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1 Introduction
The Banach contraction principle is the most celebrated fixed-point theorem. There are
great number of generalizations of the Banach contraction principle. A very recent trend
in metrical fixed-point theory, initiated by Ran and Reurings [], and continued by Nieto
and Lopez [, ], Bhaskar and Lakshmikantham [] andmany other authors, is to consider
a partial order on the ambient metric space (X,d) and to transfer a part of the contrac-
tive property of the nonlinear operators into its monotonicity properties. This approach
turned out to be very productive; see, for example, [–], and the obtained results found
important applications to the existence of solutions for matrix equations or ordinary dif-
ferential equations and integral equations, see [–, ] and reference therein.
In , Bhaskar and Lakshmikantham [] introduced the notion of coupled fixed point

and proved some fixed-point theorems under certain conditions. Later, Lakshmikantham
and Ćirić [] extended these results by defining the mixed g-monotone property, coupled
coincidence point and coupled common fixed point. On the other hand, Berinde andBorcut
[] introduced the concept of tripled fixed point and proved some related theorems. Later,
Borcut and Berinde [] extended these results by defining the mixed g-monotone prop-
erty, tripled coincidence point and tripled common fixed point. These results were then
extended and generalized by several authors in the last five years; see [, , –] and ref-
erence therein. Recently, Karapınar [] introduced the notion of quadruple fixed point
and proved some related fixed-point theorems in partially ordered metric space (see also
[–]). Berzig and Samet [] extended and generalized the mentioned fixed-point
results to higher dimensions. However, they used permutations of variables and distin-
guished between the first and the last variables. Very recently, Roldan et al. [] extend
the mentioned previous results for non-linear mappings of any number of arguments, not
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necessarily permuted or ordered, in the framework of partially ordered complete metric
spaces. We remind the reader of the following fact: in order to guarantee the existence of
coupled (tripled or quadruple) coincidence point, the authors constructed two (three or
four) Cauchy sequences using the properties of mixed monotone mappings and contrac-
tive conditions. It is not easy to prove that two (three or four) sequences are simultaneous
Cauchy sequences. Then we spontaneously wonder the following questions:

Question . Can we obtain more general fixed-point theorems including the corre-
sponding coupled, tripled and quadruple fixed-point theorems as three special cases?

Question . Can we provide a new method for approximating coupled, tripled and
quadruple fixed points?

In this work, motivated and inspired by the above results, we establish more general
fixed-point theorems including the coupled, tripled and quadruple fixed-point theorems
as three special cases. Furthermore, we provide affirmative answers to Questions .
and .. The main results extend and improve the recent corresponding results in the
literature. Our works bring at least two new features to coupled, tripled and quadruple
fixed-point theory. First, we provide a new method for approximating coupled, tripled
and quadruple fixed points. Second, our proofs are simpler and essentially different from
the ones devoted to coupled, tripled and quadruple fixed-point problems that appeared
in the last years.

2 Preliminaries
For simplicity, we denote from now on X ×X · · ·X ×X︸ ︷︷ ︸

k

by Xk , where k ∈ N and X is

a non-empty set. Let n be a positive integer, ϕn(t) will denote the function ϕn(t) =
ϕ ◦ ϕ · · ·ϕ ◦ ϕ︸ ︷︷ ︸

n

(t). If elements x, y of a partially ordered set (X,≤) are comparable (i.e. x≤ y

or y≤ x holds) we will write x� y.
Let � denote the set of all functions ϕ : [,∞)→ [,∞), which satisfies

(iϕ) ϕ(t) < t for all t ∈ (,∞);
(iiϕ) limr→t+ ϕ(r) < t for all t ∈ (,∞).

Definition . [] Let (R,≤) be a partially ordered set and d be a metric on R. We say
that (R,d,≤) is regular if the following conditions hold:

(i) if a non-decreasing sequence {xn} is such that xn → x, then xn ≤ x for all n,
(ii) if a non-increasing sequence {yn} is such that yn → y, then yn ≥ y for all n.

Definition . [] Let (X,≤) be a partially ordered set and F : X → X and g : X → X.
We say F has the mixed g-monotone property if F is monotone g-non-decreasing in its
first argument and is monotone g-non-increasing in its second argument, that is, for any
x, y ∈ X,

x,x ∈ X, g(x) ≤ g(x) implies F(x, y) ≤ F(x, y)

http://www.fixedpointtheoryandapplications.com/content/2013/1/96


Wang Fixed Point Theory and Applications 2013, 2013:96 Page 3 of 13
http://www.fixedpointtheoryandapplications.com/content/2013/1/96

and

y, y ∈ X, g(y) ≤ g(y) implies F(x, y) ≥ F(x, y).

Definition . [] Let (X,≤) be a partially ordered set and twomappings F : X → X, g :
X → X. We say that F has the mixed g-monotone property if F(x, y, z) is g-monotone non-
decreasing in x, it is g-monotone non-increasing in y and it is g-monotone non-decreasing
in z, that is, for any x, y, z ∈ X,

x,x ∈ X, g(x) ≤ g(x) ⇒ F(x, y, z) ≤ F(x, y, z),

y, y ∈ X, g(y) ≤ g(y) ⇒ F(x, y, z) ≥ F(x, y, z)

and

z, z ∈ X, g(z) ≤ g(z) ⇒ F(x, y, z) ≤ F(x, y, z).

Note that if g is the identitymapping, thenDefinitions . and . reduce toDefinition .
in [] and Definition  in [] of mixed monotone property, respectively.

Definition . [] Let F : X → X be amapping.We say that F has themixedmonotone
property if F(x, y, z,w) is monotone non-decreasing in x and z, and it is monotone non-
increasing in y and w, that is, for any x, y, z,w ∈ X

x,x ∈ X, x ≤ x ⇒ F(x, y, z,w) ≤ F(x, y, z,w),

y, y ∈ X, y ≤ y ⇒ F(x, y, z,w) ≥ F(x, y, z,w),

z, z ∈ X, z ≤ z ⇒ F(x, y, z,w) ≤ F(x, y, z,w),

w,w ∈ X, w ≤ w ⇒ F(x, y, z,w) ≥ F(x, y, z,w).

Some authors introduced the concept of coincidence point in different ways and with
different names. Let F : Xk → X and g : X → X be two mappings.

Definition . A point (x,x, . . . ,xk) ∈ Xk is:
(i) a coupled coincidence point [] if k = , F(x,x) = g(x) and F(x,x) = g(x),
(ii) a tripled coincidence point [] if k = , F(x,x,x) = g(x), F(x,x,x) = g(x) and

F(x,x,x) = g(x),
(iii) a coupled common fixed point [] if k = , F(x,x) = g(x) = x and

F(x,x) = g(x) = x,
(iv) a tripled common fixed point [] if k = , F(x,x,x) = g(x) = x,

F(x,x,x) = g(x) = x and F(x,x,x) = g(x) = x,
(v) a quadruple fixed point [] if k = , F(x, y, z,w) = x, F(y, z,w,x) = y, F(z,w,x, y) = z

and F(w,x, y, z) = w,
(vi) a �-coincidence point [] if k = n, F(xσi(),xσi(), . . . ,xσi(n)) = gxτi for all i.

Similarly, note that if g is the identity mapping, then coupled coincidence point, tripled
coincidence point and �-coincidence point reduce to coupled fixed point (Gnana-Bhaskar
and Lakshmikantham []), tripled fixed point (Berinde and Borcut []) and �-fixed point
[], respectively.
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Definition . We say that the mappings F : Xk → X and g : X → X are commutative
(i) if k = , g(F(x,x)) = F(g(x), g(x)) for all x,x ∈ X [],
(ii) if k = , g(F(x,x,x)) = F(g(x), g(x), g(x)) for all x,x,x ∈ X [].

Let (X,≤) be a partially ordered set and d be ametric onX.We endow the product space
Xk with the following partial order: for (y, y, . . . , yi, . . . , yk), (v, v, . . . , vi, . . . , vk) ∈ Xk ,

(
y, y, . . . , yi, . . . , yk

) 
 (
v, v, . . . , vi, . . . , vk

) ⇔
⎧⎨
⎩
yi ≤ vi, if i = , , , . . . ,

yi ≥ vi, if i = ,, , . . . ,
(.)

which will be denoted in the sequel, for convenience, by ≤, also. Obviously, (Xk ,≤) is a
partially ordered set. The mapping ρk : Xk ×Xk → [, +∞), given by

ρk(Y ,V ) =

k
[
d
(
y, v

)
+ d

(
y, v

)
+ · · · + d

(
yk , vk

)]
, (.)

where Y = (y, y, . . . , yk),V = (v, v, . . . , vk) ∈ Xk , defines a metric on Xk . It is easy to see
that

Yn → Y (n→ ∞) ⇔ yin → yi (n→ ∞), i = , , . . . ,k, (.)

where Yn = (yn, yn, . . . , ykn),Y = (y, y, . . . , yk) ∈ Xk . Indeed, [Yn → Y (n → ∞) ⇔ yin →
yi (n→ ∞) for all i] ⇐⇒ [ρk(Yn,Y ) →  (n→ ∞)⇔ d(yin, yi)→  (n→ ∞) for all i].
In order to prove our main results, we need the following lemma.

Lemma . Let (X,≤) be a partially ordered set and d be a metric on X. If (X,≤,d) is
regular, then (Xk ,≤,ρk) is regular.

Proof Without loss of generality, we assume that the sequence {Yn} is non-decreasingwith
Yn → Y (n→ ∞), where Yn = (yn, yn, . . . , ykn),Y = (y, y, . . . , yk) ∈ Xk . From (.), we have

yin → yi (n→ ∞), i = , , . . . ,k. (.)

Now suppose that i = , , , . . . . As the sequence {Yn} is non-decreasing and (.), we have
the sequences {yin}∞n= are non-decreasing. From (.), the regularity of (X,≤,d) and using
Definition ., we have

yin ≤ yi, i = , , , . . . . (.)

Suppose that i = ,, , . . . . Since the sequence {Yn} is non-decreasing and (.), we have
the sequences {yin}∞n= are non-increasing. From (.), the regularity of (X,≤,d) and using
Definition ., we have

yin ≥ yi, i = ,, , . . . . (.)

By (.), (.) and (.), we have Yn ≤ Y for all n. By analogy, we show that if a non-
increasing sequence {Yn} is such that Yn → Y , then Yn ≥ Y for all n. Therefore, (Xk ,≤,ρk)
is regular. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/96
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3 Main results
We now state and prove the main results of this paper.

Definition . We say that the mappings T : Xk → Xk and G : Xk → Xk are commutative
if TG(Y ) =GT(Y ) for all Y ∈ Xk .

Definition . Let (Xk ,≤) be a partially ordered set and T : Xk → Xk , G : Xk → Xk . We
say that T is a G-isotone mapping if, for any Y,Y ∈ Xk

G(Y) ≤ G(Y) ⇒ T(Y) ≤ T(Y).

Definition . An element Y ∈ Xk is called a coincidence point of themappingsT : Xk →
Xk and G : Xk → Xk if T(Y ) =G(Y ). Furthermore, if T(Y ) =G(Y ) = Y , then we say that Y
is a common fixed point of T and G.

Theorem. Let (X,≤) be a partially ordered set and suppose there is ametric d onX such
that (X,d) is a complete metric space. Let G : Xk → Xk and T : Xk → Xk be a G-isotone
mapping for which there exists ϕ ∈ � such that for all Y ∈ Xk , V ∈ Xk with G(Y ) ≥ G(V ),

ρk
(
T(Y ),T(V )

) ≤ ϕ
(
ρk

(
G(Y ),G(V )

))
, (.)

where ρk is defined via (.). Suppose T(Xk) ⊂G(Xk) and also suppose either
(a) T is continuous, G is continuous and commutes with T or
(b) (X,d,≤) is regular and G(Xk) is closed.

If there exists Y ∈ Xk such that G(Y) � T(Y), then T and G have a coincidence point.

Proof Since T(Xk) ⊂ G(Xk), it follows that there exists Y ∈ Xk such that G(Y) = T(Y).
In general, there exists Yn ∈ Xk such that G(Yn+) = T(Yn), n ≥ . We denote Z = G(Y)
and

Zn+ =G(Yn+) = T(Yn), n≥ . (.)

Obviously, ifZn+ = Zn for some n≥ , then there is nothing to prove. So, wemay assume
thatZn+ �= Zn for all n≥ . SinceG(Y) � T(Y), without loss of generality, we assume that
G(Y) ≤ T(Y) (the caseG(Y)≥ T(Y) is similar), that is,Z ≤ Z. Assume thatZn– ≤ Zn,
that is, G(Yn–) ≤ G(Yn). Since T is a G-isotone mapping, we get

Zn = T(Yn–)≤ T(Yn) = Zn+,

which shows that Zn ≤ Zn+ for all n ≥ . This actually means that the sequence {Zn}∞n= is
non-decreasing. Since G(Yn) = Zn ≥ G(Yn–) = Zn–, from (.) and (iϕ) we have

ρk(Zn+,Zn) = ρk
(
T(Yn),T(Yn–)

)
≤ ϕ

(
ρk

(
G(Yn),G(Yn–)

))
= ϕ

(
ρk(Zn,Zn–)

)
< ρk(Zn,Zn–) (.)
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for all n≥ . Hence, the sequence {δn}∞n= given by δn = ρk(Zn+,Zn) ismonotone decreasing
and bounded below. Therefore, there exists some δ ≥  such that limn→∞ δn = δ. We shall
prove that δ = . Assume that δ > . Then by letting n→ ∞ in (.) and (iiϕ) we have

δ ≤ lim
n→∞ϕ(δn–) = lim

r→δ+
ϕ(r) < δ,

which is a contradiction. Thus,

lim
n→∞ δn = . (.)

We claim that {Zn} is a Cauchy sequence. Indeed, if it is false, then there exist ε >  and
the sequences {Zm(t)} and {Zn(t)} of {Zn} such that n(t) is the minimal in the sense that
n(t) >m(t) ≥ t and ρk(Zm(t),Zn(t)) > ε. Therefore, ρk(Zm(t),Zn(t)–) ≤ ε.
Using the triangle inequality, we obtain

ε < ρk(Zm(t),Zn(t)) ≤ ρk(Zm(t),Zn(t)–) + ρk(Zn(t)–,Zn(t))

≤ ε + ρk(Zn(t)–,Zn(t)).

Letting t → ∞ in the above inequality and using (.), we get

lim
t→∞ρk(Zm(t),Zn(t)) = ε+. (.)

Since n(t) >m(t), we have Zm(t) ≤ Zn(t), and hence G(Yn(t)) ≥ G(Ym(t)). Now, by (.), we
have

ρk(Zn(t)+,Zm(t)+) = ρk
(
T(Yn(t)),T(Ym(t))

)
≤ ϕ

(
ρk

(
G(Yn(t)),G(Ym(t))

))
= ϕ

(
ρk(Zn(t),Zm(t))

)
.

Observe that

ρk(Zm(t),Zn(t)) ≤ ρk(Zm(t),Zm(t)+) + ρk(Zm(t)+,Zn(t)+) + ρk(Zn(t)+,Zn(t))

≤ δm(t) + δn(t) + ρk(Zm(t)+,Zn(t)+)

≤ δm(t) + δn(t) + ϕ
(
ρk(Zn(t),Zm(t))

)
.

Letting t → ∞ in the above inequality and using (.)-(.), we have

ε ≤ lim
t→∞ϕ(rt) = lim

r→ε+
ϕ(r) < ε,

where rt = ρk(Zn(t),Zm(t)), which is a contradiction. Hence, the sequence {Zn}∞n= is a
Cauchy sequence in themetric space (Xk ,ρk). On the other hand, since (X,d) is a complete
metric space, thus the metric space (Xk ,ρk) is complete. Therefore, there exists Z̄ ∈ Xk

such that limn→∞ Zn = Z̄, that is, limn→∞ G(Yn) = Z̄.
Now suppose that the assumption (a) holds. By the continuity of G, we have

limn→∞ G(G(Yn+)) =G(Z̄). On the other hand, by the commutativity of T and G, we have

G
(
G(Yn+)

)
=G

(
T(Yn)

)
= T

(
G(Yn)

)
. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/96
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By (.) and the continuity of T , we have

G(Z̄) = lim
n→∞G

(
G(Yn+)

)
= lim

n→∞T
(
G(Yn)

)
= T(Z̄),

which shows that Z̄ is a coincidence point of T and G.
Suppose that the assumption (b) holds. Using Lemma ., we have (Xk ,≤,ρk) is regular.

Since {Zn}∞n= is non-decreasing sequence that converges to Z̄, in view of Definition .,
we have Zn ≤ Z̄ for all n. Since G(Xk) is closed and by (.), we obtain that there exists
Ȳ ∈ Xk for which

lim
n→∞G(Yn) = lim

n→∞T(Yn) = Z̄ =G(Ȳ ).

Then from (.), we have

ρk
(
T(Yn),T(Ȳ )

) ≤ ϕ
(
ρk

(
G(Yn),G(Ȳ )

))

for all n ≥ . Letting n → ∞ in the above inequality, we have ρk(G(Ȳ ),T(Ȳ )) = , which
implies that G(Ȳ ) = T(Ȳ ). Therefore, Ȳ is a coincidence point of T and G. �

Remark . Different kinds of contractive conditions are studied and we use a distinct
methodology to proveTheorem.. The authors proved that any number of sequences are
simultaneous Cauchy sequence in []. However, we only need to proof that one sequence
is a Cauchy sequence.

Taking k =  in Theorem ., we can obtain the following result immediately.

Corollary . Let (X,≤) be a partially ordered set and suppose there is a metric d on X
such that (X,d) is a complete metric space. Let G : X → X and T : X → X be a G-isotone
mapping for which there exists ϕ ∈ � such that for all Y ∈ X, V ∈ X with G(Y ) ≥ G(V ),

d
(
T(Y ),T(V )

) ≤ ϕ
(
d
(
G(Y ),G(V )

))
.

Suppose T(X)⊂G(X) and also suppose either
(a) T is continuous, G is continuous and commutes with T or
(b) (X,d,≤) is regular and G(X) is closed.

If there exists Y ∈ X such that G(Y) � T(Y), then T and G have a coincidence point.

Now, we will show that Theorem . allow us to derive coupled, tripled and quadruple
fixed-point theorems for mixed monotone mappings in partially ordered metric space.
Taking k = , T(Y ) = (F(x, y),F(y,x)) and G(Y ) = (g(x), g(y)) for Y = (x, y) ∈ X in Theo-

rem ., we can obtain the following result.

Corollary . Let (X,≤) be a partially ordered set and suppose there is a metric d on X
such that (X,d) is a complete metric space. Let g : X → X and F : X → X be a mixed
g-monotone mapping for which there exists ϕ ∈ � such that for all x, y,u, v ∈ X with g(x) ≥
g(u), g(y) ≤ g(v),

d
(
F(x, y),F(u, v)

)
+ d

(
F(y,x),F(v,u)

) ≤ ϕ
(
d(g(x), g(u)) + d(g(y), g(v))



)
. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/96
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Suppose F(X) ⊂ g(X) and also suppose either
(a) F is continuous, g is continuous and commutes with F or
(b) (X,d,≤) is regular and g(X) is closed.

If there exist x, y ∈ X such that

g(x)≤ F(x, y) and g(y)≥ F(y,x), (.)

or

g(x)≥ F(x, y) and g(y)≤ F(y,x), (.)

then there exist x̄, ȳ ∈ X such that g(x̄) = F(x̄, ȳ) and g(ȳ) = F(ȳ, x̄), that is, F and g have a
couple coincidence point.

Proof For simplicity, we denote Y = (x, y), V = (u, v) and Yn = (xn, yn) for all n ≥ . We
endow the product space X with the following partial order:

for Y ,V ∈ X, Y ≤ V ⇔ x ≤ u, y≥ v. (.)

Consider the function ρ : X ×X → [, +∞) defined by

ρ(Y ,V ) =


[
d(x,u) + d(y, v)

]
, ∀Y ,V ∈ X. (.)

Obviously, (X,≤) and ρ are two particular cases of (Xk ,≤) and ρk defined by (.) and
(.), respectively. Now consider the operators T : X → X and G : X → X defined by

T(Y ) =
(
F(x, y),F(y,x)

)
(.)

and

G(Y ) =
(
g(x), g(y)

)
, ∀Y ∈ X. (.)

Since F(X) ⊂ g(X), we have T(X) ⊂G(X).
We claim that T is a G-isotone mapping. Indeed, suppose that G(Y) ≤ G(Y), Y,

Y ∈ X. By (.) and (.), we have g(x) ≤ g(x) and g(y) ≥ g(y). Since F is g-mixed
monotone, we have

F(x, y) ≤ F(x, y) and F(y,x) ≥ F(y,x), ∀G(Y) ≤ G(Y). (.)

From (.), (.) and (.), we have

T(Y) =
(
F(x, y),F(y,x)

) ≤ (
F(x, y),F(y,x)

)
= T(Y), ∀G(Y) ≤ G(Y).

Similarly, we can obtain that for any Y,Y ∈ X,G(Y) ≥ G(Y) ⇒ T(Y) ≥ T(Y). By (.)-
(.), we have there exists Y ∈ X such that G(Y) � T(Y).
From (.) and (.), we have

d(F(x, y),F(u, v)) + d(F(y,x),F(v,u))


= ρ
(
T(Y ),T(V )

)
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and

ϕ

(
d(g(x), g(u)) + d(g(y), g(v))



)
= ϕ

(
ρ

(
G(Y ),G(V )

))

for any Y ∈ X, V ∈ X. It follows from (.) that

ρ
(
T(Y ),T(V )

) ≤ ϕ
(
ρ

(
G(Y ),G(V )

))
, ∀G(Y )≥ G(V ).

Now suppose that the assumption (a) holds. By the continuity of g , we have G is contin-
uous. From (.), (.) and using the commutativity of F and g , we have, for any Y ∈ X

TG(Y ) = T
(
g(x), g(y)

)
=

(
F
(
g(x), g(y)

)
,F

(
g(y), g(x)

))
=

(
g
(
F(x, y)

)
, g

(
F(y,x)

))
=GT(Y ),

which implies that G commutes with T . It is easy to see that T is continuous. Indeed, by
(.), we obtain that Yn → Y (n→ ∞) if and only if xn → x and yn → y (n→ ∞). Since F
is continuous, we have F(xn, yn) → F(x, y) and F(yn,xn)→ F(y,x) (n→ ∞), for anyYn → Y
(n→ ∞). Therefore, we have

T(Yn) =
(
F(xn, yn),F(yn,xn)

) → (
F(x, y),F(y,x)

)
= T(Y ) (n→ ∞)

for any Yn → Y (n→ ∞).
Suppose that the assumption (b) holds. It is easy to see that G(X) is closed.
All the hypothesis of Theorem . (k = ) are satisfied, and so we deduce the existence

of a coincidence point of T and G. From (.) and (.), there exists (x̄, ȳ) such that
g(x̄) = F(x̄, ȳ) and g(ȳ) = F(ȳ, x̄), that is, (x̄, ȳ) is a coupled coincidence point of F and g . �

Remark . Note that in the case of the condition (b) satisfied in Corollary ., we omit
the control conditions: g is continuous and commutes with F , which are needed in the
proof of Theorem . in [] and Theorem  in [].

Taking k = , T(Y ) = (F(x, y, z),F(y,x, y),F(z, y,x)) and G(Y ) = (g(x), g(y), g(z)) for Y =
(x, y, z) ∈ X in Theorem ., we can obtain the following result by the similar argument
as we did in the proof of Corollary ..

Corollary . Let (X,≤) be a partially ordered set and suppose there is a metric d on X
such that (X,d) is a complete metric space. Let F : X → X and g : X → X such that F has
the mixed g-monotone property and F(X) ⊂ g(X). Assume there is a function ϕ ∈ � such
that

d
(
F(x, y, z),F(u, v,w)

)
+ d

(
F(y,x, y),F(v,u, v)

)
+ d

(
F(z, y,x),F(w, v,u)

)

≤ ϕ
(
d(g(x), g(u)) + d(g(y), g(v)) + d(g(z), g(w))



)

for any x, y, z,u, v,w ∈ X for which g(x) ≥ g(u), g(v) ≥ g(y) and g(z) ≥ g(w). Suppose either

http://www.fixedpointtheoryandapplications.com/content/2013/1/96
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(a) F is continuous, g is continuous and commutes with F or
(b) (X,≤,d) is regular and g(X) is closed.

If there exist x, y, z ∈ X such that

g(x)≤ F(x, y, z), g(y)≥ F(y,x, y) and g(z)≤ F(z, y,x),

or

g(x)≥ F(x, y, z), g(y)≤ F(y,x, y) and g(z)≥ F(z, y,x),

then there exist x, y, z ∈ X such that

F(x, y, z) = g(x), F(y,x, y) = g(y) and F(z, y,x) = g(z),

that is, F and g have a tripled coincidence point.

Similarly, taking k = , T(Y ) = (F(x, y, z,w),F(y, z,w,x),F(z,w,x, y),F(w,x, y, z)) and G is
the identity mapping on X for Y = (x, y, z,w) ∈ X in Theorem ., we can obtain the
following result.

Corollary . Let (X,≤) be a partially ordered set and suppose there is a metric d on
X such that (X,d) is a complete metric space. Let F : X → X such that F has the mixed
monotone property. Assume there is a function ϕ ∈ � such that

d
(
F(x, y, z,w),F(u, v, r, t)

)
+ d

(
F(y, z,w,x),F(v, r, t,u)

)
+ d

(
F(z,w,x, y),F(r, t,u, v)

)

+ d
(
F(w,x, y, z),F(t,u, v, r)

) ≤ ϕ

(
d(x,u) + d(y, v) + d(z, r) + d(w, t)



)

for any x, y, z,w,u, v, r, t ∈ X for which x ≥ u, y≤ v, z ≥ r and w ≤ t. Suppose either
(a) F is continuous or
(b) (X,≤,d) is regular.

If there exist x, y, z,w ∈ X such that

x ≤ F(x, y, z,w), y ≥ F(y, z,w,x),

z ≤ F(z,w,x, y) and w ≥ F(w,x, y, z),

or

x ≥ F(x, y, z,w), y ≤ F(y, z,w,x),

z ≥ F(z,w,x, y) and w ≤ F(w,x, y, z),

then there exist x, y, z,w ∈ X such that

F(x, y, z,w) = x, F(y, z,w,x) = y, F(z,w,x, y) = z and F(w,x, y, z) = w,

that is, F have a quadruple fixed point.

http://www.fixedpointtheoryandapplications.com/content/2013/1/96
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Theorem. In addition to the hypothesis of Theorem ., suppose that for every Ȳ ,Y ∗ ∈
Xk there exists V ∈ Xk such that T(V ) is comparable to T(Ȳ ) and to T(Y ∗). Also, assume
that ϕ is non-decreasing. Let G commute with T if the assumption (b) holds. Then T and
G have a unique common fixed point, that is, there exists a unique point Z̄ ∈ Xk such that
Z̄ =G(Z̄) = T(Z̄).

Proof From Theorem ., the set of coincidence points of T andG is non-empty. Assume
that Ȳ and Y ∗ ∈ Xk are two coincidence points of T and G. We shall prove that G(Ȳ ) =
G(Y ∗). Put V = V and choose V ∈ Xk so that G(V) = T(V). Then, similarly to the proof
of Theorem ., we obtain the sequence {G(Vn)}∞n= defined as follows: G(Vn+) = T(Vn),
n≥ . Since T(Ȳ ) =G(Ȳ ) and T(V ) =G(V) are comparable, without loss of generality, we
assume that G(Ȳ ) ≤ G(V). Since T is a G-isotone mapping, we have

G(Ȳ ) = T(Ȳ ) ≤ T(V) =G(V).

Recursively, we get that G(Ȳ ) ≤ G(Vn), ∀n ≥ . Thus, by the contractive condition (.),
one gets

ρk
(
G(Vn+),G(Ȳ )

)
= ρk

(
T(Vn),T(Ȳ )

) ≤ ϕ
(
ρk

(
G(Vn),G(Ȳ )

))
.

Thus, by the above inequality, we get

	n+ ≤ ϕ(	n), n≥ ,

where 	n = ρk(G(Vn),G(Ȳ )). Since ϕ is non-decreasing, it follows that

	n+ ≤ ϕn(	).

From the definition of �, we get limn→∞ ϕn(t) = , for each t > . Then, we have
limn→∞ 	n = . Thus,

lim
n→∞ρk

(
G(Ȳ ),G(Vn)

)
= . (.)

Similarly, we obtain that

lim
n→∞ρk

(
G

(
Y ∗),G(Vn)

)
= . (.)

Combining (.) and (.) yields that G(Ȳ ) =G(Y ∗). Since G(Ȳ ) = T(Ȳ ), by the commu-
tativity of T and G, we have

G
(
G(Ȳ )

)
=G

(
T(Ȳ )

)
= T

(
G(Ȳ )

)
. (.)

Denote G(Ȳ ) = Z̄. By (.), we have G(Z̄) = T(Z̄), that is Z̄ is a coincidence point of T
and G. Thus, we have G(Z̄) =G(Ȳ ) = Z̄. Therefore, Z̄ is a common fixed point of T and G.
To prove the uniqueness, assume Z∗ is another common fixed point of T and G. Then

we have

Z∗ =G
(
Z∗) =G(Z̄) = Z̄. �
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Corollary . In addition to the hypothesis of Corollary ., suppose that for every
(x̄, ȳ), (x∗, y∗) ∈ X there exists (u, v) ∈ X × X such that (F(u, v),F(v,u)) is comparable to
(F(x∗, y∗),F(y∗,x∗)) and to (F(x̄, ȳ),F(ȳ, x̄)). Also, assume that ϕ is non-decreasing. Let g
commute with F if the assumption (b) holds. Then F and g have a unique coupled common
fixed point, that is, there exists a unique point (z̄, w̄) ∈ X such that

z̄ = g(z̄) = F(z̄, w̄) and w̄ = g(w̄) = F(w̄, z̄).

Proof Similarly to the proof of Corollary ., we can obtain all conditions of Theorem .
(k = ) are satisfied. In addition, by the commutativity of g and F , we have G commutes
with T . For simplicity, we denote Ȳ = (x̄, ȳ), Y ∗ = (x∗, y∗) and V = (u, v) ∈ X. By (.), we
have

T(V ) =
(
F(u, v),F(v,u)

)
, T(Ȳ ) =

(
F(x̄, ȳ),F(ȳ, x̄)

)
and

T
(
Y ∗) = (

F
(
x∗, y∗),F(

y∗,x∗)).
By hypothesis, there exists V ∈ X such that T(V ) is comparable to T(Ȳ ) and to T(Y ∗).
Hence, there is no doubt that all conditions of Theorem. are satisfied (k = ). Therefore,
there exists a unique point Z̄ = (z̄, w̄) ∈ X such that Z̄ = G(Z̄) = T(Z̄). That is, z̄ = g(z̄) =
F(z̄, w̄) and w̄ = g(w̄) = F(w̄, z̄). �

By the similar argument as we did in the proof of Corollary ., we deduce the following
corollary from Theorem . (k = ).

Corollary . In addition to the hypothesis of Corollary ., suppose that for all (x, y, z)
and (u, v, r) in X, there exists (a,b, c) in X such that (F(a,b, c),F(b,a,b),F(c,b,a)) is
comparable to (F(x, y, z),F(y,x, y),F(z, y,x)) and (F(u, v, r),F(v,u, v),F(r, v,u)).Also, assume
that ϕ is non-decreasing. Let g commute with F if the assumption (b) holds. Then F and g
have a unique tripled common fixed point (x, y, z), that is,

x = g(x) = F(x, y, z), y = g(y) = F(y,x, y) and z = g(z) = F(z, y,x).
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