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Abstract

In this paper, some largest and least fixed point theorems of increasing mappings in
partially ordered metric spaces are proved, which extends and improves essentially
many recent results since the additivity of 1 has been removed. In particular, the
partial order used in this paper is not confined to that introduced by a functional.
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1 Introduction
For improving Caristi’s fixed point theorem [1, 2], Feng and Liu [3] defined the following

partial order on a metric space.

Lemma 1 (see [3, Lemma 4.1]) Let (X,d) be a metric space, let ¢ : X — (—00,+00) be a
functional, and let n : [0, +00) — [0, +00) be a nondecreasing and subadditive (i.e., n(t +
s) < n(t) + n(s), Vt,s € [0, +00)) function with n1({0}) = {0}. Define a relation < on X by

x=xy = n(dxy) <e@-¢0), VYryeX. (1)
Then < is a partial order on X.

This partial order is a generalized notion of the partial order defined by Caristi [1] as

follows:
x<y <= dxy) <ex)-e@®), VYxyeX. ()

Since then the existence of fixed points in partially ordered metric spaces has been consid-
ered by many authors, and many satisfactory results have been obtained for Caristi-type
mappings [2-7], mappings satisfying some monotone conditions with respect to the par-
tial order introduced by a functional [8, 9], and mappings with some contractive condi-
tions [10-18]. Recently, Li [9] proved the existence of maximal and minimal fixed points
of increasing mappings by using the partial order introduced by (1).
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It is worth mentioning that in [9], the function 7 is necessarily assumed to be subadditive
for ensuring that the relation defined by (1) is a partial order. While it is well known that the
additivity of 1 is no longer necessary for the study of fixed point theorems for a Caristi-
type mapping (see [4—7]), naturally, one may wonder whether the additivity of 7 in [9]
could be omitted.

In this paper we show how the additivity of 1 could be removed. Without the additivity
of 1, we prove not only the existence of maximal and minimal fixed points, but also the
existence of largest and least fixed points of increasing mappings in a partially ordered
metric space. In particular, the partial order used in this paper is not confined to that
introduced by (1).

2 Fixed point theorems
In this section, let (X, d) be a complete metric space, let 1 : [0, +00) — [0, +00) be a func-

tion, let ¢ : X — (—00, +00) be a functional, and let < be a partial order on X such that
n(dxy) <) -9(), VYxyeXx=y, 3)
and
[x, +00) and (—o0, x] are closed for each x € X, (4)
where [x, +00) = {z € X :x <z} and (-00,x] = {z € X : z < x}.

Remark 1 It is easy to see from Lemma 1 that the partial order introduced by (1) is cer-
tainly such that (3) is satisfied, but the converse is not true. In fact, a partial order such that
(3) is satisfied is not necessarily confined to that introduced by (1). The following example
shows that there does exist some partial order on X such that (3) is satisfied even though
the relation defined by (1) is not a partial order on X.

Examplel Let X = {0}U {% :n=2,3,...},d(x,y) = |x—y|, and < is the usual order of reals.
Let ¢(x) = x? for each x € X and 7(¢) = ¢2 for each ¢ € [0, +00). Define a relation < on X by

x=y < y=<x VxyelX.

Clearly, < is an order on X. Direct calculation gives that

n(d(x y))_ xZZgO(x)_(p(y)r x:%JlZz,J’:O,
’ - —)2 2,2
(ZZZ% — n:nZ,:é = QD(?C) _‘PO/)» X = %,I’I Z 2;3/ = #rm Z n,

which implies (3) is satisfied. However, the relation defined by (1) is not a partial order
on X since 7 is not subadditive.

Theorem 1 Let (X,d) be a complete metric space, let ¢ : X — (—00,+00) be a bounded
below functional, let ) : [0, +00) — [0, +00) be a nondecreasing function with n~({0}) = {0},
and let < be a partial order on X such that (3) and (4) are satisfied. Let T : X — X be an
increasing mapping. Assume that there exists xo € X such that xo < Txy. Then
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(i) T has a maximal fixed point x* € [xy,+00), i.e., let x € [xg, +00) be a fixed point of
T, then x* < x implies x = x*;

(i) T has a least fixed point x, € [xg, +00), i.e., let x € [xg, +00) be a fixed point of T,
then x, < x.

Proof (i) Set
Q= {x € [, +00) : ¥ < Tx}.

Clearly, Q is nonempty since xy < Txo. Let {x,}ocr C Q be an increasing chain, where I'
is a directed set. From (3) we find that {¢(x4)}acr is a decreasing net of reals. Since ¢ is
bounded below, then inf,cr ¢(x,) exists. Let {«,} be an increasing sequence of elements
from I'" such that

lim (p(xotn) = inf 90(%).
n—00 ael

We claim that {x,} is a Cauchy sequence. If otherwise, there exist an increasing subse-
quence {#y,, } C {Xa,} and & > 0 such that

A%y %y, ) =8, Vi

+17 —

Since 7 is nondecreasing, then
n(d(Xayr Xay, ) = 1(8), Vi,

which together with (3) implies that

n(8) < n(d(xa,, %a,,,,)) < ¢(ay,) = (e, ) Vi

i

So, we have
in(8) < ¢(xa,,) = ¢(Kay,,, ) Vi

Let i — 00, then by lim,,_, o ¢(%,,) = infyer ¢(x,) and n71({0}) = {0}, we get
inf @(xa) = lim ¢(x,,) < 1im [p(x,, ) - #(8)] = ~00,

which is a contradiction, and hence {x,,} is a Cauchy sequence. By the completeness of X,
there exists some X € X such that

lim x,, = %. (5)
n—00

For arbitrary ny, we have Ky = Kay, for each n > ny, and hence x € [xano, +00) since
(%, » +00) is closed by (4). So, we have x,,, < ¥. Moreover, the arbitrary property of 1o
forces that

Koy <%, Vn. (6)
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Since T is increasing and x,, € Q, then
KXoy = Txy, < Tx, Vn.

Let n — 00, then x < Tx since (—o0, Tx] is closed by (4). This together with (6) indicates
xe€Q.

In the following, we show that {x,},<r has an upper bound in Q. For each « € T, if there
exists some g such that x, < Koty » then by (6) we have x, <x foreach« € T, i.e., ¥ is an
upper bound of {x,}4er. If there exists some 8 € I' such that x,, < x4 for each n, by (3),
we have ¢(xg) < ¢(x,,) for each n. Let # — 00, then we have ¢(xg) = infycr @(x4) by (4)

and limy,— « ¢(¥a,) = infyer @(x,). We claim that
xg XXy, Vael.

Otherwise, there exists some o € I" such that wg < x,, and x4, # xg. Then by (3) and
n1({0}) = {0}, we have 0 < n(d(xyy, %)) < P(xp) — P(Xgy ), i-€., P(xay) < 9(xp). This contra-
dicts @(xp) = infyer @(x4), and hence x, < xg for each a €T, i.e., x5 is an upper bound of
E P

By Zorn’s lemma, (Q, <) has a maximal element, denote it by x*. Since x* € Q and T is
increasing, then x* < Tx* < T(Tx*), and hence Tx* € Q. Moreover, the maximality of x*
in Q forces that x* = Tx*. Therefore x* is a maximal fixed point of T in [xg, +00).

(ii) Set

Fix = {x € [xg,+00) : x = Tx}.
From (i) we find that Fixr is nonempty. Set

S={I=[x,+00):x € [x9, +00),x < Tx,Fixy C I}. (7)
Clearly, S # @ since [xg, +00) € S. Define a relation on S by

L <sl, < L ChL, VI,LeS. (8)
It is easy to check that the relation <g is a partial order on S.

Let {Iy}yer be a decreasing chain of S, where I, = [x,, +00). From (3), (7), and (8), we

find that {x, }acr is an increasing chain of M, where

M = {x € [x0, +00) 1 & < T, Fixy C [x, +00)}.
Clearly, M C Q. Following the proof of (i), there exist ¥ € Q and an increasing sequence
of elements from I' with lim,,_, o ¢(%,,) = infyer ¢(x,) such that (5) and (6) are satisfied.
Since x,, € M, then x,, < x for each x € Fixy and each #. So, the increasing property of T’

implies that

Xy, < Txy, < Tx =x, VxeFixr,Vn.
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Let n — oo, then
X <x, VxeFixr, 9)

since (—00,x] is closed by (4). Therefore x € M by x € Q and (9). In analogy to the proof
of (i), we can prove {x,}ycr has an upper bound in M, denote it by %. Set T = [, +00). By
x €M and (7), we have T € S. Note that % is an upper bound of {xy}ycr in M, then

Tcl, YaeT,
which together with (8) implies that
7 =<s Iou VaeTl,

i.e., T is a lower bound of {Ix}aer in S. By Zorn’s lemma, (S, <s) has a minimal element,
denote it by I* = [x,, +00). By (7) we have xy < x,, < Tx, and

X. <%, VxeFixr. (10)

Moreover, by the increasing property of T, we have xy < x, < Tx, < T(Tx,) and Tx, <
Tx = x for each x € Fixy. Set T = [Tx,, +00). Clearly, TeSandIcI* by (7). So, T=sI*
by (8). Finally, the minimality of I* in S forces that T = I*, which implies that x, = Tx,.
Hence x, is a least fixed point of T in [x, +00) by (10). The proof is complete. O

Theorem 2 Let (X,d) be a complete metric space, let ¢ : X — (—00,+00) be a bounded
above functional, let 1 : [0, +00) — [0, +00) be a nondecreasing function with n~*({0}) = {0},
and let < be a partial order on X such that (3) and (4) are satisfied. Let T : X — X be an
increasing mapping. Assume that there exists xo € X such that Txo < xy. Then
(i) T has a minimal fixed point x* € (—00,x0], i.e., let x € (—00,%0] be a fixed point of T,
then x < x* implies x = x™;
(i) T has a largest fixed point x, € (—00,%0], i.e., let x € (—00,x0] be a fixed point of T,
then x < x,.

Proof Let <, be the inverse partial order of < and ¢;(x) = —¢(x). Clearly, ¢; is bounded
below on X since ¢ is bounded above, and xy <1 Txo by Txy < xy. It is easy to check that (3)
is satisfied for <; and ¢, and T is increasing with respect to <;. Set [x, +00); = {z€ X : 2 x4
z} and (-00,x]; = {z € X : z <1 x}. Then [x, +00); = (—00,x] and (—00,x]; = [x, +00), and
[x, +00); and (—00,x], are closed for each x € X by (4). Applying Theorem 1 on (X, <;), we
find that T has a maximal fixed point x* € (=00, %] and a least fixed point x, € (—00,x0]
corresponding to <;. Let x € (—00,x0] be a fixed point of T If x < x*, then x* <; x, and
hence x = x* by the maximality of x* corresponding to <y, i.e., ¥* is a minimal fixed point
of T corresponding to <. By the least property of x, corresponding to <;, we have x, <; ,
and hence x < x,, i.e., x, is a largest fixed point of T corresponding to <. The proof is
complete. d

Remark 2 From the proof of Theorem 1 (resp. Theorem 2), we find that it is only neces-
sarily assumed in Theorem 1 (resp. Theorem 2) that the functional ¢ is bounded below
(resp. above) on [xg, +00) (resp. (—00,x9]) and T is increasing on [x, +00) (resp. (—00,%]).
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Theorem 3 Let (X,d) be a complete metric space, let ¢ : X — (—00,+00) be a functional,
let 11 : [0, +00) — [0, +00) be a nondecreasing function with n~({0}) = {0}, and let < be a
partial order on X such that (3) and (4) are satisfied. Let T : X — X be a mapping. Assume
that there exist xo,yo € X with xg < yo such that

x0 = Txo, Tyo = Yo, (11)

and T is increasing on [xo,y0]l = {z € X : %0 <2< yo}. Then T has a largest fixed point and
a least fixed point in [xo, yo].

Proof Note that ¢(xg) < ¢(x) < ¢(yo) for each x € [x9,¥] by (3), i.e., ¢ is bounded on
[%0,%0]. Then the conclusion follows from Remark 2, Theorem 2, and Theorem 3. The
proof is complete. d

Remark 3 In our Theorems 1-3, the continuity and additivity of n necessarily assumed in
[9] has been removed.

In analogy to the proof of [7, Lemma 1], we can prove the following lemma.

Lemma 2 Let (X,d) be a metric space, let 1 : [0,+00) — [0,+00) be a continuous, non-
decreasing, and subadditive function with n~({0}) = {0}, let ¢ : X — (—00, +00) be a con-
tinuous functional, and let < be the partial order introduced by (1). Then for each x € X,
[x, +00) and (—o0,x] are closed.

It follows from Remark 1 and Lemma 2 that if  is a continuous, nondecreasing, and
subadditive function with n71({0}) = {0} and ¢ is a continuous functional, then the relation
=< defined by (1) is a partial order on X such that (3) and (4) are satisfied. Therefore by
Theorem 1 and Theorem 3, we have the following corollaries.

Corollary 1 Let (X, d) be a complete metric space, let ¢ : X — (—00, +00) be a continuous
and bounded below functional, let 1 : [0, +00) — [0, +00) be a continuous, nondecreasing,
and subadditive function with n~1({0}) = {0}, and let < be the partial order introduced
by (1). Let T : X — X be an increasing mapping. If there exists xo € X such that xo < Txy,
then T has a maximal fixed point and a least fixed point in [xo,+00).

Corollary 2 Let (X,d) be a complete metric space, let ¢ : X — (—00,+00) be a continu-
ous functional, let  : [0, +00) — [0, +00) be a continuous, nondecreasing, and subadditive
Sfunction with n71({0}) = {0}, and let < be the partial order introduced by (1). Let T : X — X
be a mapping. Assume that there exist xo,yo € X with xo < yo such that (11) is satisfied and
T isincreasing on xo,yo]. Then T has a largest fixed point and a least fixed point in [x¢, yo].

Remark 4 It is clear that [8, Theorem 3] is exactly a special case of Corollary 1 with
n(¢) = ¢. In addition, the existence of least fixed points has also been obtained in Theorem 1
and Corollary 1. Therefore both Theorem 1 and Corollary 1 indeed extend [8, Theorem 3]
and [9, Theorem 2].

Remark 5 Note that each largest (resp. least) fixed point of 7 must be a maximal (resp.
minimal) fixed point of T, but the converse is not true. Therefore both Theorem 3 and
Corollary 2 improve essentially [8, Theorem 6] and [9, Theorems 5].
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Example 2 Let X, d, ¢, n, and < be the same as the ones appearing in Example 1 and

0, x=0,
_J1 1
Tx = 3 X = 5 (12)
ﬁ, x:%,n=3,4,....
Clearly, (X, d) is a complete metric space, ¢ is continuous, [%, 0l={zeX: % <z=x0}=X,

and % < T%, T0 < 0. From Example 1 we know that < is a partial order such that (3) is

satisfied. For each x € X, we have

{O}’ xZO;
[x,+00)={zeX:x <z} =
{OyUf;:m=n), x=,n>2,

and

X, x =0,
(—o0,x]={zeX:z=<xx}=
{#:25771571}, x:%,nzl

Note that {0}, X, {0} U {% :m>mn} (n>2)and {% :2 <m < n} (n>2) are closed sets.
Then, for each x € X, [x, +00) and (—o0, %] are closed, i.e., (4) is satisfied. By (12) we have

OZTy, x:%,y:()’
Tx:%iO:Ty, xZ%,VlZB;yzo,
Tx:%jLZTy, x=%,y=%,m23f

m
T_L<L—T -1 >3 -1 >
¥x=-L <=1y, x=+,n>3y=—,m>n,

which implies that Tx < Ty for each x,y € X withx < y, i.e., T is increasing on X. Therefore
it follows from Theorem 3 that T has a largest fixed point and a least fixed point in X. In
fact, 0 is the largest fixed point and % is the least fixed point in [%, 0].

Remark 6 (i) The existence of fixed points in Example 2 could not be obtained by [9,

Theorem 2 and Theorem 5] since 7 is not subadditive.
1

(ii) For each x = %, n>3,and each y = .-, m > n, we have

m-—n m

-n
d(Tx, Ty) = R > o =d(x,y).

Clearly, T is not a contractive mapping and hence the existence of fixed points in Ex-
ample 2 could not be obtained by the fixed point theorems of contractive mappings in
partially ordered metric spaces.
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