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Abstract
In this paper, common zeros of a family of accretive operators are investigated based
on the Kirk-like proximal point algorithm. A strong convergence theorem is
established in a reflexive Banach space.
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1 Introduction
In the real world, many important problems have reformulations which require finding
common zero (fixed) points of nonlinear operators, for instance, image recovery, inverse
problems, transportation problems and optimization problems. It is well known that the
convex feasibility problem is a special case of the common zero (fixed) points of nonlin-
ear operators. In , Kirk [] introduced a parallel iterative process for finding a fam-
ily of nonexpansive mappings. Common fixed point theorems were established in a Ba-
nach space; for more details, see []. For studying zero points of monotone operators, the
most well-known algorithm is the proximal point algorithm; see [, ] and the references
therein. It is known that Rockfellar’s proximal point algorithm is, in general, weak conver-
gence; see [] and the references therein.
Recently, many authors have been devoted to investigating the strong convergence of a

proximal point algorithm. Strong convergence theorems for zero points of accretive op-
erators were established; see, for example, [–] and the references therein.
In this paper, we are concernedwith the problem of finding a common zero of a family of

accretive operators based on theKirk-like proximal point algorithm.A strong convergence
theorem is established in a reflexive Banach space.

2 Preliminaries
Let E be a Banach space with the dual E∗. Let 〈· , ·〉 denote the pairing between E and E∗.
The normalized duality mapping J : E → E∗ is defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}, ∀x ∈ E.

LetUE = {x ∈ E : ‖x‖ = }. E is said to be smooth or to have aGâteaux differentiable norm
if the limit limt→

‖x+ty‖–‖x‖
t exists for each x, y ∈UE . E is said to have a uniformly Gâteaux

differentiable norm if for each y ∈ UE , the limit is attained uniformly for all x ∈ UE . E is
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said to be uniformly smooth or to have a uniformly Fréchet differentiable norm if the limit
is attained uniformly for x, y ∈UE .
It is well known that (uniform) Fréchet differentiability of the norm of E implies (uni-

form) Gâteaux differentiability of the norm of E. It is known that if the norm of E is uni-
formly Gâteaux differentiable, then the duality mapping j is single-valued and uniformly
norm to weak∗ continuous on each bounded subset of E. In the sequel, we use j to denote
the single-valued normalized duality mapping.
A Banach space E is said to be strictly convex if and only if

‖x‖ = ‖y‖ = ∥∥( – λ)x + λy
∥∥

for x, y ∈ E, and  < λ <  implies that x = y.
Recall that a closed convex subset C of a Banach space E is said to have a normal struc-

ture if for each bounded closed convex subset K of C which contains at least two points,
there exists an element x of K which is not a diametral point of K , i.e., sup{‖x – y‖ : y ∈
K} < d(K ), where d(K ) is the diameter of K .
Let C be a nonempty closed convex subset of E. Let T : C → C be a mapping. In this

paper, we use F(T) to denote the set of fixed points of T . Recall that T is said to be nonex-
pansive iff ‖Tx–Ty‖ ≤ ‖x–y‖, ∀x, y ∈ C. For the existence of fixed points of a nonexpansive
mapping, we refer readers to [].
Let I denote the identity operator on E. An operator A⊂ E×E with the domain D(A) =

{z ∈ E : Az �= ∅} and the range R(A) =⋃{Az : z ∈D(A)} is said to be accretive if for each xi ∈
D(A) and yi ∈ Axi, i = , , there exists j(x –x) ∈ J(x –x) such that 〈y –y, j(x –x)〉 ≥ .
An accretive operator A is said to bem-accretive if R(I + rA) = E for all r > . In this paper,
we use A–() to denote the set of zero points of A. For an accretive operator A, we can
define a nonexpansive single-valued mapping Jr : R(I + rA) → D(A) by Jr = (I + rA)– for
each r > , which is called the resolvent of A.
Next we give the following lemmas which play an important role in this article.

Lemma. [] Let E be a real Banach space and let J be the normalized dualitymapping.
Then there exists j(x + y) ∈ J(x + y) such that

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
, ∀x, y ∈ E.

Lemma . [] Let C be a closed convex subset of a strictly convex Banach space E. Let
S : C → C and T : C → c be two nonexpansive mappings. Suppose that F(S) ∩ F(T) is
nonempty.Then themapping wS+(–w)T ,where s ∈ (, ) is a real number, is well defined
nonexpansive with F(wS + ( –w)T) = F(S)∩ F(T).

Lemma . [] Let E be a real reflexive Banach space with the uniformly Gâteaux dif-
ferentiable norm and the normal structure, and let C be a nonempty closed convex subset
of E. Let T : C → C be a nonexpansive mapping with a fixed point. Let {xt} be a sequence
generated by the following xt = tu + ( – t)Txt , where t ∈ (, ) and u ∈ C is a fixed element.
Then {xt} converges strongly as t →  to a fixed point x∗ of T , which is the unique solution
in F(T) to the following variational inequality 〈u – x∗, j(x∗ – p)〉 ≥ , ∀p ∈ F(T).
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Lemma . [] Let {an}, {bn}, {cn} and {dn} be three nonnegative real sequences satis-
fying an+ ≤ ( – bn)an + bncn + dn, ∀n ≥ n, where n is some positive integer, {bn} is a
number sequence in (, ) such that

∑∞
n=n bn = ∞, {cn} is a number sequence such that

lim supn→∞ cn ≤ , and {dn} is a positive number sequence such that
∑∞

n=n dn < ∞. Then
limn→∞ an = .

3 Main results
Theorem . Let E be a real reflexive, strictly convex Banach space with the uniformly
Gâteaux differentiable norm. Let N ≥  be some positive integer. Let Am be an m-accretive
operator in E for each m ∈ {, , . . . ,N}. Assume that C :=

⋂N
m=D(Am) is convex and has

the normal structure. Let {αn} be a real number sequence in (, ) such that limn→∞ αn = ,∑∞
n= αn = ∞ and

∑∞
n= |αn+ – αn| < ∞, let {βn,m} be a real number sequence in (, ) such

that
∑N

m= βn,m = , limn→∞ βn,m = βm and
∑∞

n= |βn+,m – βn,m| < ∞, let {rm} be a positive
real number sequence, and let {en,m} be a sequence in E such that

∑∞
n= ‖en,m‖ < ∞ for each

m ∈ {, , . . . ,N}. Assume that
⋂N

m=A–
m () is not empty. Let {xn} be a sequence generated

in the following manner:

x ∈ C, xn+ = αnu + ( – αn)
N∑

m=

βn,mJrm (xn + en,m), ∀n≥ ,

where u is a fixed element in C and Jrm = (I + rmAm)–. Then the sequence {xn} converges
strongly to x̄,which is the unique solution to the following variational inequality 〈u– x̄, j(p–
x̄)〉 ≤ , ∀p ∈ ⋂N

m=A–
m ().

Proof The proof is split into five steps.
Step . Show that {xn} is bounded.
Put yn =

∑N
m= βn,mJrm (xn + en,m). Fixing p ∈ ⋂N

m=A–
m (), we find that

‖yn – p‖ ≤
N∑

m=

βn,m
∥∥Jrm (xn + en,m) – p

∥∥ ≤ ‖xn – p‖ +
N∑

m=

‖en,m‖.

It follows that

‖xn+ – p‖ ≤ αn‖u – p‖ + ( – αn)‖yn – p‖

≤ αn‖u – p‖ + ( – αn)‖xn – p‖ +
N∑

m=

‖en,m‖

≤max
{‖u – p‖,‖xn – p‖} + N∑

m=

‖en,m‖.

By induction, we find that

‖xn+ – p‖ ≤max
{‖u – p‖,‖x – p‖} + ∞∑

i=

N∑
m=

‖ei,m‖ < ∞.

This proves Step .
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Step . Show that limn→∞ ‖xn+ – xn‖ = .
Note that

yn – yn– =
N∑

m=

βn,m
(
Jrm (xn + en,m) – Jrm (xn– + en–,m)

)

+
N∑

m=

(βn,m – βn–,m)Jrm (xn– + en–,m).

It follows that

‖yn – yn–‖ ≤
N∑

m=

βn,m
∥∥Jrm (xn + en,m) – Jrm (xn– + en–,m)

∥∥

+
N∑

m=

|βn,m – βn–,m|∥∥Jrm (xn– + en–,m)
∥∥

≤ ‖xn – xn–‖ +
N∑

m=

‖en,m‖ +
N∑

m=

‖en–,m‖

+
N∑

m=

|βn,m – βn–,m|∥∥Jrm (xn– + en–,m)
∥∥

≤ ‖xn – xn–‖ +M

N∑
m=

|βn,m – βn–,m| +
N∑

m=

‖en,m‖ +
N∑

m=

‖en–,m‖,

whereM is an appropriate constant such that

M =max
{
sup
n≥

∥∥Jr (xn + en,)
∥∥, sup

n≥

∥∥Jr (xn + en,)
∥∥, . . . , sup

n≥

∥∥JrN (xn + en,N )
∥∥}

.

It follows that

‖xn+ – xn‖ ≤ ( – αn)‖yn – yn–‖ + |αn – αn–|‖u – yn–‖

≤ ( – αn)‖xn – xn–‖ +M

( N∑
m=

|βn,m – βn–,m| + |αn – αn–|
)

+
N∑

m=

‖en,m‖ +
N∑

m=

‖en–,m‖,

whereM =max{M, supn≥ ‖u – yn‖}. In view of Lemma ., we conclude Step .
Step . Show that limn→∞ ‖Txn – xn‖ = , where T =

∑N
m= βmJrm . In light of Lemma .,

we see that T is nonexpansive with F(T) =
⋂N

m= F(Jrm ) =
⋂N

m=A–
m (). Since

‖yn – Txn‖ ≤
∥∥∥∥∥

N∑
m=

βn,mJrm (xn + en,m) –
N∑

m=

βmJrm (xn + en,m)

∥∥∥∥∥
+

∥∥∥∥∥
N∑

m=

βmJrm (xn + en,m) –
N∑

m=

βmJrmxn

∥∥∥∥∥
≤

N∑
m=

|βn,m – βm|∥∥Jrm (xn + en,m)
∥∥ +

N∑
m=

‖en,m‖,
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we find from the restrictions imposed on the control sequences that limn→∞ ‖Txn – yn‖ =
. Since

‖Txn – xn‖ ≤ ‖xn – xn+‖ + ‖xn+ – Txn‖
≤ ‖xn – xn+‖ + αn‖u – Jxn‖ + ( – αn)‖yn – Txn‖,

we conclude Step .
Step . Show that lim supn→∞〈u– x̄, j(xn – x̄)〉 ≤ , where x̄ = limt→ xt , and xt solves the

fixed point equation

xt = tu + ( – t)Txt , ∀t ∈ (, ).

It follows that

‖xt – xn‖ = t
〈
u – xn, j(xt – xn)

〉
+ ( – t)

〈
Txt – xn, j(xt – xn)

〉
= t

〈
u – xt , j(xt – xn)

〉
+ t

〈
xt – xn, j(xt – xn)

〉
+ ( – t)

〈
Txt – Txn, j(xt – xn)

〉
+ ( – t)

〈
Txn – xn, j(xt – xn)

〉
≤ t

〈
u – xt , j(xt – xn)

〉
+ ‖xt – xn‖ + ‖Txn – xn‖‖xt – xn‖, ∀t ∈ (, ).

This implies that

〈
xt – u, j(xt – xn)

〉 ≤ 
t
‖Txn – xn‖‖xt – xn‖, ∀t ∈ (, ).

Since limn→∞ ‖Txn – xn‖ = , we find that lim supn→∞〈xt –u, j(xt – xn)〉 ≤ . In view of the
fact that j is strong to weak∗ uniformly continuous on bounded subsets of E, we find that

∣∣〈u – x̄, j(xn – x̄)
〉
–

〈
xt – u, j(xt – xn)

〉∣∣
≤ ∣∣〈u – x̄, j(xn – x̄)

〉
–

〈
u – x̄, j(xn – xt)

〉∣∣
+

∣∣〈u – x̄, j(xn – xt)
〉
–

〈
xt – u, j(xt – xn)

〉∣∣
≤ ∣∣〈u – x̄, j(xn – x̄) – j(xn – xt)

〉∣∣ + ∣∣〈u – x̄ + xt – u, j(xn – xt)
〉∣∣

≤ ‖u – x̄‖∥∥j(xn – x̄) – j(xn – xt)
∥∥ + ‖xt – x̄‖‖xn – xt‖.

Since xt → x̄, as t → , we have

lim
t→

∣∣〈xt – u, j(xt – xn)
〉
–

〈
u – x̄, j(xn – x̄)

〉∣∣ = .

For ε > , there exists δ >  such that ∀t ∈ (, δ), we have

〈
u – x̄, j(xn – x̄)

〉 ≤ 〈
xt – u, j(xt – xn)

〉
+ ε.

This implies that

lim sup
n→∞

〈
u – x̄, j(xn – x̄)

〉 ≤ lim sup
n→∞

〈
xt – u, j(xt – xn)

〉
+ ε.

http://www.fixedpointtheoryandapplications.com/content/2014/1/105


Huang and Ma Fixed Point Theory and Applications 2014, 2014:105 Page 6 of 8
http://www.fixedpointtheoryandapplications.com/content/2014/1/105

Since ε is arbitrarily chosen, we find that lim supn→∞〈u– x̄, j(xn – x̄)〉 ≤ . This implies that
lim supn→∞〈u – x̄, j(xn+ – x̄)〉 ≤ . This proves Step .
Step . Show that xn → x̄ as n→ ∞.
Using Lemma ., we find that

‖xn+ – x̄‖ =
∥∥∥∥∥αn(u – x̄) + ( – αn)

( N∑
m=

βn,m
(
Jrm (xn + en,m) – x̄

))∥∥∥∥∥


≤ ( – αn)
∥∥∥∥∥

N∑
m=

βn,m
(
Jrm (xn + en,m) – x̄

)∥∥∥∥∥


+ αn
〈
u – x̄, j(xn+ – x̄)

〉

≤ ( – αn)
N∑

m=

βn,m‖xn + en,m – x̄‖ + αn
〈
u – x̄, j(xn+ – x̄)

〉

≤ ( – αn)‖xn – x̄‖ + λn + αn
〈
u – x̄, j(xn+ – x̄)

〉
,

where λn =
∑N

m=(‖en,m‖ + ‖en,m‖‖xn – x̄‖). We, therefore, find that
∑∞

n= λn < ∞. From
Lemma ., we find the desired conclusion. This proves the proof. �

Remark . Theorem . is still valid in the framework of the space which is uniformly
convex and the norm is uniformly Gâteaux differentiable.

4 Applications
In this section, we consider an application of Theorem .. Let A : C → E∗ be a single-
valued monotone operator which is hemicontinuous; that is, continuous along each line
segment in C with respect to the weak∗ topology of E∗. Consider the following variational
inequality:

find x ∈ C such that 〈y – x,Ax〉 ≥ , ∀y ∈ C.

The solution set of the variational inequality is denoted byVI(C,A). Recall that the normal
cone NC(x) for C at a point x ∈ C is defined by

NC(x) =
{
x∗ ∈ E∗ :

〈
y – x,x∗〉 ≤ ,∀y ∈ C

}
.

Now, we are in a position to give the result on the variational inequality.

Theorem . Let E be a real reflexive, strictly convex Banach space with the uniformly
Gâteaux differentiable norm. Let N ≥  be some positive integer and let C be a nonempty
closed and convex subset of E. Let Am : C → E∗ be a single-valued,monotone and hemicon-
tinuous operator. Assume that

⋂N
m=VI(C,Am) is not empty and C has the normal struc-

ture.Let {αn} be a real number sequence in (, ) such that limn→∞ αn = ,
∑∞

n= αn =∞ and∑∞
n= |αn+ –αn| < ∞, let {βn,m} be a real number sequence in (, ) such that

∑N
m= βn,m = ,

limn→∞ βn,m = βm and
∑∞

n= |βn+,m–βn,m| <∞, let {rm} be a positive real number sequence
for eachm ∈ {, , . . . ,N}.Assume that {xn} is a sequence generated in the followingmanner:

x ∈ C, xn+ = αnu + ( – αn)
N∑

m=

βn,mVI
(
C,Am +


rm

(I – xn)
)
, ∀n≥ ,

http://www.fixedpointtheoryandapplications.com/content/2014/1/105
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where u is a fixed element in C. Then the sequence {xn} converges strongly to x̄, which
is the unique solution to the following variational inequality 〈u – x̄, j(p – x̄)〉 ≤ , ∀p ∈⋂N

m=VI(C,Am).

Proof First, we define a mapping Tm ⊂ E × E∗ by

Tmx =

⎧⎨
⎩Amx +NCx, x ∈ C,

∅, x /∈ C.

From Rockafellar [], we find that Tm is maximal monotone and T–
m () = VI(C,Am).

For each rm >  and xn ∈ E, we see that there exists a unique xrm ∈ D(Tm) such that xn ∈
xrm + rmTm(xrm ), where xrm = (I + rmTm)–xn. Notice that

yn,m = VI
(
C,Am +


rm

(I – xn)
)
,

which is equivalent to

〈
y – yn,m,Amyn,m +


rm

(yn,m – xn)
〉
≥ , ∀y ∈ C,

that is, –Amyn,m + 
rm (xn – yn,m) ∈NC(yn,m). This implies that yn,m = (I + rmTm)–xn. In light

of Theorem ., we draw the desired conclusion immediately. �
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