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Abstract
The purpose of this article is to study the weak- and strong-convergence theorems of
solutions to split a feasibility problem for a family of nonspreading-type mapping in
Hilbert spaces. The main result presented in this paper improves and extends some
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Reich, and others. As an application, we solve the hierarchical variational inequality
problem by using the main theorem.
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1 Introduction
Throughout this paper, we assume that H is a real Hilbert space, D is a nonempty and
closed convex subset of H . In the sequel, we denote by ‘xn → x’ and ‘xn ⇀ x’ the strong
and weak convergence of {xn}, respectively. Denote by N the set of all positive integers
and by F(T) the set of fixed points of a mapping T :D →D.

Definition . Let T :D →D be a mapping.
() T :D→ D is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈D.

() T is said to be quasi-nonexpansive if F(T) is nonempty and

‖Tx – p‖ ≤ ‖x – p‖, ∀x ∈ D,p ∈ F(T). (.)

() T is said to be nonspreading if

‖Tx – Ty‖ ≤ ‖Tx – y‖ + ‖Ty – x‖, ∀x, y ∈D. (.)

It is easy to prove that equation (.) is equivalent to

‖Tx – Ty‖ ≤ ‖x – y‖ + 〈x – Tx, y – Ty〉, ∀x, y ∈D. (.)
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() T is said to be k-strictly pseudo-nonspreading [], if there exists a constant k ∈ [, )
such that

‖Tx–Ty‖ ≤ ‖x–y‖ +k∥∥x–Tx–(y–Ty)∥∥ +〈x–Tx, y–Ty〉, ∀x, y ∈ D. (.)

Remark . It follows from Definition . that
() if T is nonspreading and F(T) 	= ∅, then T is quasi-nonexpansive;
() if T is nonspreading, then it is k-strictly pseudo-nonspreading with k = . But the

converse is not true from the following example. Thus, we know that the class of
k-strictly pseudo-nonspreading mappings is more general than the class of
nonspreading mappings.

Example . [] LetR denote the set of real numberswith the usual norm. LetT :R → R

be a mapping defined by

Tx =

{
x, x ∈ (–∞, ),
–x, x ∈ [,∞).

(.)

Then T is a k-strictly pseudo-nonspreading mapping, but it is not nonspreading.

In , Kurokawa andTakahashi [] obtained aweakmean ergodic theoremof Baillon’s
type [] for nonspreading mappings in Hilbert spaces. They further proved a strong-
convergence theorem somewhat related to Halpern’s type [] for this class of mappings
using the idea of mean convergence in Hilbert spaces.
In , Osilike and Isiogugu [] first introduced the concept of k-strictly pseudo-

nonspreading mappings and proved a weak mean convergence theorem of Baillon’s type
similar to the ones obtained in []. Furthermore, using the idea of mean convergence,
a strong-convergence theorem similar to the one obtained in [] is proved which extends
and improves the main theorems of [] and an affirmative answer given to an open prob-
lem posed by Kurokawa and Takahashi [] for the case where the mapping T is aver-
aged.
On the other hand, the split feasibility problem (SFP) in finitely dimensional spaces was

first introduced by Censor and Elfving [] formodeling inverse problemswhich arise from
phase retrievals and in medical image reconstruction []. Recently, it has been found that
the (SFP) can also be used in various disciplines such as image restoration, computer to-
mography and radiation therapy treatment planning [–].
The split feasibility problem in an infinitely dimensional Hilbert space can be found in

[, , –].
The purpose of this paper is to introduce the followingmultiple-set split feasibility prob-

lem (MSSFP) for an infinite family of k-strictly pseudo-nonspreading mappings and a fi-
nite family of ρ-strictly pseudo-nonspreading mappings in infinitely dimensional Hilbert
spaces, i.e., to find x∗ ∈ C such that

Ax∗ ∈Q, (.)

where H, H are two real Hilbert spaces, A : H → H is a bounded linear operator,
{Si}∞i= : H → H is an infinite family of ki-strictly pseudo-nonspreading mappings and
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{Ti}Ni= : H → H is a finite family of ρi-strictly pseudo-nonspreading mappings, C :=⋂∞
i= F(Si) and Q :=

⋂N
i= F(Ti). Also we wish to study the weak and strong convergence

of the following iterative sequence to a solution of problem (.):

⎧⎪⎨
⎪⎩
x ∈H chosen arbitrarily,
xn+ = α,nyn +

∑∞
i= αi,nSi,βyn,

yn = xn + γA∗(Tn(modN) – I)Axn, ∀n≥ ,

where Si,β := βI + ( – β)Si, β ∈ (, ) is a constant.
In the sequel we denote � the set of solutions of (MSSFP) equation (.), i.e.,

� = {x ∈ C,Ax ∈Q} = C ∩A–(Q). (.)

2 Preliminaries
For this purpose, we first recall some definitions, notations and conclusions which will be
needed in proving our main results.

Definition . Let E be a real Banach space, and T : E → E be a mapping.
() I – T is said to be demiclosed at , if, for any sequence {xn} ⊂H with xn ⇀ x∗,

‖(I – T)xn‖ → , then x∗ = Tx∗.
() T is said to be semicompact, if, for any bounded sequence {xn} ⊂ E,

limn→∞ ‖xn – Txn‖ = , then there exists a subsequence {xni} ⊂ {xn} such that {xni}
converges strongly to some point x∗ ∈ E.

Lemma . [] Let H be a real Hilbert space, D be a nonempty and closed convex subset
of H , and T :D→D be a k-strictly pseudo-nonspreading mapping.
() If F(T) 	= ∅, then F(T) is closed and convex;
() I – T is demiclosed at zero.

Lemma . Let H be a real Hilbert space. Then the following statements hold:
() For all x, y ∈H and for all t ∈ [, ],

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖. (.)

() For all x, y ∈H ,

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉.

Lemma . [] Let E be a uniformly convex Banach space, Br() := {x ∈ E : ‖x‖ ≤ r} be a
closed ball with center  and radius r > . Then for any given sequence {x,x, . . . ,xn, . . .} ⊂
Br() and any given number sequence {λ,λ, . . . ,λn, . . .}with λi ≥ ,

∑∞
i= λi = , there exists

a strictly increasing continuous and convex function g : [, r)→ [,∞) with g() =  such
that for any i, j ∈ N , i < j,

∥∥∥∥∥
∞∑
n=

λnxn

∥∥∥∥∥


≤
∞∑
n=

λn‖xn‖ – λiλjg
(‖xi – xj‖

)
. (.)
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Lemma. [] Let {an}, {bn} and {δn} be sequences of nonnegative real numbers satisfying

an+ ≤ ( + δn)an + bn, ∀n≥ . (.)

If
∑∞

i= δn <∞ and
∑∞

i= bn <∞, then the limit limn→∞ an exists.

Lemma . Let D be a nonempty and closed convex subset of H and T : D → D be a
k-strictly pseudo-nonspreading mapping with F(T) 	= ∅. Let Tβ = βI + ( – β)T , β ∈ [k, ).
Then the following conclusions hold:
() F(T) = F(Tβ );
() I – Tβ is demiclosed at zero;
() ‖Tβx – Tβy‖ ≤ ‖x – y‖ + 

–β
〈x – Tβx, y – Tβy〉;

() Tβ is a quasi-nonexpansive mapping.

Proof Since (I – Tβ ) = ( – β)(I – T), the conclusions (), () are obvious.
Now we prove the conclusion (). In fact, since T is a k-strictly pseudo-nonspreading

mapping, it follows from Lemma . that

‖Tβx – Tβy‖ =
∥∥β(x – y) + ( – β)(Tx – Ty)

∥∥

= β‖x – y‖ + ( – β)‖Tx – Ty‖

– β( – β)
∥∥x – Tx – (y – Ty)

∥∥

≤ β‖x – y‖ + ( – β)
{‖x – y‖ + k

∥∥x – Tx – (y – Ty)
∥∥

+ 〈x – Tx, y – Ty〉} – β( – β)
∥∥x – Tx – (y – Ty)

∥∥

= ‖x – y‖ + ( – β)〈x – Tx, y – Ty〉
– ( – β)(β – k)

∥∥x – Tx – (y – Ty)
∥∥

≤ ‖x – y‖ + ( – β)〈x – Tx, y – Ty〉
= ‖x – y‖ + 

( – β)
〈x – Tβx, y – Tβy〉, ∀x, y ∈D. (.)

If y ∈ F(T), then y ∈ F(Tβ ). Hence from equation (.),

‖Tβx – y‖ = ‖Tβx – Tβy‖ ≤ ‖x – y‖, ∀x ∈D. (.)

This completes the proof of Lemma .. �

Lemma. [] Let H be aHilbert space and {un} be a sequence in H such that there exists
a nonempty set W ⊂ H satisfying:
() for every w ∈W , limn→∞ ‖un –w‖ exists;
() each weak-cluster point of the sequence {wn} is inW .

Then there exists w∗ ∈W such that {un} weakly converges to w∗.

3 Weak- and strong-convergence theorems
For solving the multiple-set split feasibility problem (MSSFP) equation (.), we assume
that the following conditions are satisfied:

http://www.fixedpointtheoryandapplications.com/content/2014/1/11
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() H and H are two real Hilbert spaces, A :H →H is a bounded linear operator
and A∗ :H →H is the adjoint of A;

() {Si}∞i= :H →H is an infinite family of ki-strictly pseudo-nonspreading mappings
with k := supi≥ ki ∈ (, );

() {Ti}Ni= :H → H is a finite family of ρi-strictly pseudo-nonspreading mappings
with ρ =max{ρi : i = , , . . . ,N} ∈ (, );

() C :=
⋂∞

i= F(Si) 	= ∅ and Q :=
⋂N

i= F(Ti) 	= ∅.
Now we are in a position to give the following main theorem.

Theorem . Let H,H, A, A∗, {Si}∞i=, {Ti}Ni=, C, Q, k, ρ be the same as above. Let {xn} be
a sequence generated by

⎧⎪⎨
⎪⎩
x ∈H chosen arbitrarily,
xn+ = α,nyn +

∑∞
i= αi,nSi,βyn,

yn = xn + γA∗(Tn(modN) – I)Axn,
∀n≥ , (.)

where Si,β := βI + ( – β)Si, i≥ , β ∈ [k, ) is a constant, {αi,n} ⊂ (, ) and γ >  satisfy the
following conditions:
(a)

∑∞
i= αi,n = , for each n ≥ ;

(b) for each i≥ , lim infn→∞ α,nαi,n > ;
(c) γ ∈ (, –ρ

‖A‖ ).
Let � = {x ∈ C,Ax ∈Q} 	= ∅ (the set of solutions of (MSSFP) equation (.) defined by equa-
tion (.)). Then we have the following:

(I) both {xn} and {yn} converge weakly to some point x∗ ∈ �;
(II) in addition, if there exists some positive integerm such that Sm is semicompact, then

both {xn} and {yn} converge strongly to x∗ ∈ �.

Proof First we prove the conclusion (I).
Step . We prove that the sequences {xn}, {yn} and {Si,βyn} are bounded and, for each

p ∈ �, the following limits exist and

lim
n→∞‖xn – p‖ = lim

n→∞‖yn – p‖.

In fact, for given p ∈ �, by the definition of �,

p ∈ C =
∞⋂
i=

F(Si) =
∞⋂
i=

F(Si,β)

and

Ap ∈Q :=
N⋂
i=

F(Ti).

Therefore, we have

Ap = Tn(modN)Ap. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/11
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Since {Si}∞i= is a family of k-strictly pseudo-nonspreading mappings, by Lemma ., C =⋂∞
i= F(Si) is closed and convex. It follows from Lemma . that, for each n≥  and p ∈ �,

‖xn+ – p‖ =
∥∥∥∥∥α,n(yn – p) +

∞∑
i=

αi,n(Si,βyn – p)

∥∥∥∥∥
≤ α,n‖yn – p‖ +

∞∑
i=

αi,n‖Si,βyn – p‖

= ‖yn – p‖, (.)

‖yn – p‖ = ∥∥xn – p + γA∗(Tn(modN) – I)Axn
∥∥

= ‖xn – p‖ + γ
〈
xn – p,A∗(Tn(modN) – I)Axn

〉
+ γ ∥∥A∗(Tn(modN) – I)Axn

∥∥ (.)

and

γ ∥∥A∗(Tn(modN) – I)Axn
∥∥ = γ 〈A∗(Tn(modN) – I)Axn,A∗(Tn(modN) – I)Axn

〉
= γ 〈AA∗(Tn(modN) – I)Axn, (Tn(modN) – I)Axn

〉
≤ γ ‖A‖∥∥(Tn(modN) – I)Axn

∥∥. (.)

Further, since {Ti}Ni= is a finite family of ρ-strictly pseudo-nonspreading mappings, we
have

〈
xn – p,A∗(Tn(modN) – I)Axn

〉
=

〈
A(xn – p), (Tn(modN) – I)Axn

〉
=

〈
A(xn – p) + (Tn(modN) – I)Axn – (Tn(modN) – I)Axn, (Tn(modN) – I)Axn

〉
=

〈
Tn(modN)Axn –Ap, (Tn(modN) – I)Axn

〉
–

∥∥(Tn(modN) – I)Axn
∥∥

=


{‖Tn(modN)Axn –Ap‖ + ∥∥(Tn(modN) – I)Axn

∥∥

– ‖Axn –Ap‖} – ∥∥(Tn(modN) – I)Axn
∥∥

=


{‖Tn(modN)Axn – Tn(modN)Ap‖ +

∥∥(Tn(modN) – I)Axn
∥∥

– ‖Axn –Ap‖} – ∥∥(Tn(modN) – I)Axn
∥∥

≤ 

{‖Axn –Ap‖ + ρ

∥∥(Tn(modN) – I)Axn
∥∥}

+


{∥∥(Tn(modN) – I)Axn

∥∥ – ‖Axn –Ap‖} – ∥∥(Tn(modN) – I)Axn
∥∥

=
ρ – 


∥∥(Tn(modN) – I)Axn
∥∥. (.)

Substituting equations (.) and (.) into equation (.) and simplifying, we have

‖yn – p‖ ≤ ‖xn – p‖ – γ
(
 – ρ – γ ‖A‖)∥∥(Tn(modN) – I)Axn

∥∥. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/11
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By condition (c), ( – ρ – γ ‖A‖) > , therefore we have

‖yn – p‖ ≤ ‖xn – p‖. (.)

Substituting equation (.) into equation (.), we have

‖xn+ – p‖ ≤ ‖xn – p‖, ∀n≥ .

This implies that the limit limn→∞ ‖xn –p‖ exists. It follows from equations (.) and (.)
that the limit limn→∞ ‖yn – p‖ exists also, and

lim
n→∞‖xn – p‖ = lim

n→∞‖yn – p‖, ∀p ∈ �. (.)

Therefore, {xn} and {yn} are bounded. Since for each i ≥ , Si,β is quasi-nonexpansive, we
have

‖Si,βyn – p‖ ≤ ‖yn – p‖.

Hence {Si,βyn} is also bounded.
Step . Now we prove that for any given positive integer l ≥ , the following conclusions

hold:

lim
n→∞‖yn – Sl,βyn‖ = ; lim

n→∞‖Tn(modN)Axn –Axn‖ = . (.)

In fact, for any given p ∈ �, it follows from equation (.), Lemma ., and equation (.)
that

‖xn+ – p‖ =

∥∥∥∥∥α,n(yn – p) +
∞∑
i=

αi,n(Si,βyn – p)

∥∥∥∥∥


≤ α,n‖yn – p‖ +
∞∑
i=

αi,n‖Si,βyn – p‖ – α,nαl,ng
(‖yn – Si,βyn‖

)

≤ α,n‖yn – p‖ +
∞∑
i=

αi,n‖yn – p‖ – α,nαl,ng
(‖yn – Si,βyn‖

)
= ‖yn – p‖ – α,nαl,ng

(‖yn – Si,βyn‖
)

≤ ‖xn – p‖ – γ
(
 – ρ – γ ‖A‖)∥∥(Tn(modN) – I)Axn

∥∥

– α,nαl,ng
(‖yn – Si,βyn‖

)
, n≥ . (.)

Therefore, we have

γ
(
 – ρ – γ ‖A‖)∥∥(Tn(modN) – I)Axn

∥∥ + α,nαl,ng
(‖yn – Sl,βyn‖

)
≤ ‖xn – p‖ – ‖xn+ – p‖

→  (as n→ ∞).

http://www.fixedpointtheoryandapplications.com/content/2014/1/11
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By conditions (b) and (c) we have

lim
n→∞

∥∥(Tn(modN) – I)Axn
∥∥ = ; lim

n→∞ g
(‖yn – Sl,βyn‖

)
= . (.)

Since g is continuous and strictly increasing with g() = , from equation (.) we have

lim
n→∞‖yn – Sl,βyn‖ =  for each l ≥ . (.)

Hence conclusion (.) is proved.
Step . Now, we prove that

lim
n→∞‖xn+ – xn‖ = ; lim

n→∞‖yn+ – yn‖ = . (.)

In fact, it follows from equation (.) that

‖xn+ – xn‖ =

∥∥∥∥∥α,n(yn – xn) +
∞∑
i=

αi,n(Si,βyn – xn)

∥∥∥∥∥


=

∥∥∥∥∥α,n
(
γA∗(Tn(modN) – I)Axn

)
+

∞∑
i=

αi,n(Si,βyn – xn)

∥∥∥∥∥


≤ α,n
∥∥γA∗(Tn(modN) – I)Axn

∥∥ +
∞∑
i=

αi,n‖Si,βyn – xn‖

≤ α,n
∥∥γA∗(Tn(modN) – I)Axn

∥∥

+
∞∑
i=

αi,n
(‖Si,βyn – yn‖ + ‖yn – xn‖

). (.)

By virtue of equations (.) and (.), one has

‖yn – xn‖ = γ
∥∥A∗(Tn(modN) – I)Axn

∥∥
→  (as n→ ∞). (.)

This together with equations (.) and (.) shows that

‖xn+ – xn‖ →  (as n→ ∞).

Similarly, we have

‖yn+ – yn‖ =
∥∥xn+ + γA∗(T(n+)(modN) – I)Axn+

–
[
xn + γA∗(Tn(modN) – I)Axn

]∥∥
≤ ‖xn+ – xn‖ + γ

∥∥A∗(T(n+)(modN) – I)Axn+
∥∥

+ γ
∥∥A∗(Tn(modN) – I)Axn

∥∥
→  (as n→ ∞).
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Step . Now we show that every weak-cluster point x∗ of the sequence {xn} is in �.
Indeed, since {yn} is a bounded sequence in H, there exists a subsequence {yni} ⊂ {yn}

such that yni ⇀ x∗ ∈H. It follows from equation (.) that

lim
n→∞‖yni – Sl,βyni‖ =  for each l ≥ .

By Lemma ., (I – Si) is demiclosed at zero. Since (I – Sl,β ) = ( – β)(I – Si), this implies
that (I – Sl,β ) is also demiclosed at zero. Hence x∗ ∈ F(Sl,β ) = F(Sl). By the arbitrariness of
l ≥ , we have

x∗ ∈
∞⋂
i=

F(Si) = C.

On the other hand, it follows from equations (.) and (.) that

xni = yni – γA∗(Tni(modN) – I)Axni ⇀ x∗. (.)

Since A is a bounded linear operator, this implies that Axni ⇀ Ax∗. Also, by equation
(.)

lim
ni→∞‖Tni(modN)Axni –Axni‖ = . (.)

Hence for any given positive integer j = , , . . . ,N , there exists a subsequence {nik } ⊂ {ni}
with nik (modN) = j such that

lim
nik→∞‖TjAxnik –Axnik ‖ = .

Since Axnik ⇀ Ax∗, and by Lemma ., I – Tj is demiclosed at . This implies that
Ax∗ ∈ F(Tj). By the arbitrariness of j = , , . . . ,N ,

Ax∗ ∈
N⋂
j=

F(Tj) =Q.

These show that x∗ ∈ �.
Step . Summing up the above arguments, we have proved that: (i) for each p ∈ �, the

limits limn→∞ ‖xn – p‖ and limn→∞ ‖yn – p‖ exist (see equation (.)); (ii) every weak-
cluster point x∗ of the sequence {xn} (or {yn}) is in�. TakingW = � and {un} = {xn} (or {yn})
in Lemma ., therefore all conditions in Lemma . are satisfied. By using Lemma .,
xn ⇀ x∗, yn ⇀ x∗ and x∗ ∈ �. This completes the proof of the conclusion (I).
Next we prove the conclusion (II).
Without loss of generality, we may assume that S is semicompact. Since (I – S,β ) =

( – β)(I – S), this implies that S,β is also semicompact. In view of equation (.), we
have

‖yn – S,βyn‖ →  (as n→ ∞). (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/11
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Therefore, there exists a subsequence of {yni} ⊂ {yn} such that yni → u∗ ∈H. Since yni ⇀
x∗, we have x∗ = u∗ and so yni → x∗ ∈ �. By virtue of equation (.), we have

lim
n→∞

∥∥yn – x∗∥∥ = , lim
n→∞

∥∥xn – x∗∥∥ = ,

i.e., {yn} and {xn} both converge strongly to the point x∗ ∈ �. This completes the proof of
Theorem .. �

Remark . Theorem . improves and extends the corresponding results of Censor et
al. [, , ], Byrne [], Yang [], Moudafi [], Xu [], Censor and Segal [], Masad and
Reich [], Deepho and Kumam [, ] and others in the following aspects:
(a) for the mappings, we extend the mappings from nonexpansive mappings, or

demi-contractive mappings, to the more general family of k-strictly
pseudo-nonspreading mappings;

(b) for the algorithms, we propose some new hybrid iterative algorithms which are
different from the ones given in [–, , , , , ]. Under suitable conditions,
some weak- and strong-convergence results for the algorithms are proved.

If we put γ =  in Theorem ., we immediately get the following.

Corollary . Let H , {Si}∞i=, k be the same as above. Let {xn} be a sequence generated by

{
x ∈H chosen arbitrarily,
xn+ = α,nxn +

∑∞
i= αi,nSi,βxn,

∀n≥ , (.)

where Si,β := βI + ( – β)Si, i ≥ , β ∈ [k, ) is a constant, {αi,n} ⊂ (, ) satisfy the following
conditions:
(a)

∑∞
i= αi,n = , for each n ≥ ;

(b) for each i≥ , lim infn→∞ α,nαi,n > . Let

F :=
∞⋂
i=

F(Si) 	= ∅.

Then we have the following:
(I) the sequence {xn} converges weakly to some point x∗ ∈ F ;
(II) in addition, if there exists some positive integerm such that Sm is semicompact, then

the sequence {xn} converges strongly to x∗ ∈ F .

4 Applications
In this section we utilize the results presented in Section  to study the hierarchical vari-
ational inequality problem.
LetH be a real Hilbert space, {Si} :H →H , i = , , . . . be a countable family of ki-strictly

pseudo-nonspreading mappings with k = supi≥ ki ∈ (, ), and

F :=
∞⋂
i=

F(Si) 	= ∅.

http://www.fixedpointtheoryandapplications.com/content/2014/1/11
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LetT :H →H be a nonspreadingmapping. The so-called hierarchical variational inequal-
ity problem for a countable family of mappings {Si} with respect to mapping T is to find
an x∗ ∈ F such that

〈
x∗ – Tx∗,x∗ – x

〉 ≤ , ∀x ∈ F . (.)

It is easy to see that equation (.) is equivalent to the following fixed point problem: to
find x∗ ∈ F such that

x∗ = PF Tx∗, (.)

where PF is the metric projection from H onto F . Letting C = F and Q = F(PF T) (the
fixed point set of PF T ) and A = I (the identity mapping on H), then the problem (.) is
equivalent to the following multi-set split feasibility problem: to find x∗ ∈ C such that

x∗ ∈Q. (.)

Hence from Theorem . we have the following theorem.

Theorem . Let H , {Si}, T , C, Q, k be the same as above. Let {xn}, {yn} be the sequences
defined by

⎧⎪⎨
⎪⎩
x ∈H chosen arbitrarily,
xn+ = α,nyn +

∑∞
i= αi,nSi,βyn,

yn = xn + γ (T – I)xn, ∀n≥ ,
(.)

where Si,β := βI + ( – β)Si, i ≥ , β ∈ [k, ), {αi,n} ⊂ (, ) and γ >  satisfy the following
conditions:
(a)

∑∞
i= αi,n = , for each n ≥ ;

(b) for each i≥ , lim infn→∞ α,nαi,n > ;
(c) γ ∈ (, ).

If C∩Q 	= ∅, then {xn} converges weakly to a solution of the hierarchical variational inequal-
ity problem (.). In addition, if one of the mappings Si is semicompact, then both {xn} and
{yn} converge strongly to a solution of the hierarchical variational inequality problem (.).

Proof In fact, by the assumption that T is a nonspreading mapping, hence by Remark .,
T is a ρ-strictly pseudo-nonspreading with ρ = . Taking N =  and A = I in Theorem .,
all conditions in Theorem . are satisfied. The conclusions of Theorem . can immedi-
ately be obtained from Theorem .. �

Remark . If T = I (the identity mapping), then we can get the results of Corollary ..
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