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Abstract
We prove a Lefschetz formula L(T ) =

∑
x∈F iT (x) for graph endomorphisms T : G → G,

where G is a general finite simple graph and F is the set of simplices fixed by T . The
degree iT (x) of T at the simplex x is defined as (–1)dim(x) sign(T |x), a graded sign of the
permutation of T restricted to the simplex. The Lefschetz number L(T ) is defined
similarly as in the continuum as L(T ) =

∑
k(–1)

k tr(Tk), where Tk is the map induced on
the kth cohomology group Hk(G) of G. The theorem can be seen as a generalization of
the Nowakowski-Rival fixed-edge theorem (Nowakowski and Rival in J. Graph Theory
3:339-350, 1979). A special case is the identity map T , where the formula reduces to
the Euler-Poincaré formula equating the Euler characteristic with the cohomological
Euler characteristic. The theorem assures that if L(T ) is nonzero, then T has a fixed
clique. A special case is the discrete Brouwer fixed-point theorem for graphs: if T is a
graph endomorphism of a connected graph G, which is star-shaped in the sense that
only the zeroth cohomology group is nontrivial, like for connected trees or
triangularizations of star shaped Euclidean domains, then there is clique x which is
fixed by T . IfA is the automorphism group of a graph, we look at the average
Lefschetz number L(G). We prove that this is the Euler characteristic of the chain G/A
and especially an integer. We also show that as a consequence of the Lefschetz
formula, the zeta function ζT (z) = exp(

∑∞
n=1 L(T

n) z
n

n ) is a product of two dynamical
zeta functions and, therefore, has an analytic continuation as a rational function. This
explicitly computable product formula involves the dimension and the signature of
prime orbits.
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1 Introduction
Brouwer’s fixed-point theorem assures that any continuous transformation on the closed
ball in Euclidean space has a fixed point. First tackled by Poincaré in  and by Bohl in
 [] in the context of differential equations [], then byHadamard in  andBrouwer
in  [], in general, it is now a basic application in algebraic topology [–]. It has its
use for example in game theory: the Kakutani generalization [] has been used to prove
Nash equilibria []. It is also useful for the theorem of Perron-Frobenius in linear algebra
[], which is one of the mathematical foundations for the page rank used to measure the
relevance of nodes in a network. More general than Brouwer is Lefschetz’ fixed-point the-
orem

∑
x∈F iT (x) = L(T) [] from , which assures that if the Lefschetz number L(T) of

a continuous transformation on a manifold is nonzero, then T has a fixed point. In ,
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Hopf [] extended this to arbitrary finite Euclidean simplicial complexes and proved that
if T has no fixed point then L(T) = . The third chapter of [] and [] provides more
history. Brouwer’s theorem follows from Lefschetz because a manifoldM homeomorphic
to the unit ball has Hk(M) and is trivial for k >  so that L(T) =  assures the existence of
a fixed point.
Since Brouwer’s fixed-point theorem has been approached graph theoretically with

hexagonal lattices [] or using results on graph colorings like the Sperner lemma [],
it is natural to inquire for a direct combinatorial analogue on graphs without relating to
any Euclidean structure. But already the most simple examples like rotation on a triangle
show that an automorphism of a graph does not need to have a fixed vertex, even if the
graph is a triangularization of the unit disc. Indeed, many graph endomorphisms in con-
tractible graphs do not have fixed points. Even the one-dimensional Brouwer fixed-point
theorem, which is equivalent to the intermediate value theorem does not hold: a reflection
(a,b)→ (b,a) on a two point graph does not have a fixed vertex.
The reason for the failure is that searching for fixed vertices is too narrow. We do not

have to look for fixed points but fixed simplices. These fundamental entities are also called
cliques in graph theory. This is natural since already the discrete exterior algebra deals
with functions on the set G =

⋃
k Gk of simplices of the graph G, where G = V is the set

of vertices G = E is the number edges, G the set of triangles in G etc. The Euler charac-
teristic is the graded cardinality

∑
k(–)k|Gk| = ∑

k(–)kvk of G . The role of tensors in the
continuum is played by functions on G . A k-form in particular is an antisymmetric func-
tion on Gk . The definition of the exterior derivative df (x) =

∑
i(–)if (x, . . . , x̂i, . . . ,xk) =

f (δx) is already the Stokes theorem in its core because for a k-simplex x, the boundary
δx =

⋃
i(x, . . . , x̂i, . . . ,xk) is the union of (k –)-dimensional simplices in x, which form the

boundary of x. The definition of exterior derivative tells that df evaluated at a point x is
the same than f evaluated at the boundary point δx. We see that in graph theory, the term
‘point’ comes naturally when used for cliques of the graph.
Because of the atomic nature of cliques, we therefore prove a Lefschetz formula which

holds for graph endomorphisms of finite simple graphs and where the simplices are the
basic ‘points’. Despite the discrete setting, the structure of the proof is close to Hopf ’s
approach to the classical Lefschetz theorem []. More text book proofs can now be
found in [, , ]. While the definition of Lefschetz number goes over directly, it was
the definition of the degree = index of a map at a fixed simplex, which we needed to
look for. Direct discretizations of the classical definition of the Kronecker-Brower degree
iT (x) = signdet( –dT(x)) do not work.We found that the degree (which we also often call
index)

iT (x) = (–)dim(x) sign(T |x)

leads to a theorem. In this definition, n = dim(x) is the dimension of the complete graph x =
Kn+ and sign(T |x) is the signature of the permutation induced on x. With this definition,
every cyclic permutation on a simplex has index  and the sum of the indices over all fixed
subsimplices of a simplex is  for any permutation T . This matches that L(T) =  for any
automorphism of a simplex Kn. The main result is the Lefschetz formula

L(T) =
∑

x∈F (T)

iT (x),
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where F (T) is the subset of G which is fixed by T . The proof uses the Euler-Poincaré
formula, which is the special case when T is the identity. A second part is to verify that for
a fixed-point free map L(T) = . A final ingredient is to show L(f |U ∪V) = L(f |U ) + L(f |V)
for two T-invariant disjoint simplex sets U , V . The Lefschetz number applied to the fixed
point set is the Euler characteristic and equal to the sum of indices, the Lefschetz number
applied toH is zero.
The probabilistic link [] between Poincaré-Hopf

∑
x∈V if (x) = χ (G) andGauss-Bonnet∑

x∈V K(x) = χ (G) obtained by integrating over all injective functions f on the vertex setV
motivates to look for an analogue of Gauss-Bonnet in this context. This is possible: define
a Lefschetz curvature κ(x) on the set of simplices x of G as the rational number

κ(x) =


|Aut(G)|
∑

T∈Autx(G)
iT (x).

It is an almost immediate consequence of the Lefschetz formula that the Gauss-Bonnet
type formula

∑
x∈G

κ(x) = L(G) ()

holds, where L(G) is the average over A = Aut(G) of all automorphisms. It is a graph in-
variant which refers to the symmetry group of the graph. Unlike the Euler characteristic,
it can be nonzero for odd dimensional graphs. For one-dimensional geometric graphs, for
example, L(G) is the number of connected components and the curvature κ(x) on each
edge or vertex of Cn is constant /(n). For complete graphs, the Lefschetz curvature is
concentrated on the set G of vertices and constant /(n + ). An other extreme case is
when A is trivial, where curvature is  for even-dimensional simplices and – for odd-
dimensional simplices. The Gauss-Bonnet type formula () is then just a reformulation of
the Euler-Poincaré formula because L(G) is then the cohomological Euler characteristic.
While L(G) behaves more like a spectral invariant of the graph as the latter also de-

pends crucially on symmetries, we will see that L(G) is the Euler characteristic of the quo-
tient chain G/A of the graph by its automorphism group. The quotient chain is a discrete
analogue of an orbifold. In the case P, for example, where we have  automorphisms,
the Lefschetz numbers are (, , , , , ) with the identity L(Id) = χ (G) = , the rotations
L(T) =  and reflections of two vertices give L(T) = . The average L(G) =  is the Euler
characteristic of K ∼ G/A. For the complete graph K, which has the same  automor-
phisms, the Lefschetz numbers are (, , , , , ) and again L(G) = . The proof that L(G) is
a Euler characteristic only uses the Burnside lemma in group theory and is much simpler
than the analogous result for orbifolds.
Since the Lefschetz number is a weighted count of fixed points, the Lefschetz number

of the iterate Tn is a weighted count of periodic orbits. The Lefschetz zeta function

ζT (z) = exp

( ∞∑
n=

L
(
Tn)zn

n

)

encodes this. It is an algebraic version of the Artin-Mazur [] zeta function, which in
dynamical systems theory is studied frequently []. Actually, as we will see in this article,
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the Lefschetz formula implies that the Lefschetz zeta function of a graph automorphism
is the product of two zeta functions defined in dynamical systems theory. It therefore has
a product formula. This formula is a finite product over all possible prime periods

ζT (z) =
∞∏
p=

(
 – zp

)a(p)–b(p)( + zp
)c(p)–d(p),

where a(p) rsp. c(p) is the number of odd-dimensional prime periodic orbits {x,Tx, . . . ,
Tp–x} for which Tp|x has positive rsp. negative signature and b(p) rsp. d(p) are the num-
ber of even-dimensional prime periodic orbits for which Tp|x has positive rsp. negative
signature.
The zeta function (or rather its analytic continuation given by the rational function in the

form of the just mentioned product formula) contains the Lefschetz numbers of iterates
of the map because it defines a Taylor series with periodic coefficients

d
dz

log
(
ζ (z)

)
=

∞∑
n=

L
(
Tn)zn–.

For the zeta function of a reflection at a circular graph Cn, for example, where ζ (z) =
(z+)/(–z), the right-hand side is +z +z + · · · so that L(Tn) =  for odd n. An imme-
diate consequence of product formulas for dynamical zeta functions is a product formula,
which is in the case of the identity ζId(z) = ( – z)–χ (G) again just a reformulation of the
Euler-Poincaré formula. As in number theory, where the coefficients in Dirichlet L-series
are multiplicative characters, also dynamical zeta functions have coefficients which are
multiplicative by definition. When using the degree iT (x), this is not multiplicative be-
cause of the dimension factor (–)dim(x). We can split the permutation part from the di-
mension part, however, and write a product formula for the zeta function which involves
two dynamical zeta functions.
Because graphs have finite automorphism groups A = Aut(G), one can define a zeta

function of the graph as

ζG(z) =
∏

T∈Aut(G)
ζT (z).

As the Lefschetz zeta function of a transformation, the graph zeta function is a ratio-
nal function. For a reflection T at a circular graph Cn, for example, we have ζT (z) =
( + z)/( – z) because L(T) = , L(T) =  and exp(

∑
n odd zn/n) = ( + z)/( – z) so that

ζG(z) = ( + z)/( – z). For a graph with a trivial automorphism group, we have ζG(z) =
ζId(z) = ( – z)–χ (G). These examples prompt the question about the role of the order of
the zero or of pole at z = . The order at z =  is important wherever zeta functions ap-
pear, in particular, for the original Riemann zeta function, which has a pole of order .
An other example is for subshifts of finite type with Markov matrix A, where the Bowen-
Lanford formula [] writes the dynamical zeta function as ζ (z) = /det( –Az), which by
Perron-Frobenius has a pole of order k at z =  if A has k irreducible components.
The proof of the discrete Lefschetz formula is graph theoretical and especially does not

involve any limits. Like Sperner’s lemma, it would have convinced the intuitionist Brouwer:
both sides of the Lefschetz formula can be computed in finitely many steps. The Lefschetz

http://www.fixedpointtheoryandapplications.com/content/2013/1/85
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formula is also in this discrete incarnation a generalization of the Euler-Poincaré formula,
which is a linear algebra result in the case of graphs. If we look at the set G of all the
simplices of a graph, then this set can be divided into a set F , which is fixed and a set N
whichwander under the dynamics. The fixed simplices can be dealt with combinatorically.
Let us see what happens in the special case when T acts on a complete graph G and

where x is the simplex, which is the entire graph. Understanding this is crucial. The
Lefschetz fixed-point formula is

∑
y∈F (T) iT (y) = L(T) = . Let us see the proof: the per-

mutation T induced on G decomposes into cycles y, . . . , yk , which all are subsimplices
of G. Since also arbitrary unions of simplices are simplices, the transformation T fixes
k –  simplices, which is the set of all subsets except the empty set which does not count
as a fixed point. We have iT (yj) =  because the order of the cyclic permutation cancels the
dimensional grading. Next iT (yi ∪ yj) = – and in general

iT (y) = (–)|y|–,

where |y| is the number of orbits in y. In otherwords, iT (y) depends on the dimension of the
‘orbit simplex’. Since

∑
y∈F (T)⊂x(–)|y|– =  and i(∅) = –, we have

∑
y∈F (T)⊂x,y	=∅ iT (y) = ,

which agrees with L(T) = χ (G) = .
As we realized in July , our fixed-point theorem generalizes the Nowakowski-Rival

fixed-edge theorem [], which tells that a graph endomorphism of a simple connected
graph with no loops has either a fixed edge or vertex. By adding loops, this is a fixed-
edge theorem. The Nowakowski-Rival theorem is a consequence of the discrete Brouwer
theorem in the case of trees which is contractible. In [], the theorem was generalized to
a commutative family of such maps.

2 The Lefschetz number
Given a finite simple graphG = (V ,E) we denote by Gk the set of complete Kk+ subgraphs
of G. Elements in Gk are called cliques. The set G is the set of all triangles in G, G = E the
set of edges and G = V the set of vertices. If the cardinality of Gk is denoted by vk , then
the Euler characteristic of G is defined as

χ (G) =
∞∑
k=

(–)kvk ,

a finite sum.
To get the discrete exterior bundle, define a k-form as a function onGk , which is antisym-

metric in its (k + ) arguments. The set �k of all k-forms is a vector space of dimension vk .
The exterior derivative d : �k → �k+ is defined as df (x) =

∑
i(–)if (x, . . . , x̂i, . . . ,xk),

where x̂ denotes a variable taken away. A form is closed if df = . It is exact if f = dg .
The vector space Hk(G) of closed forms modulo exact forms is the cohomology group of
dimension bk , the Betti number. The cohomological Euler characteristic ofG is defined as

∞∑
k=

(–)kbk .

The sign ambiguity of forms can be fixed by defining an orientation onG. The later assigns
a constant n-form  to each maximal n-dimensional simplex; a simplex being maximal if

http://www.fixedpointtheoryandapplications.com/content/2013/1/85
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it is not contained in a larger simplex. G is orientable if one can find an orientation, which
is compatible on the intersection of maximal simplices. If G should be nonorientable, we
can look at a double cover G′ of G and define Hk(G) as Hk(G′). A graph automorphism
lifts to the cover and a fixed point in the cover projects down to a fixed point on G. Our
results do not depend on whether G is orientable or not.

Example LetG be a triangle. The vector space of -forms is three-dimensional, the space
of -forms three-dimensional and the space of  forms one-dimensional. An orientation
is given by defining f (, , ) = . This induces orientations on the edges f (, ) = f (, ) =
f (, ) = .

A graph endomorphism is a map T of V such that if (a,b) ∈ E then T(a,b) ∈ E. If T
is invertible, then f is called a graph automorphism. Denote by Tp the induced map on
the vector space Hp(G). As a linear map, it can be described by a matrix, once a basis is
introduced on Hp(G).

Remark We can focus on graph automorphisms because the image im(T) is T-invariant
and T restricted to the attractor im(Tn) for sufficiently large n is an automorphism. This
is already evident when ignoring the graph structure and looking at permutations of finite
sets only.

The following definition is similar as in the continuum.

Definition Given a graph endomorphism T : G → G on a simple graph G, define the
Lefschetz number as

L(T) =
∞∑
p=

(–)p tr(Tp),

where Tk is the map T induces on Hk(G).

Examples () For the identity map T , the number L(T) is the cohomological Euler char-
acteristic ofG. Denote byF (T) the set of fixed points of T . In the sameway as the classical
Lefschetz-Hopf theorem, we have then L(T) =

∑
x iT (x) =

∑
x(–)dim(x), where iT is the in-

dex of the transformation.
() If G is a zero dimensional graph, a graph without edges, and T is a permutation of

V , then it is an automorphism and L(T) is equal to the number of fixed points of T . The
reason is that onlyH(G) is nontrivial and has dimension v. The transformation T is the
permutation defined by T and tr(T) is the number of fixed points.
() If G is a complete graph, then any permutation is an automorphism. Only H(G) is

nontrivial and has dimension  and L(T) = .
() The tetractys is a graph of order  which is obtained by dividing a triangle into 

triangles. The automorphism group is the symmetry groupD of the triangle. Again, since
only H(G) is nontrivial, L(T) =  for all automorphisms. For rotations, there is only one
fixed point, the central triangle. For reflections, we have  vertices,  edges and  triangles
fixed.

http://www.fixedpointtheoryandapplications.com/content/2013/1/85
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() For a cyclic graph Cn with n≥ , bothH(G) andH(G) are nontrivial. If T preserves
orientation and is not the identity, then there are no fixed points. The Lefschetz number
is . For the reflection T , the Lefschetz number is . Any reflection has either  edges or
two vertices or a vertex and an edge fixed.
() The Petersen graph has order  and size  has a Euler characteristic – and an au-

tomorphism group of  elements. The Lefschetz number of the identity is –, there are
 automorphisms with L(T) =  and  automorphisms with L(T) =  and  automor-
phisms with L(T) = . The sum of all Lefschetz numbers is  and the average Lefschetz
number therefore is . We will call this L(G) and see that it is χ (G/A), where G/A is the
quotient chain which is here a graph consisting of one point only.

3 Lefschetz fixed point theorem
Definition Denote by F (T) the set of simplices x which are invariant under the endo-
morphism T . A simplex is invariant if T(x) = x. In this case, T |x is a permutation of the
simplex.

Definition For a fixed simplex x in the graphG and an endomorphismT , define the index

iT (x) = (–)dim(x) sign(T |x),

where sign(T |x) is the signature of the permutation T induces on x. The integer sign(T) ∈
{–, } is the determinant of the corresponding permutation matrix.

Remarks () In the continuum, the inner structure of a fixed point is accessible through
the derivative and classically, iT (x) = sign(det(dT(x) – I)) is the index of a fixed point.
() Is there a formal relation between the continuum and the discrete? In the continuum,

we have iT (x) = p() where p is the characteristic polynomial of dT(x). In the discrete, we
have iT (x) = –p() where p is the characteristic polynomial of the permutation matrix –P
of T restricted to x.

Examples () If x is a -dimensional simplex (a vertex), then iT (x) =  for every fixed point
x and the sum of indices agrees with L(T).
() If x is a -dimensional simplex K (an edge) and f is the identity, then iT (x) = –. If f

flips two point in x = K, then iT (x) = .
() Let G be a cyclic graph Cn with n ≥ . An automorphism is either a rotation or

a reflection. We have tr(T) = – in the orientation preserving case and tr(T) =  in the
orientation reversing case. For any invariant simplex, we have iT (x) = .
() If G is a wheel graph and T is a rotation, then there is one fixed point and L(T) = .

The index of the fixed point is  as any -dimensional fixed point has index .

Theorem . (Lefschetz formula) For any graph endomorphism T of a simple graph G
with fixed point set F (T), we have

L(T) =
∑

x∈F (T)

iT (x).

http://www.fixedpointtheoryandapplications.com/content/2013/1/85


Knill Fixed Point Theory and Applications 2013, 2013:85 Page 8 of 24
http://www.fixedpointtheoryandapplications.com/content/2013/1/85

Examples () For the identity map T(x) = x, we have L(T) = χ (G) as in the continuum.
The formula rephrases the Euler-Poincaré formula telling that the homological Euler char-
acteristic is the graph theoretical Euler characteristic because iT (x) = (–)dim(x) and every
x is a fixed point.
() Assume G is a -dimensional circular graph Cn with n ≥ . If T is orientation pre-

serving, then the Lefschetz number is , otherwise it is  and we have two fixed points.
Lets compute L(T) in the orientation preserving case: the spaceH(G) is R and the map T
induces the identity on it. The spaceH(G) consists of all constant functions on edges and
T induces –Id. If T is orientation reversing, then the left hand side is  – (–) = . Indeed
we have then two fixed points.
() Assume G is an octahedron and T is an orientation preserving automorphims of G,

then T on H(G) and T on H(G) are both the identity and since H(G) is trivial, the
Lefschetz number is . There are always at least two fixed simplices. It is possible to have
two triangles or two vertices invariant.
() The Lefschetz number of any map induced on the wheel graphs is  because only

H(G) is nontrivial. Any endomorphism has at least one fixed point.
() If G is the icosahedron, then there are automorphims, which have just two triangles

fixed. Also two fixed points are possible.
() Assume T is an orientation reversing map, a reflection on an octahedron.We do not

need to have a fixed point. Indeed, the map T induced on H(G) is – and the Lefschetz
number is L(G) =  –  = .
() IfG consists of two triangles glued together at one edge, then χ (G) = . Take T which

exchanges the two triangles. This leaves the central edge invariant. The Lefschetz number
of T is .
() For a complete graph G = Kn+, any permutation is a graph automorphism. The

Lefschetz number is  because onlyH(G) is nontrivial. The index of any cyclic subsimplex
is . As in the identity case, we have

∑
x∈F (T) iT (x) = , which is the L(T). As mentioned

in the Introduction, one can see this special case as a Euler-Poincaré formula for the orbit
graph because T on every cyclic orbit y is a cyclic permutation with iT (y) = .

The classical Poincaré lemma in Euclidean space assures that for a region homeomor-
phic to a star-shaped region onlyH(G) is nonzero. This motivates to define the following.

Definition A graph G = (V ,E) is called star-shaped if all vector spaces Hk(G) are trivial
for k ≥ .

Examples () Given an arbitrary graph H = (V ,E), then the pyramid construction

G =
(
V ∪ {p},E ∪ {

(v,p)|v ∈ V
})

is star-shaped.
() Any tree G is star-shaped as there are no triangles in the tree making Hk(G) trivially

vanish for k ≥ . The vector space H(G) is trivial because there are no loops.
() The complete graph is star-shaped.
() The cycle graph Cn is not star-shaped for n > .
() Any finite simply connected and connected subgraph of an infinite hexagonal graph

is star-shaped.
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() The icosahedron and octahedron are both not star-shaped. Actually, any orientable
-dimensional geometric graph (a graph where each unit sphere is a -dimensional circu-
lar graph) is not star-shaped as Poincaré duality H(G) ∼H(G) holds for such graphs.

As in the continuum, the Brouwer fixed-point theorem follows.

Theorem. (Brouwer fixed point) A graph endomorphismT on a connected star-shaped
graph G has a fixed clique.

Proof We have L(T) =  because only H(G) = R is nontrivial and G is connected. Apply
the Lefschetz fixed-point theorem. �

4 Proof
Wecan restrict ourself to graph automorphisms because an endomorphismT restricted to
the attractor G′ =

⋂∞
k=Tk(G) of T is an automorphism. Any fixed point of T is obviously

in the attractorG′ so that the sum in the Lefschetz formula does not change when looking
at T on G′ instead of T on G. Also the Lefschetz number L(T) does not change as any
invariant cohomology class, an eigenvector w of the linear map Lk on the vector space
Hk(G) must be supported on G′.
The set G decomposes into two sets, the union of the set F of simplices which are fixed

and the setN of simplices which are not fixed by the automorphism T . It is possible that
some elements in N can be a subsimplex of an element in F . For a cyclic rotation on the
triangle K, for example, the triangle itself is in F but its vertices are inN .
To see the Lefschetz numbermore clearly, we extend T to Gk . Given a k-simplex x, it has

an orbit x, T(x),T(x), . . . ,Tn
k (x), which will eventually circle in a loop since Tk is a map on

a finite set.

Definition The Euler characteristic of a subset A of G is defined as

χ (A) =
∞∑
p=

(–)p|A∩ Gp|.

The Lefschetz number L of T restricted to an invariant set A is defined as

L(T |A) =
∞∑
p=

(–)p tr(Tp|A),

where Tp is the map induced on the linear subspace generated by functions on A.

Remarks () The linear subspace generated by functions onA is in general not invariant
under the exterior derivative d: a function supported on A has df , which is defined on G
and not on A in general.
()We have χ (G) = χ (G), where the left-hand side is the Euler characteristic of the super

graph and the right-hand side the Euler characteristic of the graph. Note, however, that
there are subsets of G which are not graphs. For a triangle for example, we can look at the
set V = G of edges and get the Euler characteristic χ (V) = –.
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Lemma . (Additivity of L) Assume U , V are disjoint subsets of G and assume both are
T-invariant. Then

L(T |U ∪ V) = L(T |U ) + L(T |V).

Especially, for T = Id,

χ (U ∪ V) = χ (U ) + χ (V).

Remark The vertex sets defined by two subsets U ,V ⊂ G do not need to be disjoint. For
a triangleG = K, for example, U = G and V = G are disjoint sets in G even so every y ∈ V
is a subgraph of every nonempty subset of U .

Proof We only have to show that

Lk(G) = Lk(U ) + Lk(V).

Let Ul be the set of l-simplices in U , Vl the set of simplices in V . The sets Ul are T invariant
for l ≤ k. Any member fl of a cohomology class Hl(G) is a function on Ul can be decom-
posed as fl = fU where fU has support in Ul etc. The matrix Lk is a block matrix and the
trace is the sum of the traces of the blocks. �

Corollary . Assume U , V are T-invariant subsets of G , then

L(T |U ∪ V) = L(T |U ) + L(T |V) – L(T |U ∩V ).

Proof Write W = U ∩ V and apply Lemma . twice for the disjoint sets U = U \ W ,W
and then U ,V \W , which has the union U ∪ V . �

Lemma . If T has no fixed point in G , then L(T) = . More generally, L(T |N ) =  if T
has no fixed points onN ⊂ G .

Proof Given a simplex x, the orbit U = {Tk(x)} is T-invariant and L(T |U ) = . To see this,
note thatHk(U ) is trivial for k ≥ . There are two possibilities: either U is connected, or U
has n >  connectivity components. In the first case, the orbit graph U has a retraction to
a cyclic subgraph so that H(U ) = R and H(U ) = R. In that case, T, T are both identities
onH(U ),H(U ) and L(T) = . In the second case,H(G) is n-dimensional and is the only
cohomology, which is nontrivial. The map T is a cyclic permutation matrix on H which
has trace zero. For two T-invariant sets U ,V ⊂ G , the intersection is also invariant and
also has zero Lefschetz number. Therefore, the Lefschetz number of the union of all orbits
is zero by Lemma .. �

The next lemma assures that for any finite simple graph G, the graph theoretical Euler
characteristic is equal to the cohomological Euler characteristic.

Lemma . (Euler-Poincaré formula) If T is the identity, then L(T) = χ (G).

http://www.fixedpointtheoryandapplications.com/content/2013/1/85


Knill Fixed Point Theory and Applications 2013, 2013:85 Page 11 of 24
http://www.fixedpointtheoryandapplications.com/content/2013/1/85

In other words, for any simple graph, the cohomological Euler characteristic L(Id) is the
same than the graph theoretical Euler characteristic.

Proof This is linear algebra [, ]: denote byCm the vector space ofm-forms onG. It has
dimension vm. The kernelZm = ker(d) of dimension zm and rangeRm = ran(d) of dimension
rm. From the rank-nullity theorem in linear algebra dim(ker(dm)) + dim(ran(dm)) = vm, we
get

zm = vm – rm. ()

From the definition of the cohomology groups Hm(G) = Zm(G)/Rm–(G) of dimension bm,
we get

bm = zm – rm–. ()

Adding Equations () and () gives

vm – bm = rm– + rm.

Summing this up overm (using r– = , rm =  form >m)

∞∑
m=

(–)m(vm – bm) =
∞∑
m=

(–)m(rm– + rm) = 

which implies
∑∞

m=(–)mvm =
∑∞

m=(–)mbm. �

Lemma . (Fixed point) If F is the set of simplices in G fixed by T then

L(T |F ) = χ (F ) =
∑
x∈F

iT (x).

Proof Because every x ∈ F is fixed we have a disjoint union F =
⋃

x∈F (T) x and L(T) =
χ (F ). Because T is the identity on each fixed point, we have iT (x) = (–)dim(x) and the
second equality holds. �

Examples () If there are n maximal invariant simplices, which do not intersect, then
L(T) = n. This follows from the additivity of L and the fact that T restricted to a simplex
has L(T |x) = , independent of T .
() LetG = K. Let T be a permutation with two cyclic orbits y, z of order ,  inside. The

transformation has  fixed points x, y, z in total. We have iT (x) = (–)+ sign(T |x) =  and
iT (y) = (–) sign(T |y) = –, iT (y) = (–) sign(T |y) =  and the sum is iT (x) + iT (y) + iT (z) =
 = L(T).

Now, we are ready to prove the theorem.

Proof The fixed point set F of T is invariant and satisfies L(T |F ) = χ (F ) =
∑

x∈F (T) iT (x).
The setN of simplices, which are not fixed satisfies L(T |N ) = .

L(T) = L(T |G) = L(T |F ) + L(T |N ) = L(T |F ) = χ (F ) =
∑

x∈F (T)

iT (x). �
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Example To illustrate the proof, we look at an example, where we split a triangle into 
triangles and rotate it by  degrees. The fixed point set F consists of the central triangle
alone and the complement F c =H = G \F . The fixed point set consists only of one point,
the central triangle x ∈ G. All other parts of the supergraph G move, including the edges
and vertices of the triangle itself.

5 Lefschetz curvature
We have seen in [] that averaging the Poincaré-Hopf index theorem formula []

∑
x∈V

if (x) = χ (G)

over a probability space of all injective functions f : V → R leads to Gauss-Bonnet []

∑
x∈V

K(x) = χ (G).

It is therefore natural to look at the average iT (x) as a curvature when we sum up over all
stabilizer elements in Ax =Autx(G).

Definition Define the Lefschetz curvature of a simplex x ∈ G as

κ(x) =


|A|
∑
T∈Ax

iT (x)

and the average Lefschetz number

L(G) =


|A|
∑
T∈A

L(T)

when averaging over all automorphisms.

The number L(G) has an interpretation as the expected index of fixed points of a graph
if we chose a random automorphism in the automorphism group. It is a lower bound for
the expected number of fixed points of a random automorphism on a graph.

Examples () For a cycle graph Cn with n ≥ , half of the automorphisms have L(T) = 
and half have L(T) = . The average Lefschetz number is .
() For a complete graph Kn, all automorphisms satisfy L(T) =  so that the average

Lefschetz number is .
() For the Petersen graph G, the average Lefschetz number is .

If the Lefschetz formula is compared with the Poincaré-Hopf formula, then κ(x) is an
analogue of Euler curvature and the next result is an analogue of Gauss-Bonnet but where
we sum over all simplices inG. The Lefschetz curvature is a nonlocal property. It does not
depend only on a small neighborhood of the point, but on the symmetries which fix the
point = simplex.

http://www.fixedpointtheoryandapplications.com/content/2013/1/85
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Theorem . (Average Lefschetz)

∑
x∈G

κ(x) = L(G).

Proof Use the Lefschetz fixed-point theorem to sum over A =Aut(G):

L(G) =


|A|
∑
T∈A

L(T)

=


|A|
∑
T∈A

∑
x∈F (T)

ix(T)

=


|A|
∑
x∈G

∑
T∈Ax

ix(T)

=
∑
x∈G


|A|

∑
T∈Ax

ix(T) =
∑
x∈G

κ(x).
�

Remark Unlike the Gauss-Bonnet theorem, this Gauss-Bonnet type theorem sums over
all possible simplices G , not only vertices V of the graph. The Lefschetz curvature is con-
stant on each orbit of the automorphism group A and the sum over all curvatures over
such an equivalence class is an integer  or –. Theorem . is the Euler-Poincaré formula
in disguise since we will interpret L(G) as an Euler characteristic of an ‘orbifold’ chain.

Examples () IfG is the complete graph Kn+, thenA = Sn+ is the full permutation group
and since L(T) =  for all T , we also have L(G) = . Now lets compute the Lefschetz cur-
vature. For every fixed x we have iT (x) = (–)dim(x) sign(T |x) and averaging over all T gives
zero except if x is a vertex, where

κ(x) =
|Ax|
|A| =


n + 

.

The Lefschetz curvature of a vertex is the same than the Euler curvature of a vertex. The
curvature is zero onGk for k >  because the indices of even odd dimensional permutations
cancel.
() If G is star-shaped then L(T) =  for all T and L(G) = . It reflects the Brouwer ana-

logue that every transformation has a fixed point. IfG is a star graph Sn, then the automor-
phism group is Dn. For the center point iT (x) =  for all transformations and κ(x) = . All
other points have κ(x) = .While the Euler curvature is positive at the spikes and negative
in the center, the Lefschetz curvature is entirely concentrated at the center.
() IfG = Cn for n ≥ , thenA =Dn is the dihedral group. For reflections we have L(T) =

, for the rotations, L(T) = . Therefore, L(G) = . The stabilizer group Ax(G) consists
always of two elements whether it is a vertex or edge and iT (x) =  in both cases. We have
κ(x) = /(n) and

∑
x κ(x) = . The curvature is located both on vertices and edges. Unlike

the Euler curvature, the Lefschetz curvature is now nonzero.
() If G is the wheel graph Wn with n ≥ , then again A is the dihedral group. We still

have L(G) =  but now L(T) =  for all automorphisms. The center vertex has the full au-
tomorphism group as stabilizer group and iT (x) =  for any transformation. Therefore,
κ(x) =  at the center and κ(x) =  everywhere else. The center has grabbed all curvature.
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() If G has a trivial automorphism group, then L(G) = χ (G) is the Euler characteristic.
Also each stabilizer group is trivial and iT (x) = (–)|x| so that κ(x) = iT (x) = (–)|x|. In this
case, the curvature is spread on all simplices, even-dimensional ones have positive cur-
vature and odd-dimensional ones have negative curvature. It is amusing that the Euler-
Poincaré formula can now be seen as a Gauss-Bonnet formula for Lefschetz curvature.
() For the octahedronG, the orientation preserving automorphisms T satisfy L(T) = .

They are realized as rotations if the graph is embedded as a convex regular polygon. The
orientation reversing automorphisms have L(T) = . The average Lefschetz number is
L(G) =  and the Lefschetz curvature is constant  at every point.
() We can look at the Erdoes-Rényi probability space �n [] of m graphs G on a ver-

tex set withm = n(n– )/ edges. The number L(G) is a random variable on �n. We com-
puted the expectation En[L] for small n as follows: E[L] = , E[L] = /, E[L] = /,
E[L] = ,/,, E[L] = ,/,. Like the expectation of Euler characteristic of
random graphs, the expectation of L(G) is expected to oscillate more andmore as n → ∞.
While L(G) takes values  or  in the case n = , . . . , , there are graphs on  vertices, where
the maximal Lefschetz number is  and the minimal Lefschetz number is . The compu-
tation for n =  is already quite involved since we have , graphs and look at all the
automorphisms and for each automorphism find all fixed points.

We will now show that the average Lefschetz number L(G) obtained by averaging over
the automorphismgroupA =Aut(G) is always an integer, since it is the Euler characteristic
of a chain, which is an integer.

Definition Let G/A be the orbigraph (a chain) defined by the automorphism group A
acting on G. Two vertices are identified if there is an automorphismmapping one into the
other.

Remarks () G/A is not a graph in general. It sometimes is a multigraph, possibly with
loops [] but in general, it is only a chain.
() If geometric graphsG inwhich unit spheres have topological properties from spheres

and fixed dimension are considered discrete analogues of manifolds and B is a subgroup
of automorphisms of G, then G/B plays the role of an orbifold. Examples are geometric
graphs with boundary, where each unit sphere is either sphere-like or a half-sphere of the
same fixed dimension.

Theorem . (Average Lefschetz is Euler characteristic) The Lefschetz number satisfies
L(G) = χ (G/A) and is an integer.

Proof The proof uses elementary group theory and Theorem ..
() The Burnside lemma for the finite groupA acting on G assures

|G/A| = 
|A|

∑
T∈A

∣∣FT ∣∣,
where FT is the set of fixed points of T and G/A is the set of simplices in G/A.
() The number (–)dim(x) of a simplex x ∈ G/A is equal to the index iT (y) for every

simplex y which projects onto x: we have seen in the Introduction that the dimension
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dim(y) = |y| –  of the simplex of T |y satisfies

iT (y) = (–)|y|–.

() Let G+ be the set of simplices x, which are mapped under G → G/A to an even di-
mensional simplex. These are the simplices y for whichT |y have index  independent ofT .
Similarly, let G– be the set of simplices which are projected to an odd dimensional simplex.
All these simplices have negative index for all T ∈ A. We therefore know that we have a
partition G = G+ ∪ G– and that for any T ∈ A and every y ∈ G the index iy(T) is equal to
(–)dim(x) where x = y/A.
() We can now use the Burnside lemma restricted toA invariant sets G+, G– and get

|G/A|k = 
|A|

∑
T∈A

∣∣FT
+
∣∣,

|G/A|k+ = 
|A|

∑
T∈A

∣∣FT
–
∣∣,

where FT± is the set of fixed simplices y of T for which iT (y) = ±.
() Let now |G/A|k the set of simplices in G/A which have dimension k. We use the

Lefschetz fixed point formula to finish the proof:

χ (G/A) =
∞∑
k=

(–)k|G/A|k = 
|A|

∑
T∈A

∣∣FT
+
∣∣ – ∣∣FT

–
∣∣

=


|A|
∑
T∈A

∑
x∈F (T)

iT (x) =


|A|
∑
T∈A

L(T) = L(G).
�

Remarks () Since L(G) = χ (G/A) and κ is constant on each orbit, the Lefschetz curvature
of a simplex x can be rewritten as (–)|x/A|/|Ax| where x/A is the simplex after identifica-
tion withA andAx is the orbit of x under the automorphism group. Since L(G) = χ (G/A),
the Gauss-Bonnet type formula (Theorem .) can also be seen to an Euler-Poincaré for-
mula in general. The number κ(x) encodes so the orbit length of x under the automor-
phism groupA.
() One can also see this as graded summation of an elementary result in linear alge-

bra (see [], p.): if a finite group acts linearly on a finite dimensional vector space
V , then dim(F ) = (/|A|)∑T∈A tr(T). Let j : F → V be the inclusion. Define f (v) =
/|A|∑T∈A T(v). The image of f is inF . Ifπ : V →F is the projection then f = jπ . If v ∈F ,
then Tv = v for all T ∈ A so that f (v) = v. Therefore π j = Id|F and dim(F) = tr(Id|F ) =
tr(π j) = tr(jπ ) = tr(f ). If A is cyclic this simplifies to dim(F ) = tr(T).
() The proof Theorem . does not require G/A to be a graph. If A is a group acting as

automorphism on G, then G/A is only a chain, not a graph.

Examples () Let G be the complete graph Kn. Its automorphism group has n! elements.
The orbifold graph is a single point. The average Lefschetz number is .
() Let G be cycle graph Cn. The automorphism group is the dyadic group Dn with n

elements. The orbigraph is again a single point. The average Lefschetz number is .
() LetG be the discrete graph Pn. Its automorphism group is the full permutation group

again. The orbifold graph is a single point. The average Lefschetz number is .

http://www.fixedpointtheoryandapplications.com/content/2013/1/85


Knill Fixed Point Theory and Applications 2013, 2013:85 Page 16 of 24
http://www.fixedpointtheoryandapplications.com/content/2013/1/85

() Let G be the octahedron. Its automorphism group has  elements. The orbigraph
is again a single point and the average Lefschetz number is .

Remark The analogue statement for manifolds needs more algebraic topology like the
Leray-Serre spectral sequence []: if a manifold G has a finite group A of symmetries,
then the average Lefschetz number L(T) of all the symmetry transformations T is the
Euler characteristic χ (O) of the orbifold O =M/A.

6 Lefschetz zeta function
Having a Lefschetz number, it is custom to define a Lefschetz zeta function which encodes
the Lefschetz numbers of iterates Tn of the graph automorphism T . Zeta functions are
one of those objects which are interesting in any mathematical field, whether it is number
theory, complex analysis, topology, dynamical systems or algebraic geometry. In the case
of graph theory, it is a situation where one can see basic ideas like analytic continuation
work. For any pair (G,T), where T is an automorphism of a finite simple graph, we can
construct an explicit rational function ζ (z). The product formula we will derive allows to
compute this function by hand for small graph dynamical systems.

Definition The Lefschetz zeta function of an automorphism T of a graph G is defined as

ζT (z) = exp

( ∞∑
n=

L
(
Tn)zn

n

)
.

For example, T is a reflection of a circular graph C where L(T) = L(Id) = χ (G) =  and
L(T) = L(T) = L(T) = · · · = , we have

ζT (z) = exp

( ∞∑
n=


zn–

n – 

)
= exp

(
log( + z) – log( – z)

)
=
 + z
 – z

.

The Lefschetz zeta function is an algebraic version of the Artin-Mazur zeta function
[]. It is already interesting for the identity since

ζId(z) = exp

( ∞∑
n=

L
(
Tn)zn

n

)
= exp

( ∞∑
n=

χ (G)
zn

n

)
= exp

(
–χ (G) log(–z)

)
= (–z)–χ (G).

Proposition . ζT (z) is a rational function.

Proof By definition L(Tn) =
∑

k(–)k tr(Tn
k ) we see that exp(

∑
n tr(Tn

k )(–)nzn/n) =
exp(– log(det( – zTk))) = det( – zTk)– for every k and so

ζT (z) =
∞∏
k=

det( – zTk)(–)
k+

. �

The Lefschetz formula allows to write this as a product over periodic simplex orbits. Let
F (Tn) denote the set of fixed simplices of Tn. Then

ζT (z) =
∞∏
m=

∏
x∈F (Tm)

exp

(
iTm (x)

zm

m

)
= exp

( ∞∑
m=

zm

m
∑

x∈F (Tm)

iTm (x)

)
. ()
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Since iTn (x) = (–)dim(x) ∏m–
k= φ(Tkx), whereφ(y) = det(PT (y)) is the determinant of the per-

mutation y → T(y) induced on the simplex, we can write this as ζT |E(z)/ζT |O(z), a quotient
of two dynamical systems zeta function

ζ (z) = exp

( ∞∑
m=

zm

m
∑

x∈F (Tm)

m–∏
k=

φ
(
Tkx

))

with φ ∈ {–, } giving the sign of the permutation.

Definition Let F (p) be the set of periodic orbits of minimal period p. They are called
prime orbits. Let a(p) rsp. c(p) be the number of odd dimensional prime periodic orbits
{x,Tx, . . . ,Tp–x} for which Tp|x has positive rsp. negative signature. Let b(p) rsp. d(p) be
the number of odd-dimensional prime periodic orbits for which Tp|x has positive (rsp.)
negative signature.

One only has to remember: ‘signature and z-sign flip flop’ and ‘dimension has exponents
odd on top’.

Theorem . (Product formula) The zeta function of an automorphism T on a simple
graph G is the rational function

ζT (z) =
∞∏
p=

(
 – zp

)a(p)–b(p)( + zp
)c(p)–d(p).

Proof Because prime periods are smaller or equal than the product of the cycle lengths
of the permutation, the product is finite. While we can follow the computation from the
book [] almost verbatim, there is a twist: since the permutation part of the index is mul-
tiplicative when iterating an orbit, the dimension part is not. If the dimension is odd, then
each transformation step changes the sign in the inner sum of the zeta function. If we
write iT (x) = (–)dim(x)φ(x), where φ(x) is the sign of the permutation, then only the φ part
is multiplicative. Let x be a periodic orbit of minimal period p. If we loop it q times, we
can write 	(xq) =

∏pq–
k= φ(Tkx) = [

∏p–
k= φ(Tkx)]q = [	(x)]q. As in []:

∑
x∈F (Tm)

	
(
xm

)
=

∑
p|m

∑
x∈F (p)

p	
(
xm/p).

The definition () gives (substituting q =m/p in the third identity):

ζ (z) = exp

( ∞∑
m=

zm

m
∑

x∈F (m)

m–∏
k=

φ
(
Tkx

))
= exp

( ∞∑
m=

∑
p|m

zm

m
p

∑
x∈F (p)

	
(
xm/p))

= exp

( ∞∑
p=

∞∑
q=

zpq

q
∑

x∈F (p)

	
(
xq

))
= exp

( ∞∑
p=

∞∑
q=

∑
x∈F (p)

zpq

q
	

(
xq

))

= exp

( ∞∑
p=

∑
x∈F (p)

∞∑
q=

zpq

q
	

(
xq

))
= exp

( ∞∑
p=

∑
x∈F (p)

∞∑
q=

(zp)q

q
[
	(x)

]q)

http://www.fixedpointtheoryandapplications.com/content/2013/1/85


Knill Fixed Point Theory and Applications 2013, 2013:85 Page 18 of 24
http://www.fixedpointtheoryandapplications.com/content/2013/1/85

= exp

( ∞∑
p=

∑
x∈F (p)

– log

(
 – zp

p–∏
k=

φ
(
Tkx

)))
=

∞∏
p=

∏
x∈F (p)

[(
 – zp

p–∏
k=

φ
(
Tkx

))]–

=
∏
x∈F

[(
 – zp(x)

p(x)–∏
k=

φ
(
Tkx

))]–

=
(
 – zp

)a(p)–b(p)( + zp
)c(p)–d(p).

It is in the last identity that we have split up F into  classes, depending on whether the
dimension is even or odd or whether the permutation Tp(x) on x is even or odd. If the
signature is –, then this produces an alternating sum before the log comes in which leads
to a (+zp)± factor depending on the dimension. If the signature is , thenwehave (–zp)±

factors depending on the dimension. �

Corollary . If G is the union of two disjoint graphs G, G and T is an automorphism
of G inducing automorphisms Ti on Gi, then

ζT (z) = ζT (z)ζT (z).

Proof The numbers a(p), b(p), c(p), d(p) are additive. �

Remarks () As in number theory, product formulas are typical for zeta function. The
prototype is the Euler product formula or so called golden key

ζ (s) =
∏
p

(
 – p–s

)– = ∏
p

(
 – zlog(p)

)–,

where z = e–s was plugged in just to get formally more close to the dynamical formula
above and explain the etymology of the dynamical-zeta function.
() One usually asks for a functional equation in the case of zeta functions. If the number

of even dimensional and odd dimensional fixed points correspond, we have a symmetry
z → –z.

Examples () For T = Id, we have a() =
∑

k odd vk and b() =
∑

k even vk so that ζId(z) =
( – z)a–b = ( – z)–χ (G).
() For a reflection T at C, we have two periodic vertex orbit of period p = , one peri-

odic vertex orbit of period  and two edge orbits of period . The product formula gives

( – z)

( – z)( – z)
=
 + z
 – z

.

() For a rotation T of C, we have a periodic vertex orbit of period  and a periodic
edge orbits of period . The product formula gives . This follows also directly from the
definition since L(Tk) =  for all k.
() For any automorphism T of the complete graph G = Kn, we have L(Tn) =  so that

ζT (z) = ( – z)–.
() For the identity on the Petersen graph, we have  fixed vertices of index  and 

edges of index –. The identity ζ (Id) = ( – z)/( – z) = ( – z) reflects the fact that
χ (G) = –.
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Finite graphs have finite automorphism groups so that one can look at

ζG(z) =
∏
T∈A

ζT (z).

Corollary . ζ (z) is a rational function.

Proof It is a finite product of rational functions. �

Corollary . If G is the union of two disjoint graphs Gi, then

ζG(z) = ζG (z)ζG (z).

Proof This follows from Corollary .. �

Examples () We have seen ζT (z) = ( + z)/( – z) for reflections and ζ (z) =  for rotations
so that ζCn (z) = ( +z–z )

n.
() IfG has a trivial automorphism group, the product formula is equivalent to the Euler-

Poincaré formula and ζG(z) = ζId(z) = ( – z)–χ (G).
() For the complete graph Kn, we have ζG(z) = ( – z)–n! . The order of the pole at z = 

is the size of the automorphism group.
() For the Petersen graph, we computed

ζG(z) = ( – z)( + z)
(
 + z

)( + z + z
)( – z

)( – z
)( – z

).
Remark There are other zeta functions for graphs. The Ihara zeta function [] is defined
as

∏
p(–u|p|)–, where p runs over all closed prime paths in the graph and |p| is its length.

For Cn, it is ( – zn)– because there are only two prime paths and both have length n.
The Ihara zeta function appears unrelated to the above zeta function and is closer to the

Figure 1 The complete graph G = K2 hasA = S2 as automorphism group. All transformations T have
Lefschetz number 1. The zeta function of T = Id only involves a(1) = 1, b(1) = 2 so that (1 – z)1–2. The reflection
T has a fixed K2 of negative signature giving c(1) = 1 and a 0-dimensional periodic point of period 2 giving
b(2) = 1 so that ζ (z) = (1 + z)/(1 – z2) = 1/(1 – z).
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Figure 2 A graph G of order 8 and size 9 with automorphism group S2 × S2. T1 = Id with 8 fixed vertices
of index 1 and 9 fixed edges of index –1 has Lefschetz number L(T ) = –1. T2 has 6 fixed vertices of index 1 and
5 fixed edges of index –1 with Lefschetz number L(T2) = 1. T3 has two fixed vertices of index 1 and one edge
of index 1 leading to L(T3) = 3. T4 finally has only one fixed edge of index 1.

Figure 3 The figure shows a graph with a symmetry group of 2 elements. The reflection has 2 fixed
vertices of index 1, one fixed edge of index 1 and 2 fixed triangles of index 1.
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Figure 4 The complete graph G = K3 hasA = S3 as automorphism group. All transformations T have
Lefschetz number L(T ) = 1.
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Figure 5 This figure shows the 120 automorphisms of the Petersen graph. The automorphism group is
A = S5. In each case, L(T ) and ζ (z) are computed and the fixed vertices are marked.
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Figure 6 The dihedral groupA = D4 is the automorphism group of the graph G = C4. The
automorphism T1 = Id has 4 fixed vertices of index 1 and 4 fixed edges of index –1 so that L(T1) = 0. There are
4 rotations which have no fixed points implying L(T ) = 0. There are 2 reflections which fix two vertices of
index 1. There are 2 reflections which fix two edges of index 1. All 4 reflections have Lefschetz number L(T ) = 2.
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Selberg zeta function [], where the geodesic flow play the role of automorphism. Both
are of course isomorphism invariants. Unlike the average Lefschetz number L(G), which
is also an isomorphism invariant, the zeta function encodes more information about the
graph than G/A.

Figures - provide examples of graphs for which the Zeta function and the Lefschetz
number have been computed for all automorphisms.
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