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1 Introduction and preliminaries
Let E be a real Banach space and C be a nonempty closed convex subset of E. A mapping
T : C — C is called nonexpansive if

1Tx - Tyl < llx-yl, Vx,yeC.

Let E be a real Banach space and C be a nonempty closed convex subset of E. A point
p € C is said to be an asymptotic fixed point of T if there exists a sequence {x,};°, C C
such that x,, — p and lim,,_, » ||%, — Tx,|| = 0. The set of asymptotic fixed point is denoted
by F(T). We say that a mapping T is relatively nonexpansive (see [1—4]) if the following
conditions are satisfied:

0 E(T)#9;
1) ¢, Tx) < ¢(p,x), Vx € C, p € F(T);

(L) E(T) = E(T).
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If T satisfies (I) and (II), then T is said to be relatively quasi-nonexpansive. It is easy to
see that the class of relatively quasi-nonexpansive mappings contains the class of relatively
nonexpansive mappings.

Let E be a real Banach space. The modulus of smoothness of E is the function pf :
[0,00) — [0, 00) defined by

1
pE(T) = SUP{E(II?C 0+ e =yl) =1z flxll < L llyll < f}.

E is uniformly smooth if and only if

. PET
lim —
>0 T

=0.

Letdim E > 2. The modulus of convexity of E is the function §g(¢) := inf{1 — || % s Il =
Iyl =1;€ = |[x—y||}. E is uniformly convex if for any € € (0, 2], there exists § = §(¢) > 0 such
that if x,y € E with ||x|| <1, |yl <1and ||x — y|| > ¢, then II%(x +9)|| <1-34. Equivalently,
E is uniformly convex if and only if §¢(€) > 0 for all € € (0,2]. A normed space E is called
strictly convex if for allx,y € E, x #y, ||x|| = ||ly]| =1, we have || Ax + (1 - A)y| <1, VA € (0,1).

Let E* be the dual space of E. We denote by J the normalized duality mapping from E
to 2F" defined by

J@) = {f €E*: (x.f) = IIxl* = IIf1I7}.

The following properties of J are well known (see [5-7] for more details):
(1) If E is uniformly smooth, then J is norm-to-norm uniformly continuous on each
bounded subset of E.
(2) IfE is reflexive, then J is a mapping from E onto E*.
(3) If E is smooth, then J is single valued.
Throughout this paper, we denote by ¢ the functional on E x E defined by

¢(,y) = %1 = 2{x,J)) + 1% Vay €E. 1.1)

Let E be a smooth, strictly convex, and reflexive real Banach space and let C be a
nonempty closed convex subset of E. Following Alber [8], the generalized projection I1¢
from E onto C is defined by

[¢(x) = argming(y,x), VxeE.
yeC

The existence and uniqueness of I1¢ follows from the property of the functional ¢(x,y)
and strict monotonicity of the mapping J. It is obvious that

(Ixll = Iy1)* < B(x,9) < (%l + lIyl)>,  Vx,y € E. (1.2)

Next, we recall the notion of generalized f-projection operator and its properties. Let
G:C x E* — RU {+00} be a functional defined as follows:

G(5,9) = IEI1” - 2(,0) + l@l* + 201 (5), 1.3)
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where & € C, ¢ € E*, p is a positive number and f : C — R U {+0o0} is proper, convex, and
lower semi-continuous. From the definitions of G and f, it is easy to see the following
properties:

(i) G(&,¢) is convex and continuous with respect to ¢ when £ is fixed;

(i) G(&,¢) is convex and lower semi-continuous with respect to & when ¢ is fixed.

Definition 1.1 [9] Let E be a real Banach space with its dual E*. Let C be a nonempty,
closed, and convex subset of E. We say that l'IfC : E* — 2C is a generalized f-projection
operator if

Moy = {ue C: G - infGe.p)], Vo eE"
€

For the generalized f-projection operator, Wu and Huang [9] proved in the following the-

orem some basic properties.

Lemmal.2 [9] LetE be a real reflexive Banach space with its dual E*. Let C be a nonempty,
closed, and convex subset of E. Then the following statements hold:

(i) Hjé is a nonempty closed convex subset of C for all ¢ € E*.

(i) IfE is smooth, then for all ¢ € E*, x € l'IngD if and only if

(x—y0-Jx) + pf(y) —pf(x) =0, VyeC.

(ili) IfE is strictly convex and f : C — R U {+00} is positive homogeneous (i.e.,
f(tx) = tf (x) for all t > O such that tx € C where x € C), then l'lfC is a single-valued
mapping.

Fan et al. [10] showed that the condition f is positive homogeneous which appeared in
Lemma 1.2 can be removed.

Lemma 1.3 [10] Let E be a real reflexive Banach space with its dual E* and C a nonempty,
closed, and convex subset of E. Then if E is strictly convex, then l'IfC is a single-valued map-

ping.

Recall that J is a single-valued mapping when E is a smooth Banach space. There exists
a unique element ¢ € E* such that ¢ = Jx for each x € E. This substitution in (1.3) gives

G(&,Jx) = 111 = 2(&, Jx) + llx]1 + 20/ (€). (1.4)
Now, we consider the second generalized f-projection operator in a Banach space.

Definition 1.4 [11] Let E be a real Banach space and C a nonempty, closed, and convex
subset of E. We say that l'lfc : E — 2€ is a generalized f-projection operator if

Mo = {ue C: Gl ) = Eingc;(g,/x)}, Vx e E.

Obviously, the definition of relatively quasi-nonexpansive mapping T is equivalent to
(1) E(T) #9;
(2) Gp,JTx) < G(p,Jx),Vx e C,p € F(T).
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Lemma 1.5 [12] Let E be a Banach space andf : E — RU{+00} be a lower semi-continuous
convex functional. Then there exist x € E* and a € R such that

fx) = (xx")+a, VxeE.

We know that the following lemmas hold for operator l'IfC.

Lemma 1.6 [13] Let C be a nonempty, closed, and convex subset of a smooth and reflexive
Banach space E. Then the following statements hold:

(i) Hjé is a nonempty, closed, and convex subset of C for all x € E;

(ii) forallxeE, x € I'Ifcx if and only if

&=y Jx=Jx) + pf () - pf(¥) 20, VyeC;
(iii) if E is strictly convex, then Hfo is a single-valued mapping.

Lemma 1.7 [13] Let C be a nonempty, closed, and convex subset of a smooth and reflexive
Banach space E. Let x € E and X € l'Ifo. Then

d(y,%) + G(&,Jx) < G(y,Jx), VyeC.

The fixed points set F(T) of a relatively quasi-nonexpansive mapping is closed convex
as given in the following lemma.

Lemma 1.8 [14, 15] Let C be a nonempty closed convex subset of a smooth, uniformly con-
vex Banach space E. Let T be a closed relatively quasi-nonexpansive mapping of C into
itself. Then F(T) is closed and convex.

Also, this following lemma will be used in the sequel.

Lemma 1.9 [16] Let C be a nonempty closed convex subset of a smooth, uniformly convex
Banach space E. Let {x,,}32 , and {y,};°, be sequences in E such that either {x,};°q or {y.}o0o
is bounded. If lim,,_, oo ¢(x,y,) = 0, then lim,,_, o ||%,, — y,| = 0.

Lemma 1.10 [17] Let p > 1 and r > 0 be two fixed real numbers. Then a Banach space X is
uniformly convex if and only if there is a continuous, strictly increasing and convex function
g:R* — R*, g(0) =0, such that

[ax+@=1)y|” < Allxll? + @ = DIyl - Wp(W)g(Ilx - y1l)
forallx,y € B, and 0 < ) <1, where W,(A) = A(1 - 1) + A’(1 - 1).

Remark We can see from the Lemma 1.10 that the function g has no relation with the
selection of x, y and A. However, the key point above, in the process of generalization and
application about this lemma, has been ambiguous gradually. For instance, the following
lemma states that the function g has something to do with A, which always leads to failure
in the proof.
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Lemma (stated in [11, Lemma 2.10]) Let E be a uniformly convex real Banach space. For
arbitrary r > 0, let B,(0) := {x € E: ||x|| < r} and A € [0,1]. Then there exists a continuous
strictly increasing convex function

g:[0,2r] = R, g(0)=0
such that for every x,y € B,(0), the following inequality holds:
220+ = 25" < A1l + @ = Ryl = 20— 2 (- 1).

Let F be a bifunction of C x C into R. The equilibrium problem is to find x* € C such
that F(x*,y) > 0, for all y € C. We shall denote the solutions set of the equilibrium problem
by EP(F). Numerous problems in physics, optimization, and economics reduce to find a
solution of equilibrium problem. The equilibrium problems include fixed point problems,
optimization problems, and variational inequality problems as special cases.

For solving the equilibrium problem for a bifunction F: C x C — R, let us assume that
F satisfies the following conditions:

(A1) F(x,x)=0forallx e C;

(A2) F is monotone, i.e., F(x,y) + F(y,x) <0 forallx,y € C;

(A3) for eachw,y € C, lim;—, o F(tz + (1 — t)x,y) < F(x,);

(A4) foreachx € C, y— F(x,y) is convex and lower semi-continuous.

Lemma 1.11 (18] Let C be a nonempty closed convex subset of a smooth, strictly convex
and reflexive Banach space E and let F be a bifunction of C x C into R satisfying (Al)-(A4).
Letr >0 and x € E. Then there exists z € C such that

1
F(z,y)+-(y-zJz-Jx) >0, VyeKk.
r

Lemma 1.12 [19] Let C be a nonempty closed convex subset of a smooth, strictly convex
and reflexive Banach space E. Assume that F : C x C — R satisfies (A1)-(A4). For r >0
and x € E, define a mapping TF : E — C as follows:

Tf(x) = {zeC:F(z,y)+ ’lj(y—z,]z—]x) zO,VyeC}

for all z € E. Then the following hold:
() TF is single valued;
(2) TF is a firmly nonexpansive-type mapping, i.e., for any x,y € E,

(TFx = TFy T 2T y) < (Tfx = T y,Jx - )

(3) E(Tf) = EP(F);
(4) EP(F) is closed and convex.

Lemma 1.13 [19] Let C be a nonempty closed convex subset of a smooth, strictly convex
and reflexive Banach space E. Assume that F : C x C — R satisfies (A1)-(A4) and let r > 0.
Then for each x € E and q € F(T?),

q)(q, T,Fx) + ¢(fo,x) < ¢(g,%).
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Let {T,} be a sequence of mappings from C into E, where C is a nonempty closed convex
subset of a real Banach space E. For a subset B of C, we say that
(i) ({T,},B) satisfies condition AKTT (see [15]) if

o0
> " sup{|| Tyax — Txll : 5 € B} < o003

n=1

(ii) ({T}, B) satisfies condition *AKTT (see [15]) if

oo
> sup{ I/ T~ JT,xl| - x € B < oo

n=1

Recently, Shehu [11] proved strong convergence theorems for approximation of com-
mon element of set of common fixed points of countably infinite family of relatively quasi-
nonexpansive mappings and set of common solutions to a system of equilibrium problems
in a uniformly convex and uniformly smooth real Banach space using the properties of

generalized f-projection operator. The author obtained the following theorem.

Theorem 1.14 [11] Let E be a uniformly convex real Banach space which is also uniformly
smooth. Let C be a nonempty closed convex subset of E. For each k =1,2,...,m, let Fy be a
bifunction from C x C satisfying (Al1)-(A4) and let {T,}°, be an infinite family of relatively
quasi-nonexpansive mappings of C into itself such that F := (("),; F(T,,)) N (i EP(Fy)) #
@. Let f : E — R be a convex and lower semi-continuous mapping with C C int(D(f)) and
suppose {x, )00 is iteratively generated by xo € C, C; = C, %1 = quxo,

Vu =T Nt Jxn + (1 — @) Tpxy),
T3 T T T

Tmn ~ 'm=1n
Cri={we(,: G(Wx]’/tn) = G(w,]x,,)},
Xntl = H";‘nﬂxo; n= 11

(1.5)

where ] is the duality mapping on E. Suppose {a,}00, is a sequence in (0,1) such that
liminf,, o0 (1 — ) > 0 {ri )2, C (0,00) (k =1,2,...,m) satisfying liminf,_, g, > 0
(k=1,2,...,m). Suppose that for each bounded subset B of C, the ordered pair ({T,}, B)
satisfies either condition AKTT or condition *AKTT. Let T be the mapping from C into E de-
fined by Tx = lim,,_, o, T,yx for all x € C and suppose that T is closed and F(T) = (o2, F(Ty,).

Then {x,};>, converges strongly to H{rxo.

In this paper we will construct a new iterative scheme and will get strong convergence
theorem for a countable family of relatively quasi-nonexpansive mappings and a system
of equilibrium problems in a uniformly convex and uniformly smooth real Banach space
using the properties of generalized f-projection operator. The notion of uniformly closed
mappings is presented and an example will be given which is a countable family of uni-
formly closed relatively quasi-nonexpansive mappings but not a countable family of rela-
tively nonexpansive mappings. Another example shall be given which is uniformly closed
but not satisfy condition AKTT and *AKTT.
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2 Main results

Now, we shall first introduce the notion of uniformly closed mappings and give an example
which is a countable family of uniformly closed relatively quasi-nonexpansive mappings
but not a countable family of relatively nonexpansive mappings in the sense of G. Another
example shall be given which is uniformly closed but not satisfy condition AKTT and
*AKTT.

Definition 2.1 Let E be a Banach space, C be a nonempty closed convex subset of E. Let
{T,,}32, : C — E be a sequence of mappings of C into E such that (-, F(T},) is nonempty.
{T,,}32, is said to be uniformly closed, if p € (-, F(T,,), whenever {x,} C C converges
strongly to p and |x,, — T)x,|| — 0 as n — oo.

Example 1 Let E = /2, where

12 = {S = (Slr‘§2¢§37---:$n:"') : Z'én'z < 00}7
n=1

HE (Daﬂ) , VeEel,
n=1

(éxﬁ) :Zgnnnr VS :(51,52,%-3,...,En,...),n:(7]1,7’]2,7]3,...,7]”,...)Glz.

n=1

It is well known that /2 is a Hilbert space, so that (/2)* = [?. Let {x,} C E be a sequence
defined by

X0 = (170; 0r07"')y
X1 = (1, 1,0,0,...),
% =(1,0,1,0,0,...),

x3=(1,0,0,1,0,0,...),

Xp = (En,l; Sn,z; Snﬁ; e rsn,kr .o )

where
1, ifk=1Ln+1,
Sn,k =
0, ifk#L,k#n+1,
forall n > 1.

Define a countable family of mappings T, : E — E as follows:

n : —
T (x) = %, ifx =y,
—X, if x # x,,

forall » > 0.
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Conclusion 2.2 {T,}°°, has a unique fixed point 0, that is, F(T,) = {0} #9, Vn > 0.
Proof The conclusion is obvious. O

Let {T,,}32, be a countable family of quasi-relatively quasi-nonexpansive mappings, if

(E(T) =F({Tu}2)s
n=0

the {T},}32, is said to be a countable family of relatively nonexpansive mappings in the

sense of functional G, where
f({Tn}ﬁ‘io) ={p € C:3x, = p, 1%y — Tyxull > 0,x, € C}
is said to be the asymptotic fixed point set of {7,}5°;.

Conclusion 2.3 {T,}°, is a countable family of relatively quasi-nonexpansive mappings
but not a countable family of relatively nonexpansive mappings in the sense of functional G.

Proof By Conclusion 2.2, we only need to show that G(0,/T,x) < G(0,Jx), Vx € E. Note

that E = [ is a Hilbert space, for any # > 0 we can derive

G(0,JT,x) < G(0,Jx) VxeE
& (0, Tyx) < ¢(0,x)
& )10-Tyxl*> < 10 — x|

2 2
< N TuxlI” < [lell”

It is obvious that {x,} converges weakly to xo = (1,0,0,...), and

%]l = O,

+1 :n+1|

n
1, = Truxn |l = ” n—xn —Xn

as 1 — 00, S0 X is an asymptotic fixed point of {T,}:°,. Joining with Conclusion 2.2, we
can obtain (%, F(T},) # F{T,,}22,).
Thus, {T,}32, is a countable family of relatively quasi-nonexpansive mappings but not a

countable family of relatively nonexpansive mappings in the sense of G. ad

Conclusion 2.4 {T,};°, is a countable family of uniformly closed relatively quasi-

nonexpansive mappings in the sense of functional G.

Proof In fact, for any strong convergent sequence {z,} C E such that z, — z and ||z, —
Tuzu|l = 0 as 1 — oo, there exists a sufficiently large nature number N, such that z,, # x,,
for any n,m > N (since %, is not a Cauchy sequence it cannot converge to any element
in E). Then T,z, = —z, for n > N, it follows from ||z,, — T},,z,|| — 0 that 2z, — 0 and hence

Zn —> 29 = 0.
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Therefore, {T,}7°, is a countable family of uniformly closed relatively quasi-nonexpan-
sive mappings but not a countable family of relatively nonexpansive mappings in the sense
of functional G. d

Now, we give an example which is a countable family of uniformly closed quasi-
nonexpansive mappings but not satisfied condition AKTT and *AKTT.

Example 2 Let X = %2. For any complex number x = re?’ € X, define a countable family

of quasi-nonexpansive mappings as follows:
" o
T, :ré” — re®"2), 3=1,2,3,....

Proof 1tis easy to see that () -, F(T,) = {0}. We first prove that { T},} is uniformly closed. In
fact, for any strong convergent sequence {x,} C X such that x,, — xo and ||x,, — T,;x,|| = 0
as 1 — 00, there must be xy =0 € ﬂf’:l F(T,). Otherwise, if x, — x9 # 0, and

%4041 — Tans1%ans1ll = O,

since Tj is continuous, we have

”x4n+1 - T4n+1x4n+1 ”

= [[%an1 — T1%4p1ll = llxo — T1xo || #O.

This is a contradiction. Therefore, {7} is uniformly closed.
Besides, take any x = re?” # 0. For any # by the definition of T, we have

I T, = Tyl = ||re | = >0
and
W Twx~ T Tyl = |re¥ | = r>o0.
That is to say, {T,,} does not satisfied condition AKTT and *AKTT. O

Now we are in a position to present our main theorems.

Theorem 2.5 Let {T,}52, be a countable family of uniformly closed relatively quasi-
nonexpansive mappings of C into itself and other conditions are the same as Theorem 1.14
except for condition AKTT,*AKTT and condition ‘Let T be the mapping from C into E de-
fined by Tx = lim,,_, o Tyx for all x € C and suppose that T is closed and F(T) = (2, F(T,)’
Then the sequence {x,}.°, generated by (1.5) converges strongly to Hj;xo.

Proof We first show that C,, Vn > 1, is closed and convex. It is obvious that C; = C is
closed and convex. Suppose that C, is closed convex for some # > 1. From the definition
of C,,1, we have z € C,,; implies G(z, Ju,,) < G(z, Jx,). This is equivalent to

2((2, Jn) — (2, Jtn)) < |l = Il 6]l
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This implies that C,,,; is closed convex for the same 7 > 1. Hence, C, is closed and convex
for all # > 1. This shows that l'IfCMxo is well defined for all # > 0.
By taking 6% = T, Th<) - Tr2 TR k =1,2,...,m and 60 = I for all n > 1, we obtain

Tkn = Tk=1,n 2n
Uy =6"y,.
We next show that F C C,,, Vi > 1. From Lemma 1.12, one sees that Tt

Tk,n

relatively nonexpansive mapping. For n = 1, we have F C C = C;. Now, assume that F C C,,

,k=1,2,...,m,is

for some n > 2. Then for each x* € F, we obtain

G(x*, Jun) = G(x*,J0)"yn) < G(x*,Jyu)
= G(x", (ctwfrn + (1 — n) Tyxs))
= ot ||* = 200, ) = 201 = ) (&, T o)
+ [l + (0= @) T |* + 20f (%)
< [o*|* = 20l J) = 201 = ) ¥, T T,
@ lall” + (U= o) T Tl + 2f (5°)
=, G (%", Jxn) + (1= ) G(x*, Tux) < G (%", ). 2.1
So, &* € C,. This implies that F C C,,, Vi > 1 and the sequence {,)2, generated by (1.5)
is well defined.

We now show that lim,,, o G(x,, Jxo) exists. Since f : E — R is a convex and lower semi-

continuous, applying Lemma 1.5, we see that there exist #* € E* and « € R such that

fo)=u)+a, VyeE.

It follows that

G, J0) = lo6ull® = 2, Ji0) + 10 1> + 20f (%)
> [loull® = 2o, Ji0) + [1%0 1> + 2 (20, u*) + 2px
= 1%l = 2{wn, Jio — p1a*) + [l 1> + 2pex

1>

> [l |? = 2l1%ull [ Jxo — o1 || + ll%0lI* + 2pct

= (Iall = [0 = pu[[)” + o l1” = [0 — p1s*||* + 2. (2.2)
Since x, = [T, xq, it follows from (2.2) that
G(x", Jxo) = Gt Jio) = (Il = o — pua*[))” + oI = o — pu* | + 2pex
for each x* € F(T). This implies that {x,}2; is bounded and so is {G(x,,/x0)}%,. By the

construction of C,,, we have C,,, C C, and x,,, = chmxo € C, for any positive integer m > n.

It then follows from Lemma 1.7 that

¢(xm:xn) + G(xnr]xo) < G(xrm]xo) (23)
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It is obvious that

G ) = (16l = 15a]1)” = 0.
In particular,

(X1, %n) + G(xy, Jx0) < G(%41,J%0)
and

G6n1,60) = (Pnenll = all)” > 0,

and so {G(x,, Jx0)}52, is nondecreasing. It follows that the limit of {G(x,, Jxo)}52, exists.
By the fact that C,, C C, and x,,, = Hmexo € C, for any positive integer m > n, we obtain

By tn) < DX, %).
Now, (2.3) implies that

Sy n) < P, %) < G, Jx0) = G (%, J0).- (2.4)
Taking the limit as m, n — oo in (2.4), we obtain

lim ¢(x,,,%,) = 0.

n—0oQ
It then follows from Lemma 1.9 that ||x,, — x,|| = 0 as m,n — oo. Hence, {x,}3°, is a
Cauchy sequence. Since E is a Banach space and C is closed and convex, there exists p € C
such that x,, — p as n — oo.

Now since ¢(x,,,x,) — 0 as m,n — oo we have in particular that ¢(x,,1,x,) — 0 as

n — oo and this further implies that lim,,_, o [|%,41 — %, || = 0. Since x,,,; = Han:le e Cui

we have
¢(xn+1: ”n) = ¢(xn+17xn)r Vn = 0.
Then we obtain
lim ¢ (%11, 4,) = 0.
n— o0
Since E is uniformly convex and smooth, we have from Lemma 1.9
im [|%,1 —%4] =0 = lim [0 — .
n—00 n—o0
So,

”xn - un” =< ||xn+1 _xn” + ||xn+1 - Mn”
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Hence,
lim ||x, —u,l|l =0. (2.5)
n—00

Since J is uniformly norm-to-norm continuous on bounded sets and lim,,, o [|x, — 2] = 0,

we obtain
lim ||/x, — Ju,|l = 0. (2.6)
n— 00

Let r = sup,., { %[, || %, || }. Since E is uniformly smooth, we know that E* is uniformly
convex. Then from Lemma 1.10, we have
G(x*, Jun) = G(x*,J0)"yn) < G(x*,Jyu)
= G(x", (cwfn + (1 — u) Tyxn))
= [l * = 2e{x*, ) - 20 — @) (%", T Ty
+ ey + (1= @) T |* + 207 ()
<[] = 20{x*, J) — 201 — @) (", T T,
+ oy |1* + (1= ) T Tt |1
— w1 = a)g(Ilan = T Tuknll) + 20f (x*)
= 0, G(x", Jn) + (1= 00) G (6", J T,
— (1= g (I = JTx4l)
< G(x", Jn) — an(1 = 0)g (1n = J Tl

It then follows that
an(l - an)g(”]xn _]Tnxn”) = G(x*;]xn) - G(x*,]u,,)
But

G(x*, Jxn) = G(*, Jua) = 126 1” = ot |1 = 2(x", Joc — Jut)
< o2 = ot + 2|, s — i)
< Wl = et 1| (2 | + o) + 20" | 16 — T

< N = st | (Il ll + a2 11) + 2| * | 1 = Jot ]
From (2.5) and (2.6), we obtain
G(x*, Jxn) — G(x*, Ju,) = 0, n— 0.
Using the condition liminf,_, o @,(1 — ;) > 0, we have

Tim g(|l/xty = JTuu|) = 0.

Page 12 of 17
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By the properties of g, we have lim,, . o |, —J Ty, || = 0. Since J ™! is also uniformly norm-
to-norm continuous on bounded sets, we have

lim ||x, — Tx,l = 0.
n— 00
Since {T,}°, are uniformly closed, and {x,}5; is a Cauchy sequence. Then p € F(T) =

Mozt E(T).
Next, we show that p € (", EP(Fi). From (2.1), we obtain

B 1) = B 07) = 9", TE7, 071,)

Tmn 1

= ¢(x*’9;:n_1yn) = ¢(x*,xn)~ (2.7)

Since x* € EP(F,,) = F(Ti;”n) for all #n > 1, it follows from (2.7) and Lemma 1.13 that

¢ (TFm em—lyn’ 0}:}1—1}/}1)

T 1

= ¢(x*’0;:n_1yn) - ¢(x*’ un) < ¢(x*;xn) - qb(x*, I/ln).

¢ (s 0" y)

From (2.5) and (2.6), we obtain lim,—, oo ¢(0."y,,, 0" 1y,,) = lim,—, 0 ¢ (14,07 'y,,) = 0. From
Lemma 1.9, we have

im 1075, = 6"y = lim s, = 6"y | = 0. (2.8)
Hence, we have from (2.8) that
im [[/6,7y, =76,y = 0. (2.9)

Again, since x* € EP(F,,, 1) = F(T,I;”:f”) for all #n > 1, it follows from (2.7) and Lemma 1.13
that

SOy 8 ) = ST, 81 9 )

"m-1,n

< o500 2yn) — D50 y) < P(x% %) — B (%, 1)

Again, from (2.5) and (2.6), we obtain lim,,_, & ¢ (6" 'y,,,6"~%y,) = 0. From Lemma 1.9, we

have

Tim [,y = 6,2y = 0 (2.10)
and hence,

lim (7675, =76,y = 0. (2.11)

In a similar way, we can verify that

lim [0y, = 00" yu| =+ = lim |65y, — 3| = 0. (2.12)

n—00 n—00
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From (2.8), (2.10), and (2.12), we can conclude that
lim |08y, — 05 'yu| =0, k=1,2,...,m. (2.13)
n—0Q
Since x, — p, n — 00, we obtain from (2.5) that u#,, — p, n — 00. Again, from (2.8), (2.10),
(2.12), and u,, — p, n — 00, we have that 9,’1‘)/,, — p, n— oo foreach k =1,2,...,m. Also,
using (2.13), we obtain
lim /6%y, 105y, =0, k=12,...,m.
n—00

Since liminf, o 7%, >0, k=1,2,...,m,

i W0y, = J0

n— 00 Tin

0. (2.14)
By Lemma 1.12, we have for each k =1,2,...,m

Fi (053 y) + %(y =0y JONyn = TN 1yu) = 0, VyeC.
Furthermore, using (A2) we obtain

1
- On Y JOKyn = TON " yu) = Fi (3,65 n).- (215)

By (A4), (2.14), and Gy’fy,, — p, we have for each k= 1,2,...,m
Fk(y,p)fo, _)/EC.

For fixedy € C, let z; = ty + (1 — ¢)p for all ¢ € (0,1]. This implies that z; € C. This yields
Fi(z;, p) < 0. It follows from (Al) and (A4) that

0 = Fi(z, z¢) < tFie(2,y) + (1 = )F (21, p) < tFi(21,9)
and hence
0 < Fi(zs,9).
From condition (A3), we obtain
F(p,y) >0, yeC.
This implies that p € EP(Fy), k =1,2,...,m. Thus, p € (L, EP(Fi). Hence, we have p €
F = (i EP(F) N (N2, E(Ty)).

Finally, we show that p = H{Exo. Since F = (L, EP(Fx) N (o2, F(T,,)) is a closed and

convex set, from Lemma 1.6, we know that H{vxo is single valued and denote w = l'[éxo.

Since x,, = H{nxo and w € F C C,, we have

G(x, Jx0) < G(w,Jx0), Vn=>0.
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We know that G(&, /) is convex and lower semi-continuous with respect to & when ¢ is
fixed. This implies that

G(p, Jxo) < liminf G(x,, Jxo) < limsup G(x,, Jxo) < G(w, Jxg).

From the definition of Hj;xo and p € F, we see that p = w. This completes the proof. [

Corollary 2.6 Let E be a uniformly convex and uniformly smooth real Banach space,
and let C be a nonempty closed convex subset of E. For each k = 1,2,...,m, let Fy be
a bifunction from C x C satisfying (Al)-(A4) and let {T,}32, be a countable family of
uniformly closed relatively quasi-nonexpansive mappings of C into itself such that F :=
(M2 E(T))N (N, EP(Fx)) # 9. Suppose {x,}2, is iteratively generated by xo € C, Cy = C,
X1 = l'[fclxo,

Yn = jil(an]xn + (1 - an)]Tnxn)y
Up = Trf::ln Ti;n—_lTn T T’{;z,n T’I'—Enyn'

Cui={weC,:dw,u,) < dp(w,x,)},
Xntl = Hcmlxo» n>1,

where ] is the duality mapping on E. Suppose {a,}50, is a sequence in (0,1) such that

o]

liminf,_, o @y (1 — ) > 0, and {r ,}52; C (0,00) (k =1,2,...,m) satisfying liminf,_, o ., >

0(k=1,2,...,m). Then {x,}, converges strongly to Irxy.

Proof Take f(x) = 0 for all x € E in Theorem 2.5, then G(&, Jx) = ¢(§,x) and chxo = Iexo.
Then Corollary 2.6 holds. O

Take Fy =0 (k=1,2,...,m), it is obvious that the following holds.

Corollary 2.7 Let E be a uniformly convex and uniformly smooth real Banach space, and
let C be a nonempty closed convex subset of E. Let {T,,};°, be a countable family of uniformly
closed relatively quasi-nonexpansive mappings of C into itself such that F = (o, F(T,,)) #
@. Let f : E — R be a convex and lower semi-continuous mapping with C C int(D(f)) and
suppose {x, )00 is iteratively generated by xo € C, C; = C, % = l'[fclxo,

Yn = ]_1(an]xn + (1 - an)]Tnxn):
C;’1+1 = {W € Cn : G(Wr]yn) < G(W;]xn)}’
Xntl = H”;‘nﬂxO; n= 1)

where ] is the duality mapping on E. Suppose {a,}2, is a sequence in (0,1) such that
liminf,, o @, (1 - ,) > 0, and {r,,}50, C (0,00) (k=1,2,...,m) satisfying liminf,_, o ri, >
0 (k=1,2,...,m). Then {x,}°, converges strongly to I1rxy.

3 Applications
Let ¢ : C — R be a real-valued function. The convex minimization problem is to find
x* € C such that

o(x*) < 0(y), (3.1)
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Vy € C. The set of solutions of (3.1) is denoted by CMP(¢). For each r > 0 and x € E, define
the mapping

TY (x) = {ze C:o()+ %(y—ZJZ—Ix) > ¢(2),¥y € C}~

Theorem 3.1 Let E be a uniformly convex and uniformly smooth real Banach space,

and let C be a nonempty closed convex subset of E. For each k = 1,2,...,m, let ¢ be
a bifunction from C x C satisfying (A1)-(A4) and let {T,}3, be a countable family of
uniformly closed relatively quasi-nonexpansive mappings of C into itself such that F :=
(M2 E(T) N (N, CMP(gx)) # 9. Let f : E — R be a convex and lower semi-continuous
mapping with C C int(D(f)) and suppose {x,}°, is iteratively generated by x, € C, C; = C,

X1 = Hjélxo,

Yn = ]_l(an]xn + (1 - an)]Tnxn):
Up = T;"przr,ln szfn o Tr(pfn T;/;,lny”’

Cu1={we C,: Gw,Ju,) < Gw,Jx,)},
Xni1 = chn+1xo, n>1,

where ] is the duality mapping on E. Suppose {a,}o50, is a sequence in (0,1) such that

liminf,_, o @, (1 — ) > 0 and {ry,}52, C (0,00) (k=1,2,...,m) satisfying iminf,_, o . ,, >

U

0(k=1,2,...,m). Then {x,}3, converges strongly to TTpx,.

Proof Define Fi(x,y) = ox(y) — ¢ (x), x,y € C and k = 1,2,...,m. Then F(Tﬁ(") = EP(Fy) =
CMP(py) = F (Tﬁf(k) for each k =1,2,...,m, and therefore {F;}}’, satisfies conditions (A1)
and (A2). Furthermore, one can easily show that {F;}}L, satisfies (A3) and (A4). Therefore,
from Theorem 2.5, we obtain Theorem 3.1. O

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Acknowledgements
This project is supported by the National Natural Science Foundation of China under grant (11071279).

Received: 9 February 2014 Accepted: 31 March 2014 Published: 06 May 2014

References

1.

2.

3.

Butnariu, D, Reich, S, Zaslavski, AJ: Asymptotic behaviour of relatively nonexpansive operators in Banach spaces.

J. Appl. Anal. 7,151-174 (2001)

Butnariu, D, Reich, S, Zaslavski, AJ: Weak convergence of orbits of nonlinear operator in reflexive Banach spaces.
Numer. Funct. Anal. Optim. 24, 489-508 (2003)

Censor, Y, Reich, S: Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility
and optimization. Optimization 37, 323-339 (1996)

. Matsushita, S, Takahashi, W: A strong convergence theorem for relatively nonexpansive mappings in Banach spaces.

J. Approx. Theory 134, 257-266 (2005)

. Chidume, CE: Geometric Properties of Banach Spaces and Nonlinear Iterations. Lecture Notes in Mathematics,

vol. 1965. Springer, Berlin (2009). ISBN:978-1-84882-189-7. xviii+326 pp.

. Takahashi, W: Nonlinear Functional Analysis-Fixed Point Theory and Applications. Yokohama Publishers, Yokohama

(2000) (in Japanese)

. Takahashi, W: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)
. Alber, YI: Metric and generalized projection operator in Banach spaces: properties and applications. In: Theory and

Applications of Nonlinear Operators of Accretive and Monotone Type. Lecture Notes in Pure and Applied
Mathematics, vol. 178, pp. 15-50. Dekker, New York (1996)


http://www.fixedpointtheoryandapplications.com/content/2014/1/103

Zhang et al. Fixed Point Theory and Applications 2014, 2014:103 Page 17 of 17
http://www.fixedpointtheoryandapplications.com/content/2014/1/103

9. Wu, KQ, Huang, NJ: The generalized f-projection operator with application. Bull. Aust. Math. Soc. 73, 307-317 (2006)

10. Fan, JH, Liu, X, Li, JL: Iterative schemes for approximating solutions of generalized variational inequalities in Banach
spaces. Nonlinear Anal. 70, 3997-4007 (2009)

11. Shehu, Y: Strong convergence theorems for infinite family of relatively quasi-nonexpansive mappings and systems of
equilibrium problems. Appl. Math. Comput. 218, 5146-5156 (2012)

12. Deimling, K: Nonlinear Functional Analysis. Springer, Berlin (1985)

13. Li, X, Huang, N, O'Regan, D: Strong convergence theorems for relatively nonexpansive mappings in Banach spaces
with applications. Comput. Math. Appl. 60, 1322-1331 (2010)

14. Qin, X, Cho, YJ, Kang, SM: Convergence theorems of common elements for equilibrium problems and fixed point
problems in Banach spaces. J. Comput. Appl. Math. 225, 20-30 (2009)

15. Nilsrakoo, W, Saejung, S: Strong convergence to common fixed points of countable relatively quasi-nonexpansive
mappings. Fixed Point Theory Appl. 2008, Article ID 312454 (2008)

16. Kamimura, S, Takahashi, W: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13,
938-945 (2002)

17. Xu, HK: Inequalities in Banach spaces with applications. Nonlinear Anal. 16(2), 1127-1138 (1991)

18. Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145
(1994)

19. Takahashi, W, Zembayashi, K: Strong and weak convergence theorems for equilibrium problems and relatively
nonexpansive mappings in Banach spaces. Nonlinear Anal. 70, 45-57 (2009)

10.1186/1687-1812-2014-103

Cite this article as: Zhang et al.: Uniformly closed replaced AKTT or *AKTT condition to get strong convergence
theorems for a countable family of relatively quasi-nonexpansive mappings and systems of equilibrium problems.
Fixed Point Theory and Applications 2014, 2014:103

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://www.fixedpointtheoryandapplications.com/content/2014/1/103

	Uniformly closed replaced AKTT or *AKTT condition to get strong convergence theorems for a countable family of relatively quasi-nonexpansive mappings and systems of equilibrium problems
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Main results
	Applications
	Competing interests
	Authors' contributions
	Acknowledgements
	References


