
Chen Fixed Point Theory and Applications 2013, 2013:91
http://www.fixedpointtheoryandapplications.com/content/2013/1/91

RESEARCH Open Access

Fixed point theorems of generalized cyclic
orbital Meir-Keeler contractions
Chi-Ming Chen*

*Correspondence:
ming@mail.nhcue.edu.tw
Department of Applied
Mathematics, National Hsinchu
University of Education, Hsinchu,
Taiwan

Abstract
In this paper, we introduce two class of generalized cyclic orbital Meir-Keeler
contractions and we study the existence and uniqueness of fixed points for these
mappings. Our results in this paper extend and generalize several existing fixed-point
theorems in the literature.
MSC: 47H10; 54C60; 54H25; 55M20

Keywords: fixed-point theorem; cyclic map; generalized cyclic orbital Meir-Keeler
contraction

1 Introduction and preliminaries
Throughout this paper, by R+, we denote the set of all non-negative numbers, while N is
the set of all natural numbers. It is well known and easy to prove that if (X,d) is a complete
metric space, and if f : X → X is continuous and f satisfies

d
(
fx, f x

) ≤ k · d(x, fx), for all x ∈ X and k ∈ (, ),

then f has a fixed point in X. Using the above conclusion, Kirk, Srinivasan and Veeramani
[] proved the following fixed-point theorem.

Theorem  [] Let A and B be two nonempty closed subsets of a complete metric space
(X,d), and suppose f : A∪ B → A∪ B satisfies

(i) f (A) ⊂ B and f (B)⊂ A,
(ii) d(fx, fy) ≤ k · d(x, y) for all x ∈ A, y ∈ B and k ∈ (, ).

Then A∩ B is nonempty and f has a unique fixed point in A∩ B.

The following definitions and results will be needed in the sequel. Let A and B be two
nonempty subsets of a metric space (X,d). A mapping f : A∪ B → A∪ B is called a cyclic
map if f (A) ⊆ B and f (B) ⊆ A. In , Karpagam and Agrawal [] introduced the notion
of cyclic orbital contraction, and obtained a unique fixed point theorem for such a map.

Definition  [] Let A and B be nonempty subsets of a metric space (X,d), f : A ∪ B →
A∪ B be a cyclic map such that for some x ∈ A, there exists a κx ∈ (, ) such that

d
(
f nx, fy

) ≤ κx · d(
f n–x, y

)
, n ∈N, y ∈ A.

Then f is called a cyclic orbital contraction.

© 2013 Chen; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.fixedpointtheoryandapplications.com/content/2013/1/91
mailto:ming@mail.nhcue.edu.tw
http://creativecommons.org/licenses/by/2.0


Chen Fixed Point Theory and Applications 2013, 2013:91 Page 2 of 10
http://www.fixedpointtheoryandapplications.com/content/2013/1/91

Theorem  [] Let A and B be two nonempty closed subsets of a complete metric space
(X,d), and let f : A∪B → A∪B be a cyclic orbital contraction. Then f has a fixed point in
A∩ B.

Further, many results dealing with cyclic contractions have appeared in the literature
(see, e.g., [–]).
In , Chen [] introduced the below notion of cyclic orbital stronger Meir-Keeler

contraction, and obtained a unique fixed-point theorem for such class of mappings.

Definition  [] Let (X,d) be a metric space. We call ψ : R+ → [, ) a stronger Meir-
Keeler type mapping in X if the mapping ψ satisfies the following condition:

∀η > ,∃δ > ,∃γη ∈ [, ),∀x, y ∈ X
(
η ≤ d(x, y) < δ + η ⇒ ψ

(
d(x, y)

)
< γη

)
.

Definition  [] Let A and B be nonempty subsets of a metric space (X,d). Suppose
f : A ∪ B → A ∪ B is a cyclic map such that for some x ∈ A, there exists a stronger Meir-
Keeler type mapping ψx :R+ → [, ) in X such that

d
(
f nx, fy

) ≤ ψx
(
d
(
f n–x, y

)) · d(
f n–x, y

)
,

for all n ∈ N and y ∈ A. Then f is called a cyclic orbital stronger Meir-Keeler ψx-
contraction.

Clearly, if f : A ∪ B → A ∪ B is a cyclic orbital contraction, then f is a cyclic orbital
stronger Meir-Keeler ψx-contraction, where ψx(t) = kx for all t ∈R

+.

Theorem  [] Let A and B be two nonempty closed subsets of a complete metric space
(X,d), and letψx :R+ → [, ) be a strongerMeir-Keeler typemapping in X. Suppose f : A∪
B → A∪B is a cyclic orbital stronger Meir-Keeler ψx-contraction. Then A∩B is nonempty
and f has a unique fixed point in A∩ B.

Chen [] also introduced the below notion of cyclic orbital weaker Meir-Keeler con-
traction, and obtained a unique fixed-point theorem for such class of mappings.

Definition  [] Let (X,d) be ametric space, andψ :R+ →R
+. Thenψ is called aweaker

Meir-Keeler type mapping in X, if the mapping ψ satisfies the following condition:

∀η > ,∃δ > ,∀x, y ∈ X
(
η ≤ d(x, y) < δ + η ⇒ ∃n ∈N ψn

(
d(x, y)

)
< η

)
.

Definition  [] Let (X,d) be a metric space. We call f : R+ → R
+ a ψ-mapping in X if

the function f satisfies the following conditions:

(ψ) f is a weaker Meir-Keeler type mapping in X with f () = ;
(ψ) (a) if limn→∞ tn = γ > , then limn→∞ f (tn)≤ γ , and

(b) if limn→∞ tn = , then limn→∞ f (tn) = ;
(ψ) {f n(t)}n∈N is decreasing, for each t ∈R

+\{}.
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Definition  [] Let A and B be nonempty subsets of a metric space (X,d). Suppose
f : A ∪ B → A ∪ B is a cyclic map such that for some x ∈ A, there exists a ψ-mapping
ψx :R+ →R

+ in X such that

d
(
f nx, fy

) ≤ ψx
(
d
(
f n–x, y

))
,

for all n ∈N and y ∈ A. Then f is called a cyclic orbital weakerMeir-Keelerψx-contraction.

Theorem  [] Let A and B be two nonempty closed subsets of a complete metric space
(X,d), and let ψx : R+ → R

+ be a ψ-mapping in X. Suppose f : A ∪ B → A ∪ B is a cyclic
orbital weaker Meir-Keeler ψx-contraction. Then A ∩ B is nonempty and f has a unique
fixed point in A∩ B.

2 Fixed-point theorems (I)
In this section, we will introduce the class of generalized cyclic orbital stronger Meir-
Keeler (ψx,ϕ)-contraction and we study the existence and uniqueness of fixed points for
such mappings. Our results in this section extend and generalize several existing fixed-
point theorems in the literature, including Theorem  and Theorem .
In the sequel, we denote by� the class of functions ϕ :R+ →R

+ satisfying the following
conditions:

(ϕ) ϕ is a strictly increasing, continuous function in each coordinate;
(ϕ) for all t > , ϕ(t, t, t, , t) < t, ϕ(t, t, t, t, ) < t, ϕ(t, , , t, t) < t, ϕ(, , t, t, ) < t, and

ϕ(, , , , ) = .

Example  Let ϕ :R+ →R
+ denote

ϕ(t, t, t, t, t) =



·max

{
t, t, t,



t,



t

}
.

Then ϕ satisfies the above conditions (ϕ) and (ϕ).

We now denote the below notion of generalized cyclic orbital stronger Meir-Keeler
(ψx,ϕ)-contraction.

Definition  Let A and B be nonempty subsets of a metric space (X,d). Suppose f : A ∪
B → A ∪ B is a cyclic map such that for some x ∈ A, there exist a stronger Meir-Keeler
type mapping ψx :R+ → [, ) in X and ϕ ∈ � such that

d
(
f nx, fy

) ≤ ψx
(
d
(
f n–x, y

)) · θ ,

where

θ = ϕ
(
d
(
f n–x, y

)
,d

(
f n–x, f nx

)
,d(fy, y),d

(
f n–x, fy

)
,d

(
f nx, y

))

for all n ∈ N and y ∈ A. Then f is called a generalized cyclic orbital stronger Meir-Keeler
(ψx,ϕ)-contraction.
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Our main result is the following.

Theorem  Let A and B be two nonempty closed subsets of a complete metric space (X,d),
and let ψx : R+ → [, ) be a stronger Meir-Keeler type mapping in X and ϕ ∈ �. Suppose
f : A ∪ B → A ∪ B is a generalized cyclic orbital stronger Meir-Keeler (ψx,ϕ)-contraction.
Then A∩ B is nonempty and f has a unique fixed point in A∩ B.

Proof Since f : A∪B → A∪B is a generalized cyclic orbital stronger Meir-Keeler (ψx,ϕ)-
contraction and for x ∈ A, we have f nx ∈ A. Put y = f nx, for n ∈N. Then we have that for
each n ∈N

d
(
f nx, f n+x

) ≤ ψx
(
d
(
f n–x, f nx

)) · θ ,
θ = ϕ

(
d
(
f n–x, f nx

)
,d

(
f n–x, f nx

)
,d

(
f n+x, f nx

)
,d

(
f n–x, f n+x

)
,d

(
f nx, f nx

))
= ϕ

(
d
(
f n–x, f nx

)
,d

(
f n–x, f nx

)
,d

(
f n+x, f nx

)
,d

(
f n–x, f nx

)
+ d

(
f nx, f n+x

)
, 

)

and by the conditions of the function ϕ, we get

θ < d
(
f n–x, f nx

)
,

and

d
(
f nx, f n+x

)
<ψx

(
d
(
f n–x, f nx

)) · d(
f n–x, f nx

)
≤ d

(
f n–x, f nx

)
. (.)

Similarly, we put y = f nx and for each n ∈N

d
(
f n+x, f n+x

)
= d

(
f n+x, f n+x

)
≤ ψx

(
d
(
f n+x, f nx

)) · θ ,
θ = ϕ

(
d
(
f n+x, f nx

)
,d

(
f n+x, f n+x

)
,d

(
f n+x, f nx

)
,

d
(
f n+x, f n+x

)
,d

(
f n+x, f nx

))
= ϕ

(
d
(
f n+x, f nx

)
,d

(
f n+x, f n+x

)
,d

(
f n+x, f nx

)
, ,d

(
f nx, f n+x

)
+ d

(
f n+x, f n+x

))

and by the conditions of the function ϕ, we get

θ < d
(
f nx, f n+x

)
,

and

d
(
f n+x, f n+x

)
< ψx

(
d
(
f n+x, f nx

)) · d(
f nx, f n+x

)
≤ d

(
f nx, f n+x

)
. (.)
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Using inequalities (.) and (.), we deduce that {d(f nx, f n+x)} is a decreasing sequence
and hence it is convergent. Let limn→∞ d(f nx, f n+x) = η. Then there exists κ ∈N and δ > 
such that for all n≥ κ,

η ≤ d
(
f nx, f n+x

)
< η + δ.

Taking into account the above inequality and the definition of stronger Meir-Keeler type
mapping ψx in X, corresponding to η use, there exists γη ∈ [, ) such that

ψx
(
d
(
f nx, f n+x

))
< γη for all n≥ κ. (.)

Put n = [ κ+
 ], where [ κ+

 ] is the integer part of κ+
 . It follows from (.), (.) and (.)

that we deduce that for all n≥ n,

d
(
f nx, f n+x

)
< ψx

(
d
(
f n–x, f nx

)) · d(
f n–x, f nx

)
< γη · d(

f n–x, f nx
)
, (.)

and

d
(
f n+x, f n+x

)
< ψx

(
d
(
f n+x, f nx

)) · d(
f nx, f n+x

)
< γη · d(

f nx, f n+x
)
. (.)

It follows from (.) and (.) that for each n ∈ N∪ {}

d
(
f n+nx, f n+n+x

)
< γ n

η · d(
f n–x, f nx

)
. (.)

Since γη < , we get

lim
n→∞d

(
f n+nx, f n+n+x

)
= .

Form,n ∈N with m > n, we have

d
(
f n+nx, f n+mx

) ≤
m–∑
i=n

d
(
f n+ix, f n+i+x

)
<

γm–
η

 – γη

d
(
f nx, f n+x

)
,

and hence d(f nx, f mx) → , since  < γη < . So, {f nx} is a Cauchy sequence. Since (X,d)
is a complete metric space, A and B are closed, {f nx} ⊂ A∪ B, there exists ν ∈ A∪ B such
that limn→∞ f nx = ν . Now {f nx} is a sequence in A and {f n+x} is a sequence in B, and
also both converge to ν . Since A and B are closed, ν ∈ A ∩ B, and so A ∩ B is nonempty.
Next, we want to show that ν is a fixed point of f . Suppose that ν is not a fixed point of f .
Then d(ν, f ν) > . Since limn→∞ d(f n–x,ν) =  and

d
(
f nx, f ν

) ≤ ψx
(
d
(
f n–x,ν

)) · θ ,

where

θ = ϕ
(
d
(
f n–x,ν

)
,d

(
f n–x, f nx

)
,d(f ν,ν),d

(
f n–x, f ν

)
,d

(
f nx,ν

))
,
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we obtain that

d(ν, f ν) = lim
n→∞d

(
f nx, f ν

)

≤ γη · ϕ(
d(ν,ν),d(ν,ν),d(f ν,ν),d(ν, f ν),d(ν,ν)

)
≤ ϕ

(
,,d(ν, f ν),d(ν, f ν), 

)
< d(ν, f ν).

This leads to a contradiction. So, d(ν, f ν) = , that is, ν is a fixed point of f .
Finally, we want to show the uniqueness of the fixed point. Let μ be another fixed point

of f . By the cyclic character of f , we have ν,μ ∈ A∩B. Since f is a generalized cyclic orbital
stronger Meir-Keeler (ψx,ϕ)-contraction, we have

d(ν,μ) = d(ν, fμ) = lim
n→∞d

(
f nx, fμ

)
, (.)

and

d
(
f nx, fμ

) ≤ ψx
(
d
(
f n–x,μ

)) · θ < γη · θ , (.)

where

θ = ϕ
(
d
(
f n–x,μ

)
,d

(
f n–x, f nx

)
,d(fμ,μ),d

(
f n–x, fμ

)
,d

(
f nx,μ

))
.

It follows from (.), (.) and the condition (ϕ) of the mapping ϕ that

d(ν,μ) < γη · ϕ(
d(ν,μ),d(ν,ν),d(fμ,μ),d(ν, fμ),d(ν,μ)

)
≤ ϕ

(
d(ν,μ), , ,d(ν,μ),d(ν,μ)

)
< d(ν,μ).

This leads to a contradiction. Therefore, ν = μ, and so ν is the unique fixed point of f .
�

We give the following example to illustrate Theorem .

Example  Let A = B = X =R
+ and we define d : X ×X → R

+ by

d(x, y) = |x – y|, for x, y ∈ X,

and let f : X → X denote

f (x) =

⎧⎨
⎩
, if  ≤ x < ;

 , if x ≥ .

We next define ψx :R+ → [, ) by

ψx(t) =

⎧⎨
⎩


 , if  ≤ t ≤ ;
t

t+ , if t > ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/91
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and let ϕ :R+ →R
+ denote

ϕ(t, t, t, t, t) =



·max

{
t, t, t,



t,



t

}
.

Then f is a generalized cyclic orbital strongerMeir-Keeler (ψx,ϕ)-contraction and  is the
unique fixed point.

3 Fixed-point theorems (II)
In this section, we will introduce the class of generalized cyclic orbital weakerMeir-Keeler
(ψx,φ)-contraction and we study the existence and uniqueness of fixed points for such
mappings.
In the sequel, we denote by� the class of functions φ :R+ →R

+ satisfying the following
conditions:

(φ) φ is lower semi-continuous, and
(φ) φ() =  if and only if t = .

Definition  Let A and B be nonempty subsets of a metric space (X,d). Suppose f : A ∪
B → A∪B is a cyclic map such that for some x ∈ A, there exist aψ-mappingψx :R+ →R

+

in X and φ ∈ � such that

d
(
f nx, fy

) ≤ ψx
(
d
(
f n–x, y

))
– φ

(
d
(
f n–x, y

))
, n ∈N, y ∈ A. (.)

Then f is called a generalized cyclic orbital weaker Meir-Keeler (ψx,φ)-contraction.

Our second main result is the following.

Theorem  Let A and B be two nonempty closed subsets of a complete metric space (X,d),
and let ψx : R+ → R

+ be a ψ-mapping in X and φ ∈ �. Suppose f : A ∪ B → A ∪ B is a
generalized cyclic orbital weaker Meir-Keeler (ψx,φ)-contraction. Then A∩B is nonempty
and f has a unique fixed point in A∩ B.

Proof Since f : A ∪ B → A ∪ B is a generalized cyclic orbital weaker Meir-Keeler (ψx,φ)-
contraction and for x ∈ X, there exist a ψ-mapping ψx : R+ → R

+ in X and φ ∈ � such
that (.) is satisfied. Put y = f nx for all n ∈N. Then we have that for each n ∈N

d
(
f nx, f n+x

) ≤ ψx
(
d
(
f n–x, f nx

))
– φ

(
d
(
f n–x, f nx

))
≤ ψx

(
d
(
f n–x, f nx

))
,

and

d
(
f n+x, f n+x

)
= d

(
f n+x, f n+x

)
≤ ψx

(
d
(
f n+x, f nx

))
– φ

(
d
(
f n+x, f nx

))
≤ ψx

(
d
(
f n+x, f nx

))
.
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Generally, we have that for each n ∈N

d
(
f nx, f n+x

) ≤ ψx
(
d
(
f n–x, f nx

))
,

and so we conclude that for each n ∈ N

d
(
f nx, f n+x

) ≤ ψx
(
d
(
f n–x, f nx

))
≤ ψ

x
(
d
(
f n–x, f n–x

))
≤ · · ·
≤ ψn

x
(
d(x, fx)

)
.

Since {ψn
x (d(x, fx))}n∈N is decreasing, it must converge to some η ≥ .We claim that η = .

On the contrary, assume that η > . Then by the definition of weaker Meir-Keeler type
mappingψx inX, there exists δ >  such that for x, y ∈ X with η ≤ d(x, y) < δ+η, there exists
n ∈ N such that ψ

n
x (d(x, y)) < η. Since limn→∞ ψn

x (d(x, fx)) = η, there exists m ∈ N such
that η ≤ ψm

x (d(x, fx)) < δ + η, for allm≥ m. Thus, we conclude that ψ
m+n
x (d(x,x)) < η,

and we get a contradiction. So, limn→∞ ψn
x (d(x, fx)) = , that is,

lim
n→∞d

(
f nx, f n+x

)
= . (.)

We now claim that {f nx} is a Cauchy sequence. It is sufficient to show that {f nx} is a
Cauchy sequence. Suppose {f nx} is not Cauchy. Then there exists ε >  such that for all
k ∈N, there aremk ,nk ∈N with mk > nk ≥ k satisfying:

(i) d(f mkx, f nk ) ≥ ε, and
(ii) mk is the smallest number greater than nk such that the condition (i) holds.

Using (.), we have

ε ≤ d
(
f mkx, f nk

) ≤ d
(
f mkx, f mk–

)
+ d

(
f mk–x, f mk–

)
+ d

(
f mk–x, f nk

)
≤ d

(
f mkx, f mk–

)
+ d

(
f mk–x, f mk–

)
+ ε.

Let k → ∞, we get

lim
n→∞d

(
f mkx, f nk

)
= ε. (.)

On the other hand, applying (.) with y = f nk x for all k ∈N, we get

d
(
f mkx, f nk+

) ≤ ψx
(
d
(
f mk–x, f nk

))
– φ

(
d
(
f mk–x, f nk

))
. (.)

Since for each k ∈N

d
(
f mkx, f nk+

) ≤ d
(
f mkx, f nk

)
+ d

(
f nk x, f nk+

)
, (.)

and

d
(
f mk–x, f nk

) ≤ d
(
f mk–x, f mk

)
+ d

(
f mkx, f nk

)
, (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/91
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taking k → ∞ and using the inequalities (.), (.) and (.), we get

lim
n→∞d

(
f mkx, f nk+

)
= ε, (.)

and

lim
n→∞d

(
f mk–x, f nk

)
= ε. (.)

Taking into account the inequalities (.), (.) and (.), and by the definitions of the
functions φ and ψx , we get

ε = lim
n→∞d

(
f mkx, f nk+

)

≤ lim
n→∞ψx

(
d
(
f mk–x, f nk

))
– lim

n→∞φ
(
d
(
f mk–x, f nk

))

≤ ε – φ(ε),

which implies that ε = . Thus, {f nx} is a Cauchy sequence.
Since (X,d) is a completemetric space,A and B are closed, {f nx} ⊂ A∪B, there exists ν ∈

A ∪ B such that limn→∞ f nx = ν . Now {f nx} is a sequence in A and {f n+x} is a sequence
in B, and also both converge to ν . Since A and B are closed, ν ∈ A ∩ B, and so A ∩ B is
nonempty. On the other hand, since limn→∞ d(f n–x,ν) =  and

d
(
f nx, f ν

) ≤ ψx
(
d
(
f n–x,ν

))
– φ

(
d
(
f n–x,ν

))
,

taking n → ∞,we obtain that

d(ν, f ν) ≤  – φ
(
d(ν,ν)

)
= ,

and hence d(ν, f ν) = , that is, ν is a fixed point of f .
Finally, we want to show the uniqueness of the fixed point. Let μ be another fixed point

of f . By the cyclic character of f , we have ν,μ ∈ A∩B. Since f is a generalized cyclic orbital
weaker Meir-Keeler (ψx,φ)-contraction, we have

d
(
f nx, fμ

) ≤ ψx
(
d
(
f n–x,μ

))
– φ

(
d
(
f n–x,μ

))
.

Letting n → ∞, and by the definitions of the functions φ and ψx, we obtain that

d(ν,μ) = d(ν, fμ) = lim
n→∞d

(
f nx, fμ

) ≤ d(ν,μ) – φ
(
d(ν,μ)

)
,

which implies that d(ν,μ) = . Therefore, ν = μ, and so ν is the unique fixed point of f . �

We give the following example to illustrate Theorem .

Example  Let A = B = X =R
+ and we define d : X ×X →R

+ by

d(x, y) = |x – y|, for x, y ∈ X.

http://www.fixedpointtheoryandapplications.com/content/2013/1/91
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Define f : X → X by

f (x) =

⎧⎨
⎩
, if  ≤ x < ;

 , if x ≥ 

and define ψ ,φ :R+ →R
+ by

ψx(t) =


t and φ(t) =



t for t ∈R

+.

Then f is a generalized cyclic orbital weaker Meir-Keeler (ψx,φ)-contraction and  is the
unique fixed point.
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