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1 Introduction
The Hecke groups H(A) are defined to be the maximal discrete subgroups of PSL(2,R)
generated by two linear fractional transformations

1 1
T(z)=-- and S(z)=-——,
z zZ+ A

where A is a fixed positive real number.

Hecke [1] showed that H(A) is Fuchsian if and only if A = 1, = 2 cos % for g > 3 is an inte-
ger, or A > 2. In this paper, we only consider the former case and denote the corresponding
Hecke groups by H(1,). It is well known that H(X,) has a presentation as follows (see [2]):

H(\g)=(T,S|T*=81=1). 1)

These groups are isomorphic to the free product of two finite cyclic groups of orders 2
and g.

The first few Hecke groups are H(A3) = I' = PSL(2,7Z) (the modular group), H(A4) =
H(/2), H(xs) = H(#), and H(kg) = H(v/3). It is clear from the above that H(x,) C
PSL(2, Z[14]), but unlike in the modular group case (the case g = 3), the inclusion is strict
and the index [PSL(2,Z[},]) : H(A,)] is infinite as H(A,) is discrete, whereas PSL(2, Z[A4])
is not for g > 4.

On the other hand, it is well known that ¢, a primitive nth root of unity, satisfies the
equation

x"-1=0. (2)

In [3], Cangul studied the minimal polynomials of the real part of ¢, i.e., of cos(27/n)
over the rationals. He used a paper of Watkins and Zeitlin [4] to produce further results.
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Also, he made use of two classes of polynomials called Chebycheff and Dickson polyno-
mials. It is known that for n € N U {0}, the nth Chebycheff polynomial, denoted by T),(x),

is defined by

T,(x) =cos(n - arccosx), xe€R,|x| <1, (3)
or

T,(cosO) =cosnf, 6 ecR (O =arccosx+2km,k eZ). (4)

Here we use Chebycheff polynomials.
For n € N, Cangul denoted the minimal polynomial of cos(27 /1) over Q by ¥, (x). Then
he obtained the following formula for the minimal polynomial ¥, (x).

Theorem 1 ([3, Theorem 1]) Let m € N and n = [|m/2|]. Then
(@) Ifm=1, then V1(x) =x —1, and if m =2, then Vp(x) =x + 1.
(b) If m is an odd prime, then

T (%) — Tpy(x)

W, (x) = W (5)

(c) If4 | m, then

_ n+1(x) n l(x)
2"/2(Tg 1(®) Tﬂ—l

Hd\m dtm,d) Wa(x)

d) Ifmis even and m/2 is odd, then

W,,(x) = : Tyi1(x) = Ty1(x) ’ 7)
2 (T i1 (%) = T (x))l—[gﬂm d+#m,d even W (x)

,_ 51
where n' = .

(e) Let m be odd and let p be a prime dividing m. If p* | m, then

Tn+1(x) - Tﬂ(x)
251 (Tyy 1 (6) = T (x))

(8)

v, (x) =

where n' = ” pr | m, then

_ T,Hl(x) - Tn(x)
W, (x) = 2 (T (%) — T (1) W ()’ )

m_
pl

where n' = £5—.

For the first four Hecke groups I', H(+/2) , H(5), and H(+/3), we can find the minimal
polynomial, denoted by P (x), of A, over Qas A3 —1, A = 2, A — A5 — 1, and AZ — 3, re-
spectively. However, for g > 7, the algebraic number 1, = 2 cos % is a root of a minimal
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polynomial of degree > 3. Therefore, it is not possible to determine A, for g > 7 as nicely
as in the first four cases. Because of this, it is easy to find and study with the minimal poly-
nomial of A, instead of A, itself. The minimal polynomial of A, has been used for many
aspects in the literature (see [5-8] and [9]).

Notice that there is a relation

between Py (x) and W,,,(x).

In [10], when the principal congruence subgroups of H(,) for g > 7 prime were studied,
we needed to know whether the minimal polynomial of A, is congruent to 0 modulo p for
prime p and also the constant term of it modulo p.

In this paper, we determine the constant term of the minimal polynomial P;(x) of A,.
We deal with odd and even g cases separately. Of course, this problem is easier to solve
when g is odd.

2 The constant term of P;(x)
In this section, we calculate the constant term for all values of g. Let ¢ denote the constant
term of the minimal polynomial P;(x) of Ay ie.,

c=P(0). (10)

We know from [4, Lemma, p.473] that the roots of P*(x) are 2cos ~ with (h,q) =1,
hodd and 1 < /& < g — 1. Being the constant term, c is equal to the product of all roots of
P;(x):

gq-1
2 cos — (11)

L=

=
(hq)=1
h od

[}
o

Therefore we need to calculate the product on the right-hand side of (11). To do this, we
need the following result given in [11].

Lemmal []72 sin(%” +0) =2sing6.

We now want to obtain a similar formula for cosine. Replacing 6 by 7 — 6, we get

gq-1
hm . b4
1_[2005(——9) :2smq<§—9). (12)
h=0 1
Let now p denote the Mobius function defined by

0 if n is not square-free,
1 ifn=1, (13)

(-1)f if n has k distinct prime factors,
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for n € N. It is known that

0 ifn>1,
D=1
din 1 ifn=1

Using this last fact, we obtain

]_[ 2cos<— —9>

h=0,(h,q)=1
q-1

:Zl (2003( 0)) Z,u(d)
h=0 d\(h.q)

DC)
dq

>

I

(=]
/—\

(55 0))
(T

=> uld) (m 2¢o0
dlq

=> ud)- (anSm = 9)) by (12)
dlq

T wiqld)
=1 ind{ — -6 .
HHSIH D) )

dlq

Therefore

(ha)=1 (ha)=1
h odd

while if g is odd, then

(14)

(15)

(16)

17)

(18)
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%. Also note that

as cos(1 — i)% =—Cos

cosdf if d =1mod4,

) T sind0 if d =2mod4,
smd(— —9) =

—cosdf if d=3mod4,

—sindf® if d = 0mod4.

(20)

To compute ¢, we let & — 0 in (17). If 4 is odd, then sind(7 —6) — +1as & — 0 by (20).
So, we are only concerned with even d. Indeed, if g is odd, then the left-hand side at 6 = 0

is equal to £1. Therefore we have the following result.

Theorem 2 Let g be odd. Then
lc| =1. (21)
Proof 1t follows from (19) and (20). O

Let us now investigate the case of even q. As (4,¢4) = 1, h must be odd. So, by a similar

discussion, we get the following.

Theorem 3 Let q be even. Then

- n(qld)
c=g%n<sind<§ —9)> ) (22)
dlq

Proof Note that by (20), the right-hand side of (22) becomes a product of 4(cos d6)*!’s
and #(sind0)*'’s. Above we saw that we can omit the former ones as they tend to &1 as 6
tends to 0. Now, as > din u(d) = 0, there are equal numbers of the latter kind factors in the
numerator and denominator, i.e., if there is a factor sindf in the numerator, then there is

a factor sind’6 in the denominator. Then using the fact that

m sin k6 B /_( (23)
9—0sinl 1’

we can calculate c.

In fact the calculations show that there are three possibilities:

(i) Let g = 2%, atp > 2. Then the only divisors of g such that u(g/d) # 0 are d = 2*° and
2201 Therefore

sin2%0 (% — 6)
€= M sin2%0-1(Z _g)
#—0sin2%01(7 — 0)

2 ifag>2,

= (24)
-2 if oo = 2.
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(ii) Secondly, let g = 2p®, & > 1, p odd prime. Then the only divisors of g such that
wu(q/d) #0 are d = 2p®, 2p*~1, p* and p*~!. Therefore

i sin2p*(5 - 6) - sinp*~ (5 - 0)
i sinp®(5 —6) - sin2p*1(5 - 0)

sin2p®@ - cos p*~10

me - -
6—0  cosp®f -sin2p*-10
=€-p, (25)

where

1 ifp=1mod4,
€= (26)
-1 ifp=-1mod4.

(iii) Let g be different from above. Then g can be written as

q=2"pi" - pt, (27)

where p; are distinct odd primesand o; > 1,0 <i < k.

Here we consider the first two cases k =1 and k =2

Let k =1, i.e., let g = 2*0p;*. We have already discussed the case ag = 1. Let a9 > 1. Then
the only divisors d of g with u(g/d) # 0 are d = 200p%t, 2001521 920 %171 g o011,
Therefore

i sin2%0pi" (£ - 6) - sin2%0 7 p{?~ l(2 -6)
¢ = lim
6—0gjpn 2%0-1 "1(5 —0) - sin2%p{1” l(l —-0)

-1 (28)

Now let k = 2, ie., let g = 2%0p™p32, (p; < py). Similarly, all divisors d of g such
q=2"p1 P p Y q
that ju(q/d) # 0 are d = 2%0p{*p3?, 2°07pi pi?, 2°0p{" ", 2°0py'py’, 20 py T,
2001011271 gao-1,21 5,091 g 9@0-1,%171 )22 Therefore
sin2°‘°‘1p°lr1 arl(” 0) - sin 2% py p3*~ 1(%
C_ghr% a allazln ao—1,91 ,02-1m
—0sin 2% p; (7 —0) - sin2%0~1p)t po2 (5

—0)
—9)

allazﬂ

sin 270 pi' " pi*(Z - 0) - sin 2907 il po? (3 - 6)

X lim
o1-1_ an o] a9

0—0gin 2%0-1p71" p7 (%—9) sin2%0py"! p5* (5 - 6)
-1 (29)

Finally, k > 3, i.e, let

q=2%pi"---pi* withpi<pr< - <py.

In this case the proof is similar, but rather more complicated. In fact, the number of all
divisors d of ¢ such that u(g/d) # 0 is 2K*1, There is (kgl) =1 divisor of the form

d=2%p" .. pk.
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k+1)

There are ( k + 1 divisors of the form

d=2"7p ... pf kom0 pt PR, 2% ke '

k+1)

There are ( , )= @ divisors of the form

d = 2007 T o2 gtk peosl Tl sk peo-T i e ekt

ag ,01—1_an-1 O ag 011 oo o —1 g 21 kl 1 ap-1
2900 Py p 2% T s p 200 3 Py
k+1

If we continue, we can find other divisors d of g, similarly. Finally, there is ( k+1) =1 divisor
of the form 2%0-1 p‘l"l—lp‘;rl o pZ"’l. Thus, the product of all coefficients d in the factors
sind(7 — 6) in the numerator is equal to the product of all coefficients e in the factors

sine(5 — 6) in the denominator implying ¢ = 1. Therefore the proof is completed. g
Now we give an example for all possible even g cases.

Example 1 (i) Let ¢ = 8 = 23. The only divisors of 8 such that (8/d) # 0 are d = 8 and 4.

Therefore
. sin8(F —0)
c=lim—=——
0—0sin4(7 - 0)

=2.

(ii) Let ¢ = 14 = 2 - 7. The only divisors of 14 such that u(14/d) # 0 are d = 14,2,7 and 1.
Therefore

-0)

sin14(% —6) - sin(
c=¢€-lim
-0)

9—0sin7(% —6) - sin 2(

=_7,

N|=1 Nlﬁ

since p = —1mod 4.
(iii) Let g = 24 = 23 - 3. The only divisors of 24 such that ©(24/d) # 0 are d = 24,12,8
and 4. Therefore

sin24(5 —0) - sin 4(
= lim —
0—0sin12(5 —60) - sin 8(
=1.

)
—0)

z
2

T
2

(iv) Letg =30 = 2-3-5. The only divisors of 30 such that £(30/d) # 0 are d = 30,15, 10, 6,
5,3,2 and 1. Therefore

lim sin(5 —6) - sin6(5 — 0) - sin10(5 — 6) - sin15(75 - 0)
7 0205in2(Z —6) - sin3(Z —6) - sin5(% — 0) - sin30(% - 0)
=1
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