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Abstract
The purpose of this paper is to prove the strong convergence of the Ishikawa iteration
processes for some generalized multivalued nonexpansive mappings in the
framework of CAT(1) spaces. Our results extend the corresponding results given by
Shahzad and Zegeye (Nonlinear Anal. 71:838-844, 2009), Puttasontiphot (Appl. Math.
Sci. 4:3005-3018, 2010), Song and Cho (Bull. Korean Math. Soc. 48:575-584, 2011) and
many others.
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1 Introduction
Roughly speaking, a CAT(κ) space is a geodesic space of bounded curvature. The precise
definition is given below. Here CAT means the initials of three mathematician’s names
(E Cartan, AD Alexandrov and A Toponogov) who have made important contributions to
the understanding of curvature via inequalities for the distance function, and κ is a real
number that we impose as the curvature bound of the space.
Fixed point theory in CAT(κ) spaces was first studied by Kirk [, ]. His works were

followed by a series of new works by many authors (see, e.g., [–]) mainly focusing on
CAT() spaces. Since any CAT(κ) space is a CAT(κ ′) space for κ ′ ≥ κ (see [, p.]), all
results for CAT() spaces immediately apply to any CAT(κ) space with κ ≤ . Notice also
that all CAT(κ) spaces (with appropriate sizes) are uniformly convex metric spaces in the
sense of []. Thus, the results in [] concerning uniformly convex metric spaces also
hold in CAT(κ) spaces as well.
In , Ishikawa [] introduced an iteration process for approximating fixed points of

a single-valued mapping t on a Hilbert space H by

xn+ = ( – αn)xn + αnt
(
( – βn)xn + βnt(xn)

)
, n≥ ,

where {αn} and {βn} are sequences in [, ] satisfying some certain restrictions. For more
details and literature on the convergence of the Ishikawa iteration process for single-valued
mappings, see, e.g., [–].
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The first result concerning the convergence of an Ishikawa iteration process for multi-
valued mappings was proved by Sastry and Babu [] in a Hilbert space. Panyanak []
extended the result of Sastry and Babu to a uniformly convex Banach space. Since then
the strong convergence of the Ishikawa iteration processes for multivalued mappings has
been rapidly developed and many of papers have appeared (see, e.g., [–]). Among
other things, Shahzad and Zegeye [] defined two types of Ishikawa iteration processes
as follows.
Let E be a nonempty closed convex subset of a uniformly convex Banach space X,

{αn}, {βn} ⊂ [, ], and T : E → E be a multivalued mapping whose values are nonempty
proximinal subsets of E. For each x ∈ E, let PT : E → E be a multivalued mapping defined
by

PT (x) :=
{
u ∈ T(x) : ‖x – u‖ = inf

y∈T(x)
‖x – y‖

}
.

(A): The sequence of Ishikawa iterates is defined by x ∈ E,

yn = βnzn + ( – βn)xn, n≥ ,

where zn ∈ T(xn), and

xn+ = αnz′
n + ( – αn)xn, n≥ ,

where z′
n ∈ T(yn).

(B): The sequence of Ishikawa iterates is defined by x ∈ E,

yn = βnzn + ( – βn)xn, n≥ ,

where zn ∈ PT (xn), and

xn+ = αnz′
n + ( – αn)xn, n≥ ,

where z′
n ∈ PT (yn).

They proved, under some suitable assumptions, that the sequence {xn} defined by (A)
and (B) converges strongly to a fixed point of T . In , Puttasontiphot [] gave analo-
gous results to those of Shahzad and Zegeye in complete CAT() spaces.
In this paper, we extend Puttasontiphot’s results to the setting of CAT(κ) spaces with

κ ≥ .

2 Preliminaries
Let (X,d) be a metric space, and let x ∈ X, E ⊆ X. The distance from x to E is defined by

dist(x,E) = inf
{
d(x, y) : y ∈ E

}
.

The diameter of E is defined by

diam(E) = sup
{
d(u, v) : u, v ∈ E

}
.
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The set E is called proximinal if for each x ∈ X, there exists an element y ∈ E such that
d(x, y) = dist(x,E). We shall denote by E the family of nonempty subsets of E, by P(E) the
family of nonempty proximinal subsets of E and by C(E) the family of nonempty closed
subsets of E. Let H(·, ·) be the Hausdorff (generalized) distance on E , i.e.,

H(A,B) =max
{
sup
a∈A

dist(a,B), sup
b∈B

dist(b,A)
}
, A,B ∈ E .

Definition . Let E be a nonempty subset of a metric space (X,d) and T : E → E . Then
T is said to

(i) be nonexpansive if H(T(x),T(y))≤ d(x, y) for all x, y ∈ E;
(ii) be quasi-nonexpansive if Fix(T) 
= ∅ and

H
(
T(x),T(p)

) ≤ d(x,p) for all x ∈ E and p ∈ Fix(T);

(iii) satisfy condition (I) if there is a nondecreasing function f : [,∞) → [,∞) with
f () = , f (r) >  for r ∈ (,∞) such that

dist
(
x,T(x)

) ≥ f
(
dist

(
x,Fix(T)

))
for all x ∈ E;

(iv) be hemicompact if for any sequence {xn} in E such that

lim
n→∞dist

(
xn,T(xn)

)
= ,

there exists a subsequence {xnk } of {xn} and q ∈ E such that limk→∞ xnk = q.

A point x ∈ E is called a fixed point of T if x ∈ T(x). We denote by Fix(T) the set of all
fixed points of T .
The following lemma can be found in []. We observe that the boundedness of the

images of T is superfluous.

Lemma . Let E be a nonempty subset of a metric space (X,d) and T : E → P(E) be a
multivalued mapping. Then

(i) dist(x,T(x)) = dist(x,PT (x)) for all x ∈ E;
(ii) x ∈ Fix(T)⇐⇒ x ∈ Fix(PT ) ⇐⇒ PT (x) = {x};
(iii) Fix(T) = Fix(PT ).

Let (X,d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a
geodesic from x to y) is a map c from a closed interval [, l] ⊂ R to X such that c() = x,
c(l) = y, and d(c(t), c(t′)) = |t – t′| for all t, t′ ∈ [, l]. In particular, c is an isometry and
d(x, y) = l. The image c([, l]) of c is called a geodesic (or metric) segment joining x and y.
When it is unique, this geodesic segment is denoted by [x, y]. This means that z ∈ [x, y] if
and only if there exists α ∈ [, ] such that

d(x, z) = ( – α)d(x, y) and d(y, z) = αd(x, y).

In this case, we write z = αx ⊕ ( – α)y. The space (X,d) is said to be a geodesic space if
every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if

http://www.fixedpointtheoryandapplications.com/content/2014/1/1
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there is exactly one geodesic joining x and y for each x, y ∈ X. A subset E of X is said to be
convex if E includes every geodesic segment joining any two of its points.
In a geodesic space (X,d), the metric d : X × X → R is convex if for any x, y, z ∈ X and

α ∈ [, ], one has

d
(
x,αy⊕ ( – α)z

) ≤ αd(x, y) + ( – α)d(x, z).

Let D ∈ (,∞], then (X,d) is called a D-geodesic space if any two points of X with their
distance smaller than D are joined by a geodesic segment. Notice that (X,d) is a geodesic
space if and only if it is a D-geodesic space.
Let n ∈N , we denote by 〈·|·〉 the Euclidean scalar product in Rn, that is,

〈x|y〉 = xy + · · · + xnyn, where x = (x, . . . ,xn), y = (y, . . . , yn).

Let Sn denote the n-dimensional sphere defined by

Sn =
{
x = (x, . . . ,xn+) ∈ Rn+ : 〈x|x〉 = 

}
,

with metric d(x, y) = arccos〈x|y〉, x, y ∈ Sn (see [, Proposition .]).
From now on, we assume that κ ≥  and define

Dκ :=
π√
κ

if κ >  and Dκ :=∞ if κ = .

We denote byMn
κ the following metric spaces:

(i) if κ =  thenMn
 is the Euclidean space Rn;

(ii) if κ >  thenMn
κ is obtained from Sn by multiplying the distance function by the

constant /
√

κ .
A geodesic triangle �(x, y, z) in the metric space (X,d) consists of three points x, y, z in

X (the vertices of �) and three geodesic segments between each pair of vertices (the edges
of�).Wewrite p ∈ �(x, y, z) when p ∈ [x, y]∪ [y, z]∪ [z,x]. For�(x, y, z) in a geodesic space
X satisfying d(x, y) + d(y, z) + d(z,x) < Dκ , there exist points x̄, ȳ, z̄ ∈M

κ such that

d(x, y) = dM
κ
(x̄, ȳ), d(y, z) = dM

κ
(ȳ, z̄), and d(z,x) = dM

κ
(z̄, x̄)

(see [, Lemma .]). We call the triangle having vertices x̄, ȳ, z̄ in M
κ a comparison

triangle of �(x, y, z). Notice that it is unique up to an isometry ofM
κ , and we denote it by

�(x̄, ȳ, z̄). A point p̄ ∈ [x̄, ȳ] is called a comparison point for p ∈ [x, y] if d(x,p) = dM
κ
(x̄, p̄).

A geodesic triangle �(x, y, z) in X with d(x, y) +d(y, z) +d(z,x) < Dκ is said to satisfy the
CAT(κ) inequality if for any p,q ∈ �(x, y, z) and for their comparison points p̄, q̄ ∈ �(x̄, ȳ, z̄),
one has

d(p,q) ≤ dM
κ
(p̄, q̄).

Definition . Ametric space (X,d) is called a CAT(κ) space if it is Dκ -geodesic and any
geodesic triangle �(x, y, z) in X with d(x, y) + d(y, z) + d(z,x) < Dκ satisfies the CAT(κ)
inequality.

http://www.fixedpointtheoryandapplications.com/content/2014/1/1
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It follows from [, Proposition .] that CAT(κ) spaces are uniquely geodesic spaces.
In this paper, we consider CAT(κ) spaces with κ ≥ . Since most of the results for such
spaces are easily deduced from those for CAT() spaces, in what follows, we mainly focus
on CAT() spaces. The following lemma is a consequence of Proposition . in [].

Lemma . If (X,d) is a CAT() space with diam(X) < π/, then there is a constant K > 
such that

d(( – α)x⊕ αy, z
) ≤ ( – α)d(x, z) + αd(y, z) –

K


α( – α)d(x, y)

for any α ∈ [, ] and any points x, y, z ∈ X.

The following lemma is also needed.

Lemma . [] Let {αn}, {βn} be two real sequences such that
(i) ≤ αn,βn < ;
(ii) βn →  as n→ ∞;
(iii)

∑
αnβn =∞.

Let {γn} be a nonnegative real sequence such that
∑∞

n= αnβn( – βn)γn is bounded. Then
{γn} has a subsequence which converges to zero.

3 Main results
We begin this section by proving a crucial lemma.

Lemma . Let (X,d) be a CAT() space with convex metric, E be a nonempty closed con-
vex subset of X, and T : E → E be a quasi-nonexpansive mapping with Fix(T) 
= ∅ and
T(p) = {p} for each p ∈ Fix(T). Let {xn} be the sequence of Ishikawa iterates defined by (A)
(replacing + with ⊕). Then limn→∞ d(xn,p) exists for each p ∈ Fix(T).

Proof Let p ∈ Fix(T). For each n ≥ , we have

d(yn,p) = d
(
βnzn ⊕ ( – βn)xn,p

)

≤ βnd(zn,p) + ( – βn)d(xn,p)

≤ βnH
(
T(xn),T(p)

)
+ ( – βn)d(xn,p)

≤ βnd(xn,p) + ( – βn)d(xn,p)

≤ d(xn,p)

and

d(xn+,p) = d
(
αnz′

n ⊕ ( – αn)xn,p
)

≤ αnd
(
z′
n,p

)
+ ( – αn)d(xn,p)

≤ αnH
(
T(yn),T(p)

)
+ ( – αn)d(xn,p)

≤ αnd(yn,p) + ( – αn)d(xn,p)

≤ d(xn,p).

http://www.fixedpointtheoryandapplications.com/content/2014/1/1
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This shows that the sequence {d(xn,p)} is decreasing and bounded below. Thus
limn→∞ d(xn,p) exists for any p ∈ Fix(T). �

Now, we prove the strong convergence of the Ishikawa iteration process defined by (A).

Theorem . Let (X,d) be a complete CAT() space with convex metric and diam(X) <
π/, E be a nonempty closed convex subset of X , and T : E → C(E) be a quasi-nonexpansive
mapping with Fix(T) 
= ∅ and T(p) = {p} for each p ∈ Fix(T). Let αn,βn ∈ [a,b]⊂ (, ) and
{xn} be the sequence of Ishikawa iterates defined by (A) (replacing + with ⊕). If T satisfies
condition (I), then {xn} converges strongly to a fixed point of T .

Proof Let p ∈ Fix(T). By using Lemma ., we have

d(xn+,p) = d(αnz′
n ⊕ ( – αn)xn,p

)

≤ ( – αn)d(xn,p) + αnd(z′
n,p

)
–
K


αn( – αn)d(xn, z′
n
)

≤ ( – αn)d(xn,p) + αnH(T(yn),T(p)
)
–
K


αn( – αn)d(xn, z′
n
)

≤ ( – αn)d(xn,p) + αnd(yn,p)

and

d(yn,p) = d(βnzn ⊕ ( – βn)xn,p
)

≤ ( – βn)d(xn,p) + βnd(zn,p) –
K


βn( – βn)d(xn, zn)

≤ ( – βn)d(xn,p) + βnH(T(xn),T(p)
)
–
K


βn( – βn)d(xn, zn)

≤ ( – βn)d(xn,p) + βnd(xn,p) –
K


βn( – βn)d(xn, zn)

≤ d(xn,p) –
K


βn( – βn)d(xn, zn).

So that

d(xn+,p) ≤ ( – αn)d(xn,p) + αnd(xn,p) –
K


αnβn( – βn)d(xn, zn).

This implies that

K

a( – b)d(xn, zn)≤ K


αnβn( – βn)d(xn, zn) ≤ d(xn,p) – d(xn+,p) ()

and so

∞∑
n=

K

a( – b)d(xn, zn) < ∞.

Thus, limn→∞ d(xn, zn) = . Also, dist(xn,T(xn)) ≤ d(xn, zn) →  as n → ∞. Since T sat-
isfies condition (I), we have limn→∞ dist(xn,Fix(T)) = . The proof of the remaining part
follows the proof of Theorem . in [], therefore we omit it. �
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Theorem . Let (X,d) be a complete CAT() space with convex metric and diam(X) <
π/, E be a nonempty closed convex subset of X , and T : E → C(E) be a quasi-nonexpansive
mapping with Fix(T) 
= ∅ and T(p) = {p} for each p ∈ Fix(T).Assume that (i)  ≤ αn,βn < ;
(ii) βn → ; (iii)

∑
αnβn = ∞, and let {xn} be the sequence of Ishikawa iterates defined by

(A) (replacing + with ⊕). If T is hemicompact and continuous, then {xn} converges strongly
to a fixed point of T .

Proof Let p ∈ Fix(T). By () we have

K


∞∑
n=

αnβn( – βn)d(xn, zn) <∞.

By Lemma ., there exist subsequences {xnk } and {znk } of {xn} and {zn} respectively such
that limk→∞ d(xnk , znk ) = . Hence

lim
k→∞

dist
(
xnk ,T(xnk )

) ≤ lim
k→∞

d(xnk , znk ) = .

Since T is hemicompact, by passing through a subsequence, we may assume that xnk → q
for some q ∈ E. Since T is continuous,

dist
(
q,T(q)

) ≤ d(q,xnk ) + dist
(
xnk ,T(xnk )

)
+H

(
T(xnk ),T(q)

) →  as k → ∞.

This implies that q ∈ Fix(T) sinceT(q) is closed. Thus limn→∞ d(xn,q) exists by Lemma .
and hence q is the limit of {xn} itself. �

To avoid the restriction of T , that is, T(p) = {p} for p ∈ Fix(T), we use the iteration
process defined by (B).

Theorem . Let (X,d) be a complete CAT() space with convex metric and diam(X) <
π/, E be a nonempty closed convex subset of X , and T : E →P(E) be a multivalued map-
ping with Fix(T) 
= ∅ and PT is quasi-nonexpansive. Let αn,βn ∈ [a,b] ⊂ (, ) and {xn} be
the sequence of Ishikawa iterates defined by (B) (replacing +with⊕). If T satisfies condition
(I), then {xn} converges strongly to a fixed point of T .

Proof It follows from Lemma . that dist(x,PT (x)) = dist(x,T(x)) for all x ∈ E,

Fix(PT ) = Fix(T) and PT (p) = {p} for each p ∈ Fix(PT ).

Since T satisfies condition (I), for each x ∈ E we have

dist
(
x,PT (x)

)
= dist

(
x,T(x)

) ≥ f
(
dist

(
x,Fix(T)

))
= f

(
dist

(
x,Fix(PT )

))
.

That is, PT satisfies condition (I). Next, we show that PT (x) is closed for any x ∈ E. Let
{yn} ⊂ PT (x) and limn→∞ yn = y for some y ∈ E. Then

d(x, yn) = dist
(
x,T(x)

)
and lim

n→∞d(x, yn) = d(x, y).

http://www.fixedpointtheoryandapplications.com/content/2014/1/1
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It follows that d(x, y) = dist(x,T(x)) and this implies y ∈ PT (x). Applying Theorem . to
the map PT , we can conclude that the sequence {xn} defined by (B) converges to a point
z ∈ Fix(PT ) = Fix(T). This completes the proof. �

The following theorem is an analogue of Theorem  in [].

Theorem . Let (X,d) be a complete CAT() space with convex metric and diam(X) <
π/, E be a nonempty closed convex subset of X , and T : E → P(E) be a hemicompact
mapping with Fix(T) 
= ∅ and PT is quasi-nonexpansive and continuous. Assume that
(i)  ≤ αn,βn < ; (ii) βn → ; (iii)

∑
αnβn = ∞, and let {xn} be the sequence of Ishikawa

iterates defined by (B) (replacing + with ⊕). Then {xn} converges strongly to a fixed point
of T .

Proof As in the proof of Theorem ., we have

Fix(PT ) = Fix(T) and PT (p) = {p} for each p ∈ Fix(PT ).

The hemicompactness of PT follows from that of T . The conclusion follows from Theo-
rem .. �
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