x,x)

d(x,x) + d(x,X \U)
, ∀x ∈ X,

where d is the metric on X. Note that g is continuous on X;  ≤ g(x) ≤  for all x ∈ X;
g(x) =  if and only if x = x; g(x) =  for all x ∈ V .
Take z ∈ – intC. For each n = , , . . . , let φn : X ×X →H be defined by

φn(x, y) = φ(x, y) +
[

n
g(x)

]
z, ∀x, y ∈ X.

Furthermore, define

un = (φn,A).

For each n = , , . . . , we will prove un ∈M.
(i) It is easy to check that φn is C-upper semi-continuous on X ×X;
(ii) For any x, y ∈ X with x �= y, suppose φn(x, y) /∈ – intC. Then we can claim that

φ(x, y) /∈ – intC. Otherwise φ(x, y) ∈ – intC. Note that [ n g(x)]z ∈ –C, then

φn(x, y) = φ(x, y) +
[

n
g(x)

]
z ∈ – intC –C ⊂ – intC,

which is a contradiction. By the C-strictly-quasi-monotonicity of φ and φ(x, y) /∈ – intC,
we get φ(y,x) ∈ –C. Hence

φn(y,x) = φ(y,x) +
[

n
g(y)

]
z ∈ –C –C ⊂ –C.

That is, φn is C-strictly-quasi-monotone on X ×X.
(iii) sup(x,y)∈X×X ‖φn(x, y)‖ ≤ sup(x,y)∈X×X ‖φ(x, y)‖ + 

n · ‖z‖ < +∞.
(iv) From x ∈ S(u) and g(x) = , we derive

φn(x, y) = φ(x, y) +
[

n
g(x)

]
z = φ(x, y) /∈ – intC, ∀y ∈ A,

which implies x ∈ S(un) �= ∅.

http://www.fixedpointtheoryandapplications.com/content/2014/1/115
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Thus we have shown un ∈M for each n = , , . . . . Consequently, ρ(un,u) ≤ 
n · ‖z‖ → 

as n→ ∞.
Note that x ∈ V ∩S(u), then V ∩S(u) �= ∅. Since S is lower semi-continuous at u and

un → u, there exists a positive integer n >  big enough such that V ∩ S(un ) �= ∅. Take
xn ∈ V ∩ S(un ), then we have xn ∈ V ∩ A, g(xn ) =  and φn (xn , y) /∈ – intC for any
y ∈ A. Take y = x (∈ A), then we get

φ(xn ,x) +

n

z = φ(xn ,x) +
[

n

g(xn )
]
z = φn (xn ,x) /∈ – intC. (.)

Note that 
n
z ∈ – intC. If φ(xn ,x) ∈ –C, then φn (xn ,x) ∈ –C – intC ⊂ – intC, which

contradicts (.). Hence we have

φ(xn ,x) /∈ –C. (.)

Since x ∈ S(u), we have φ(x, y) /∈ – intC for any y ∈ A. Taking y = xn (∈ A), we
get φ(x,xn ) /∈ – intC. It follows from the C-strictly-quasi-monotonicity of φ that
φ(xn ,x) ∈ –C, which is in contradiction with (.). Therefore, S(u) must be a singleton
for each u ∈Q. �

When H =R, C = [,+∞), we get Corollary . as follows.

Corollary . Let

M′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
u = (f ,A) :

f : X ×X →R is upper semi-continuous on X ×X;
f is pseudo-monotone on X ×X;
sup(x,y)∈X×X |f (x, y)| < +∞;
A is a nonempty compact subset of X;
and ∃x ∈ A such that f (x, y)≥ ,∀y ∈ A

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
,

where f is called pseudo-monotone (see []) on X ×X iff for any x, y ∈ X with x �= y,

f (x, y)≥  ⇒ f (y,x)≤ .

Then there exists a dense everywhere residual subset Q′ ofM′ such that, for each u = (f ,A) ∈
Q′, f has a unique equilibrium point in A.

Remark . Corollary . generalized Theorem . of [], one of main results of [], as
regards the following four aspects:

(i) we do not require the convexity of function f ∈M′;
(ii) we do not require the convexity and linear structure of the set X ;
(iii) we omit the requirement that f (x,x)≥  for all x ∈ X ;
(iv) we replace the monotonicity of f by pseudo-monotonicity which is weaker than the

former.

4 Well-posedness of VEPs
As is well known, the notions of well-posedness can be mainly divided into three groups,
namely, Hadamard type, Tykhonov type and Levitin-Polyak type. Generally speaking, to

http://www.fixedpointtheoryandapplications.com/content/2014/1/115
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consider Tykhonov well-posedness of a problem, one introduces the notion of ‘approxi-
mating sequence’ for the solution and requires some convergence of such sequences to a
solution of the problem; while, Hadamard well-posedness of a problem means the con-
tinuous dependence of the solutions on the data or the parameter of the problem; as for
Levitin-Polyak well-posedness, we mean the convergence of the approximating solution
sequence to a solution of the problem with some constraints; for more details to see [–
]. In this section, we will investigate the Hadamard well-posedness of VEPs.

Definition . Let u ∈ M. () The VEP associated with u is said to be generalized
Hadamard well-posed iff for any un ∈ M and any xn ∈ S(un), un → u implies that {xn} has
a subsequence converging to an element of S(u); () The VEP associated with u is said to
be Hadamard well-posed iff S(u) = {x} (a singleton) and for any un ∈M and any xn ∈ S(un),
un → u implies that {xn} converges to x.

Theorem. For each u = (φ,A) ∈M, theVEPassociatedwith u is generalizedHadamard
well-posed.

Proof Let un = (φn,An) ∈ M, xn ∈ S(un), and un → u. Note that An → A because un → u.
According to Lemma .(i), it follows from the compactness of An and A that

⋃+∞
n= An ∪A

is compact. Since xn ∈ S(un) ⊂ ⋃+∞
n= An ∪A, there exists a convergent subsequence {xnk } of

{xn}.Moreover, by Lemma.(ii), the limit point x∗ of {xnk } belongs toA, i.e., xnk → x∗ ∈ A.
By Lemma ., S is upper semi-continuous at u and S(u) is compact.
If x∗ /∈ S(u), then there exists an open setO inX such thatO ⊃ S(u) and x∗ /∈ Ō. Since S is

upper semi-continuous at u and un → u, there is a positive integer N such that O ⊃ S(un)
for all n ≥ N . From xnk ∈ S(unk ) ⊂ O for all nk ≥ N and xnk → x∗, it follows that x∗ ∈ Ō,
which is a contradiction. Hence x∗ ∈ S(u). The proof is complete. �

Theorem . There exists a dense everywhere residual subset Q of M such that, for each
u = (φ,A) ∈ Q, the VEP associated with u is Hadamard well-posed, that is, VEPs in M are
generic Hadamard well-posed.

Proof By Theorem ., there exists a dense everywhere residual subset Q ofM such that,
for each u ∈Q, S(u) is a singleton.
Let u = (φ,A) ∈ Q and S(u) = {x}. Suppose un ∈ M, xn ∈ S(un), and un → u. We shall

prove xn → x. If it is not true, then there exist an open neighborhood O of x and a sub-
sequence {xnk } such that xnk /∈ O. By Theorem ., the VEP associated u is generalized
Hadamard well-posed. Since S(u) = {x}, {xnk } has a subsequence converging to x, which
contradicts xnk /∈O. �

5 A representation theorem of the solution set to VEPs
In this section, we use the limits of the solutions to VEPs, each of which has a unique solu-
tion, to provide an interesting representation of the solution set of each VEP inM, which
in forms is very similar with the Clarke subdifferentials of the local Lipschitz functions.
Denote by

P :=
{
u = (φ,A) ∈ M : S(u) is a singleton

}
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/115
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By Theorem ., P �= ∅. It is clear that P is the largest dense everywhere residual subset
(ordered by the set inclusion) of M such that, for each u ∈ P, S(u) is a singleton and the
VEP associated with u is Hadamard well-posed.

Theorem . For each u = (φ,A) ∈M,

S(u) =
{
lim
n
xn : xn ∈ S(un),un ∈ P,un → u

}
. (.)

Proof The right-hand side of (.) means that we only consider such sequences {xn} and
{un} satisfying that {un} ⊂ P; {un} converges to u; xn is the unique point of S(un); and that
{xn} is convergent.
Since P is dense in M and u = (φ,A) ∈ M, there exists {un = (φn,An)} ⊂ P such that {un}

converges to u. By the definition of P, S(un) has a unique point, denoted by xn. Note that
{xn} ⊂ ⋃+∞

n= An ∪ A, as well as An and A are compact and An → A, due to Lemma .,
{xn} or its subsequence converges to a point of A. Hence the right-hand side set of (.) is
well-defined and nonempty.
First, suppose un ∈ P, xn ∈ S(un), un → u and xn → x. By Theorem ., the VEP asso-

ciated with u is generalized Hadamard well-posed. It follows from xn → x that x ∈ S(u).
Hence S(u)⊃ {limn xn : xn ∈ S(un),un ∈ P,un → u}.
Next, let x∗ ∈ S(u). Define a function g : X →R as follows:

g(x) =
d(x,x∗)

 + d(x,x∗)
, ∀x ∈ X,

where d is the metric on X. Note that g is continuous on X;  ≤ g(x) <  for all x ∈ X;
g(x) =  if and only if x = x∗.
Take z ∈ – intC. For each n = , , . . . , define

φn(x, y) := φ(x, y) +
[

n
g(x)

]
z, ∀x, y ∈ X and un := (φn,A).

Same as in the proof of Theorem ., one can check that un ∈ M and x∗ ∈ S(un) for each
n = , , . . . , and that un → u as n→ ∞. Moreover, we shall show that S(un) is a singleton,
and hence S(un) = {x∗} for each n = , , . . . . By way of contradiction, assume that S(un ) is
not a singleton for some un = (φn ,A). Then there exists x′ ∈ S(un ) ⊂ A with x′ �= x∗. It
follows from x∗ ∈ S(u) that φ(x∗,x′) /∈ – intC. By the C-strictly-quasi-monotonicity of φ,
we get φ(x′,x∗) ∈ –C. Note that g(x′) >  and [ 

n
g(x′)]z ∈ – intC. Then

φn
(
x′,x∗) := φ

(
x′,x∗) + [


n

g
(
x′)]z ∈ –C – intC ⊂ – intC.

But it follows from x′ ∈ S(un ) that φn (x′,x∗) /∈ – intC, which is a contradiction. Thus
S(un) = {x∗} for each n = , , . . . .
Take xn = x∗ for each n = , , . . . , then we have un ∈ P, un → u, xn ∈ S(un), and x∗ =

limn xn. From the arbitrariness of x∗ ∈ S(u), we derive

S(u)⊂
{
lim
n
xn : xn ∈ S(un),un ∈ P,un → u

}
.

Combining the above two parts, we get the conclusion. �
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6 Conclusions
In this paper, we considered a class of vector equilibrium problems. By considering the
perturbations of vector-valued functions and feasible sets, we proved that each of the
problems is generalized Hadamard well-posed, and that in the sense of Baire category,
most of the problems have unique solution and are Hadamard well-posed. As an appli-
cation, an interesting representation theorem for the solution set to each of the problems
was provided.
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