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Abstract

In this paper, a new iterative scheme based on the extragradient-like method for
finding a common element of the set of common fixed points of a finite family of
nonexpansive mappings, the set of solutions of variational inequalities for a strongly
positive linear bounded operator and the set of solutions of a mixed equilibrium
problem is proposed. A strong convergence theorem for this iterative scheme in
Hilbert spaces is established. Our results extend recent results announced by many
others.
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1 Introduction
Let H be a real Hilbert space with the inner product (-,-) and the norm || - ||. Let C be
a nonempty closed convex subset of H. Recall that a mapping 7' : C — C is said to be

nonexpansive if
ITx =Tyl < llx—yll, Vx,yeC.

We denote by F(T) the set of fixed points of T. Let Pc be the projection of H onto the
convex subset C. Moreover, we also denote by R the set of all real numbers.

Peng and Yao [1] considered the generalized mixed equilibrium problem of findingx € C
such that

O, y) + o(y) — ) + (Fx,y—x) >0, VyeC, 1.1)

where F: C — H is a nonlinear mapping and ¢ : C — Risa functionand ®:C x C — R
is a bifunction. The set of solutions of problem (1.1) is denoted by GMEP.

In the case of F = 0, problem (1.1) reduces to the mixed equilibrium problem of finding
x € C such that

O,y +¢()—ekx) >0, VyeC,

which was considered by Ceng and Yao [2]. GMEP is denoted by MEP.
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In the case of ¢ = 0, problem (1.1) reduces to the generalized equilibrium problem of
finding x € C such that

O,y + (Fx,y—x) >0, VyeC,

which was studied by Takahashi and Takahashi [3] and many others, for example, [4—10].
In the case of ¢ = 0 and F = 0, problem (1.1) reduces to the equilibrium problem of
finding x € C such that

O,y) >0, VyeC. (1.2)

The set of solutions of (1.2) is denoted by EP(®).
In the case ® =0, ¢ = 0 and F = A, problem (1.1) reduces to the classical variational

inequality problem of finding x € C such that
(Ax,y—x) >0, VyeC. (1.3)

The set of solutions of problem (1.3) is denoted by VI(4, C).

Problem (1.1) is very general in the sense that it includes, as special cases, optimization
problems, variational inequalities, minimax problems, the Nash equilibrium problem in
noncooperative games and others; see, for instance, [2, 3, 11]. Peng and Yao [1] considered
iterative methods for finding a common element of the set of solutions of problem (1.1),
the set of solutions of problem (1.2) and the set of fixed points of a nonexpansive mapping.

Let G;, G, : C x C — R be two bifunctions and let B;, By : C — H be two nonlinear
mappings. We consider the generalized equilibrium problem (x,y) € C x C such that

Gi1(®,x) + (B1y,x —X) + i(?c—?,x—a_c) >0, VxeC,

(1.4)
G2(:9) + (BoZ,y =) + - (G- %y =3 20, VyeC,
where p; > 0 and u; > 0 are two constants.
In the case G; = G, = 0, problem (1.4) reduces to the general system of variational in-

equalities of finding (x,7) € C x C such that

(B1y+x-y,x—-%x)>0, VxeC, (15)
(UBX +7 %y —7) >0, VyeC, '

where p; > 0 and p, > 0 are two constants, which was considered by Ceng, Wang and Yao
[12]. In particular, if B; = By = A, then problem (1.5) reduces to the system of variational
inequalities of finding (x,y) € C x C such that

(LAY +x-y,x-%) >0, VxeC, (16)
(AX+F-%y-3) >0, VyeC, '

which was studied by Verma [13].
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If x =y in (1.6), then (1.6) reduces to the classical variational inequality (1.3). Further,

problem (1.6) is equivalent to the following projection formulas:

% =Pc(I - niA)y,
y=Pcl — nA)x.

Recently, Ceng et al. [12] introduced and studied a relaxed extragradient method for
finding solutions of problem (1.5).

Let {T;} be an infinite family of nonexpansive mappings of C into itself and {A,1}, {A2},
...»{Ann} be real sequences such that A3, Ay, ..., Aun € (0,1] for every n € N. For any n >
1, we define a mapping W, of C into itself as follows:

UnO =1,
Up = T1lyo + 1= A,

Uy = hpa Tollyy + (1= M),

Uyn-1 = N T lpnoa + (1= Apno1)],

W= Upn = Mo NTnUpn-1 + 1= M)l

Such a mapping W, is called the W-mapping generated by 71, Ts,..., Tnx and {A,1}, {An2},
..., {Ann}. Nonexpansivity of each T; ensures the nonexpansivity of W,,. Moreover, in [1],
it is shown that F(W,,) = ("X, F(T)).

Throughout this article, let us assume that a bifunction ® : C x C — R and a convex
function ¢ : C — R satisfy the following conditions:

(H1) O(x,x) =0 forallx € C;

(H2) © is monotone, i.e., O(x,y) + O(y,x) <0 forallx,y € C;

(H3) foreachye C, x> O(x,y) is weakly upper semicontinuous;

(H4) for eachx € C, y > O(x,y) is convex and lower semicontinuous;

(Al) for each x € H and r > 0, there exists a bounded subset D, C C and y, € C such

that for any z € C\D,,

1
O(z,9x) + 0(yx) — @(2) + ;(yx -z,z-%)<0;

(A2) Cisabounded set.

Recently, Qin et al. [8] studied the problem of finding a common element of the set of
common fixed points of a finite family of nonexpansive mappings, the set of solutions of
variational inequalities for a relaxed cocoercive mapping and the set of solutions of an

equilibrium problem. More precisely, they proved the following theorem.

Theorem 1.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let © be
a bifunction from C x C to R which satisfies (H1)-(H4). Let Ty, Ts, ..., Tn be a finite family
of nonexpansive mappings of C into H and let B be a w-Lipschitz, relaxed (u,v)-cocoercive
mapping of C into H such that F = ﬂf\il F(T;))NEP(®)NVI(A, C) # ¢. Letf be a contraction
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of H into itself with a coefficient o (0 < a < 1) and let A be a strongly positive linear bounded
operator with a coefficient y > 0 such that |A|| < 1. Assume that 0 < y < g Let {x,} and
{yu) be sequences generated by x, € H and

®(ym n) + %(77 ~YmIn—%1) =20, VneC(,
Xn+l = anyf(ann) +(1 -, A)W,Pc —SnB)yn; n>1,

where o, € (0,1] and {r,},{s,} C [0, 00) satisfy
(i) limy—ooay =0and Y o0 ay = 00;
(i) D02 et — atul <00, D02 a1 — 1l <00 and Y o2, [Sus1 — 4| < 003
(iii) liminf,_, o r, > 0;
(iv) {s4} C la,b] for some a, bwith0 <a<b< 2(":;“2), v>uu?;
V) Y020 lAni — Ano1il <00 foralli=1,2,...,N.

Then, both {x,} and {y,} converge strongly to g € F, where q = Pr(yf + (I - A))(g), which
solves the following variational inequality:

(vf(@-Aqp-q)<0, VpeF.

In this paper, motivated by Takahashi and Takahashi [3], Ceng, Wang and Yao [12], Peng
and Yao [1] and Qin, Shang and Su [8], we introduce the general iterative scheme for find-
ing a common element of the set of common fixed points of a finite family of nonexpansive
mappings, the set of solutions of the generalized mixed equilibrium problem (1.1) and the
set of solutions of the generalized equilibrium problem (1.4), which solves the variational
inequality

((A - yf)x*,x—x*> >0, Vxeg,

where § = ﬂﬁl F(T;) N GMEP N Q and 2 is the set of solutions of the generalized equi-
librium problem (1.4). The results obtained in this paper improve and extend the recent
results announced by Qin et al. [8], Chen et al. [14], Combetters and Hirstoaga [15], liduka
and Takahashi [16], Marino and Xu [17], Takahashi and Takahashi [18], Wittmann [19] and
many others.

2 Preliminaries
Let C be a nonempty closed convex subset of a real Hilbert space H. For every pointx € H,
there exists a unique nearest point of C, denoted by Pcx, such that ||x — Pcx| < [lx — y||
for all y € C. Such a P¢ is called the metric projection of H onto C. We know that P¢ is a
firmly nonexpansive mapping of H onto C, i.e.,

(x - y,Pcx - Pcy) = |Pcx - Peyl>s Va,y € H.

Further, for any x € H and z € C, z = Pcx if and only if

(x—z,z-y)>0, VyeC.
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It is also known that H satisfies Opial’s condition [20] if for each sequence {x,}5°; in H
which converges weakly to a point x € H, we have

liminf ||x, — x| < liminf ||x, —y||, VyeH,y#x.
n— 00 n— 00

Moreover, we assume that A is a bounded strongly positive operator on H with a constant
¥, that is, there exists ¥ > 0 such that

(Ax,x) >V ||lx|?>, VxeH.
A mapping B: C — H is called B-inverse strongly monotone if there exists g > 0 such that
(x —y,Bx — By) > B||Bx - By|?>, Vx,yeC.

It is obvious that any inverse strongly monotone mapping is Lipschitz continuous.
In order to prove our main results in the next section, we need the following lemmas
and proposition.

Lemma 2.1 [2] Let C be a nonempty closed convex subset of H. Let ® : C x C — R be a
bifunction satisfying conditions (H1)-(H4) and let ¢ : C — R be a lower semicontinuous
and convex function. For r > 0 and x € H, define a mapping

T (x) = {z € C:0(z,y) +9(y) —p(2) + %O"Z:Z"Q =20,Vye C}

for all x € H. Assume that either (A1) or (A2) holds. Then the following results hold:
() T'99(x) # ¢ for each x € H and T'>* is single-valued;
(i) T is firmly nonexpansive, i.e., for any x,y € H,

| TOPx - TOOy|* < (TOOx - Ty, x — y);

(iii) F(T7%) = MEP(O, ¢);
(iv) MEP(®, @) is closed and convex.

Remark 2.1 If ¢ = 0, then T, is rewritten as T©.

By a similar argument as that in the proof of Lemma 2.1 in [12], we have the following
result.

Lemma 2.2 Let C be a nonempty closed convex subset of H. Let G1,G,: C x C - R
be two bifunctions satisfying conditions (H1)-(H4) and let the mappings B1,By; : C - H
be B,-inverse strongly monotone and B,-inverse strongly monotone, respectively. Then, for
given x,y € C, (%,y) is a solution of (1.4) if and only if x is a fixed point of the mapping
I': C — C defined by

T(x) = TS TS (6 — paBox) — nBi T2 (x — paBox)],  VxeC,

2

wherey = TS (X — 12 ByX).

]

The set of fixed points of the mapping I is denoted by .
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Proposition 2.1 [3] Let C, H, ©, ¢ and T be as in Lemma 2.1. Then the following
holds:

|| TS((")“”)x - Tt((')"p)xn2 < %(Ts((a"”)x - Tt((—)’p)x, TS(G)"”)x - x)

foralls,t >0andx e H.

Lemma 2.3 [21] Assume that T is a nonexpansive self-mapping of a nonempty closed con-
vex subset C of H. If T has a fixed point, then I — T is demi-closed; that is, when {x,} is
a sequence in C converging weakly to some x € C and the sequence {(I — T)x,} converges
strongly to some y, it follows that (I — T)x = y.

Lemma 2.4 [22] Assume that {a,} is a sequence of nonnegative real numbers such that
anin = (1= yu)an + 8, Vn =1,

where {y,} is a sequence in (0,1) and {3,} is a sequence such that

(i) Zzil Vn = O0;
(i) limsup,,_, o f/—z <0o0rYy 2|8, < o0.
Then lim,,_, o a, = 0.

Lemma 2.5 [17] Assume A is a strong positive linear bounded operator on a Hilbert space
H with a coefficient y >0 and 0 < p < |A||™L. Then |I - pA|| <1-p¥.

The following lemma is an immediate consequence of an inner product.

Lemma 2.6 In a real Hilbert space H, the following inequality holds:
lla+ yI% < llell® + 20y, + )
forallx,y e H.

3 Main results
Now we state and prove our main results.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
0,G1,Gy : C x C — R be three bifunctions which satisfy assumptions (H1)-(H4) and
¢ : C — R be a lower semicontinuous and convex function with assumption (Al) or (A2).
Let the mappings F,By,By : C — H be {-inverse strongly monotone, B,-inverse strongly
monotone and B, -inverse strongly monotone, respectively. Let Ty, Ty, ..., Tn be a finite fam-
ily of nonexpansive mappings of C into H such that § = ﬂfil F(I)NGMEPNQ #¢. Let f
be a contraction of C into itself with a constant o (0 < o < 1) and let A be a strongly positive
linear bounded operator with a coefficient y > 0 such that |A|| <1. Assume that 0 < y < g
Let x1 € C and let {x,} be a sequence defined by

Zy = T,s(?w)(xn — 8uFxy),
Y= T T2 (20 — 12Bazn) — 1t BITS2 (2 — 112B22,)], 3.1)
X+l = Oanf(ann) + (1 - anA)Wnym Vn > ].,
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where o, € [0,1], 1 € (0,281), 2 € (0,28;) and {8,,} C [0,2¢] satisfy the following condi-
tions:
(i) limyseo @y =0, 02, =0and Yy ooy oty — o] < 00;
(i) 0 <liminf,_ o8, <limsup,_, 8, <2¢ and Y -1 |81 — 84| < 00;
(ili) 1imy— o Api =0 and Y no |Ani— An-14l <00 foralli=1,2,...,N.
Then {x,} converges strongly to x = Pz(yf + (I — A))(x"), which solves the following vari-

ational inequality:
(A-yf)x,x-x)>0, Vxeg,

and (x',y") is a solution of problem (1.4), where y° = T2 (x" — pyBox").

2

Proof We divide the proof into several steps.
Step 1. {x,,} is bounded.
Indeed, take p € § = ﬂﬁl F(T;) N GMEP N Q # ¢ arbitrarily. Since p = T;?"P)(p - 8,Fp),
F is ¢ -inverse strongly monotone and 0 < §,, < 2¢, we obtain that for any n > 1,
Q ® 2
lzw =PI = | T30 (6 = 8uF) = Tie ™ (0 — 8, Fp)|
2
= “(xn _p) - ‘Sn(Fxn - FP) ||
= |14 — pI|* = 28, (%n — p, Fxu — Ep) + 8. || Fx, — Ep||*
< 1% = pII* = 28, || Fx — Fp||* + 81| Fx, — Fp|?
= lltn = pII* + 84(85 — 20) | Fxn — Ep||®

< ll%x = plI*. (3.2)
Putting u,, = THGZ2 (zy — m2Bazy,) and u = T,f;(p — aByp), we have

ltn = ul® = | TS (20 - p12Baza) = TS (p - p2Bop) |
< |@n = p) - 12(Bozs — Bop) ||
= |lzn = plI> = 2142(2n — p, Bozn — Bop) + 13| Bazw — Bop||®
< llzu = pII* = 2142B211B2zn — Bop||* + 1311 Bazu — Bopll®
= llzn = pII* + 2(i2 — 282)11B2zn — Bop||?

<z - plI*. (3.3)

And since p = T;4G11 (4 — w1 Byu), we know that for any n > 1,

lyn =12 = | TSy — prButty) = TS (e - 11 B
< ||t — ) = 1 (Brsn _Blu)Hz
< Nltw — wll* = 2001 (14, — 4, By, — Byua) + i3 || By — By
< llttn — ull® = 2p1 B | Brts — Buual| + pur | Busn — byuel®

< llttw — ul* + pa (1 — 281) | Buy, — Buu|
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2
=< llun — ull

< llzs = pII*. (3.4)
Furthermore, from (3.1), we have

%01 = pll = [y f (Wox) + (1 = s ) Wiy - p||
= |len(vf (W) — Ap) + A = 2, A)( Wiy, — p) |
< o vf (Wak) — Ap|| + I - ctu ALl Woyn — pl
< au(y [f(Waxn) —f®)| + |7/ () - Ap]) + 1 = @, ?)llyn - pll
< au(yallx, —pl + |vf(p) - Ap|) + 1 - @, P) %, - p

< [1- & - ya)au]llxn - pll + || vf(0) - Ap| .

By induction, we obtain that for all n > 1,

nxn—pnsmax{nxl pn ||yf(p) Apn}

Hence {x,} is bounded. Consequently, we deduce immediately that {z,}, {y.}, {f(W.x,)}
and {W,,(y,)} are bounded.
Step 2. lim,,—, oo || Wis19n — Wiyl = 0
It follows from the definition of W,, that
” Wn+1yn - Wnyn”
= ||)‘-n+1,N InUniiN-1Yn — U= Ao n)Vn = AN INUpn-1Yn — (L= Apn)Yn ”
S AN = AN sl + A8 TN Ut N-1Yn = AN TN U -1y n |
< |)\n+1,N - )\n,N| ”yn ” + ||)\n+1,N(TNUn+1,N—1yn - TNun,N—lyn) ||
+ |)‘n+1,N - An,N' I TNUn,N—lyn I
< |)‘n+1,N - )\n,N| ”_yn ” + )"n+l,N|| Un+1,N—1yn - Un,N—lyn ||
+ |)‘-n+1,N - )\n,N| I TNUn,N—lyn Il

Since {y,} is bounded and Tk, 'k are nonexpansive, limy,_, oo || Wy119, — Wiyl =0

Step 3. hmn—>oo ||xn+1 _xn” =
We estimate |y,,+1 = yull, |l Wn+lxn+l - Wl and [| Wii1Yne1 — Woyall. From (3.1) we have
2 _ G1
”_yn+1 _yn” ” T un+1 - /‘LlBlurHl) - ( //LlBlun) ||
= ” (Uns1 = tn) = p1(Brttys1 — Biuty,) ”
< llttr = all® + 12 (s = 280) | Brthia — Buugy |1*
=< "un+1 - un”2
2
= | T2 (zni1 — 12Baznar) = T2 (2n — 12Boza) |

< || (Zn+l - Zn) - I’LZ(BZZ}’I+1 - BZZn) HZ
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1% + p2 (2 — 2B2)11B2zns1 — Bazall®

< llz2n+1 — 2u
< llznn = zal%, (3.5)
” (ns1 = Sns1Fxns1) — (% — 8 Fxn) ”
< [ ®ner = % = St (B — Fx) || + 180 — Sea |||l

< ns1 = Xull + 181 = S |11 Fo ||

and

1Zns1 = zall
= || T(g’?j) (xn+1 n+1Fxn+1) - T(@’w)(xn - (Sann) H
= H Taiip)(xn+1 = 8p1Fxni1) — 5n+1 (xn 8uFxy) ||

| T (= 8uF) = T (0 — 84F) |
< H (xn+1 - 8n+1Fxn+1) - (xn - 8;’1Fxn) ||
| T (= 8uF) = TS (0 — 84F) |

< %1 = Xull + 1841 = Sl | Ex |

[ T (s — 8uF) = TS (0 — 84F%) . (3.6)
It follows from (3.5) and (3.6) that

1Yne1 = Yull < l1Zns1 — zall
< a1 = Xull + 18041 = 8ul [ Foxy

+ | T (o — 8uF ) = T (0 — 84F ) . (37)

Without loss of generality, let us assume that there exists a real number a such that §, >
a > 0 for all n. Utilizing Proposition 2.1, we have

| 7399 (s = 8uFx) = Too ) (60 = 8Fx) |

Sprl

8
< | n+l —
8}’1+

|6n+1

|| T5 O ([_s nF) |

n+1

©0) (1 _ 8, F)x,|.

n+l ”

|| T (3.8)

It follows from the definition of W, that

W19 = Wanll
= | MmN TnUnitn-19n + A= At n)¥n = dun TN U -1 — (L= Ann)9 |
< AN = 2u Nl + 1A INUns1,N-1Yn = AnN TN U n-1Y0 |
< st = A Yl + | At v (T Unnin-1m = TnUnn-19) |

+ |)"n+1,N - )\n,N| ” TNUn,N—lyn ”

Page 9 of 21
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< AN = ANyl + AN | U, N—1Yn — U N1 Yl
+ |)"n+1,N - )"n,N| || TNUn,N—lyn ||
<Ml N = AuN| + AN | U N1V — Unn-1Yn s (3.9)

where M; is a constant such that M; > 2 max{sup, .. [y, sup,>; | TnUnn-1Yxl}. Next, we

consider

Ui N-1Yn = UnNadnll
= | Amsrno1 Tnoa Ui n-2Yn + (L= Apsn-1)Yn
= dnNa T U2y — (L= Aun-1)7n|
< AN = AaNaalllYull + TAnna TnaUpsan-2Yn = Aana TnaUnn—2Ynll
< ANt = AaNaalYull + ANl Tna U N—2Yn — TnaaUpn-oyall
+ AN = Apnall Tna Uy -2ynll
< Ma|ApiiN-1 = ANl + U N-2Yn = Unn—2Ynll,

where M, is a constant that M, > 2 max{sup,,~.; [[¥xl,sup,=1 | Tn-1Uun-2Yx|l}. In a similar
way, we obtain
N-1
1w N-19n = Unnaynll <Mz Y~ hiri = Anal, (3.10)

i=1

where M3 is an appropriate constant. Substituting (3.10) into (3.9), we have that

N-1
” Wn+1yn - Wn_yn || S M1|)\n+1,N - )"n,N| + )"n+1,NM3 Z |)‘n+1,i - )\n,i|
i=1
N
<MY i = Al (3.11)

i=1
where M, is a constant such that M, > max{M;, M3}. Similarly, we have

N
” Wn+lxn - ann || =< MS Z |)"n+l,i - )"n,i|1 (312)

i=1

where Ms5 is an appropriate constant. Hence it follows from (3.1), (3.7), (3.8), (3.11) and
(3.12) that

%042 — X |l
= | = w1 A)(Wis1dni1 = Windin) = (@1 — o) AW,y
+ ¥ [t (F(Winar%m1) = F (W) +f (Wotn) (tne1 — o) ] |
< (1= apa ) (I Wasr¥nsr = Worrrdnll + W1y — Wiyl

+ [otni1 — | |AW,yal

Page 10 of 21
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+ y[anﬂ Hf(WnJrlanrl) —f (W) ” +f(Woaxn) (@1 — an)]
<@1- an+17)(||yn+1 —yn” + Wn+1yn - Wnyn”)
+ [0tni1 — | |AW,yal

+ V[an+la(||xn+1 = x|l + | W1, — ann”) + @1 — oy Hf(ann) ||]

<@1- O‘n+17) (”xn+1 — Xl + 1841 — S| | Foxp |

N
| T (o = ) = To? (s = 8uFn) | + Ma Y At = w)
i=1

+ |otnsr — o [|AW, 9 |
+ Yy [ — Xnll + Yoot | Wi, — Wil
+ Yo — | Hf(ann) H

= [1 =y — Va)]”xnﬂ =%l + |8ns1 = 8ul | Fxn |

1841 = 8ul . 0,

+ ”*a ”TB (p)l ‘SFxn""MﬁLZp‘«mlz n,il
N

11 = AW, 9l + yectuaMs Y i = Aol
i=1

+ Y lon — | Hf(ann) H
= [1 (¥ — )/C\!)] %41 — %l

N
+ Mg [2|8n+1 =8l + Y Pt = Al + (L4 )t —anl}

i=1

where Mg is a constant such that Mg > max{sup,., [|Fx,||, % Sup,.; ||T§Z)+f (I = 8,F)xyll,

My + ]/MS,Supnzl ”AWnyn”’Supnzl ”f(ann)”} By Lemma 2.4, we get lim, o [|%n41 —
Xull =0

Step 4. lim,, . oo || Fx, — Fpl| = 0, lim,, . oo [|Bitty, — Byut|| = 0 and lim,, . o6 || B2z, — Bop || =
Indeed, from (3.1)-(3.4) we get
%1 - pII?
= ot (v (Wa) = Ap) + (I ~ 2, A)(Wo3 — p)°
< (o] vf (W) = Ap|| + (1 - Py - 1)
< o |V (W) = Ap|” + (1= )l — pII?
+ 20, | yf (W) = Ap | llyn - |
< ot | Y f (Wot) = Ap|* + (1= o) [t — l1? + 1111 — 280) | Bty — Buue]*]
+ 20 | vf (Woxn) = Ap| lys —

< o ||y f(Wox,) = Ap|” + (1= ) [ 112 = pII® + 12 (12 — 2B2) | Boz,, — Bop?
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+ (i1 — 280 | Buy — Bl *] + 20 | v.f (W) — Ap | Ilyn — P
2
< ||y f(Wox) = Ap||” + 1% — pI* + 84(8, — 20) | E — Fp|I?
+ 2 (ia = 2B2)1Bazn — Bop|* + 11 (i1 — 281) | Bry, — By

+ 20 ” Yf (W) _AP” ly» - pll.

Therefore
84(2¢ = 8)IIExy — Ep||* + 112(2B2 — 12) |1 Bazw — Bop|1* + 11 (281 — 1) | Busy, — Biua||?
2
< ||y f(Woxn) = Ap||” + 1% = Pl = a1 =PI + 20 ]| f (Wix) — Ap || s — P
2
=y ” yf(ann) _AP“ + (”xn =l + 1%na —P||) [l — %ps1

+ 200 ]| v f (W) = Ap| 170 = pII.

Since @, — 0 and ||x, — %41l — 0 as n — oo, we have lim,_ , ||Fx, — Fp|| = 0,

1imn—>oo ”Blun _Blu” =0and hmn—>oo ”Bzzn _BZPH =0.
Step 5. limy, o [|%, — 2, || = 0, limy,—, o ||z, — ¥, || = 0 and lim,,—, o |2, — ¥l = 0.
Indeed, from (3.2), (3.3) and Lemma 2.1, we have

N2y — ul|?
= | TS (2 - 12B22s) = TS (0 - 112Bop)||°
< ((zn — n2Bazn) — (0 — n2Bop), iy — i)
1
= 5@ - 12Boz) - ® - 12Bop) | + Nt — ue]?

= || (zn = 12B2zs) = (0 = 12Bop) — (1t — 1) ”2]

< 5[ =PI s = = 2 )~ a(Bz ~ Bap) ~ (o~ )] ]
< [ =PI+l = ~ | )~ (p =20
+202((zn — ) = (p — ), Bazy — Bop) - 14311 Baz — Bop|*]
and
Iy - plI?

= | TG s — 1 Brsa) = TS (1t = prByo) |
<{(n — p1Bitt) — (= 1 Bita), y — p)
= 5 Ul = aBi) — = B + iy~ P
— || G = p1Brst) = (= puBrae) = (3 = )| ]
N [ S R )

+ 241 (Bubn — Bitty (tn — ) + (p — 1)) — 3 | Brtgy, — Buua?]
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1
< 5 Ll =l + 1y =2 = | Gt =) + (0= 0)|”

+ 2p1(Brty — By, (= y) + (p — w)],
which imply that

it = ull> < %0 =PI = || 2 — 1) = (0 — )|

+205((24 — ) = (p — 1), Bozy, — Bop) — p1311Baz, — Bop||* (3.13)
and

13 = pI? < 1965 = pII> = || (s = 3) + (0 — )]
+ 21 || Bitty — Byull || = y) + (p — 1) (3.14)

It follows from (3.14) that

1 — pII?
= ot (v (W) = Ap) + (I~ 2 A)(Wr3 — P
< o[ yf (Woa) = Ap|* + (L= ra?)llyn - pII?
+ 20 | vf (Wox) = Ap| lys —
< | yf (W) = Ap|* + (1= 7)1 — pI? = ||t~ 3) + (0~ )|
+ 2401||Byuty = Byull | (= y) + (0 = ) | ] + 200 | v f (W) = Ap | 17 = P,

which gives that

(1~ a7 (s = 3) + (0 - w)]*
< |y (Wix) = Ap|” + 13 =PI = 101 — pII?
+ 201 (1 = @, V) | Busdy, — Buul| || (s = y) + (0 — ) |
+ 20, | yf (Woits) — Ap | llyn -
< ot | VF (Wot) = Ap|* + (1 =PIl + 161 = 21 16 = Kot |
+ 2011 = 0, V) | Busty, — Bual| || (s = ) + (p — 1) |

+ 20, || yf (W) = Ap|| 1y = plI.
Since o, = 0, ||%,41 —%,|| — 0 and ||Biu,, — Biu|| — 0 as n — o0, we have
Tim [y = 3,) + (0 - w)|* = 0. (3.15)
Also, from (3.4) and (3.13), we have

2
l%441 = Pl

= “an(yf(ann) —AP) + (1_ anA)(Wn_yn —P)||2
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< o[V (W) = Ap|” + (1= )y — pII?
+ 20, | Y f (Woits) — Ap | llys -

< ot | Y f (Wo) = Ap|* + (1= 7)1t — ]
+ 20| v (W) — Ap| 19 - pl

< ot | Yf (Wot) = Ap|* + (1= o)1 = 1% = || (2 — 1) = (0 — )|
+2p42((2n — n) = (p — ), Bazy — Bop)]

+ 200 ]| v f (W) = Ap| 190 = pII.

So, we have

(1~ a7 (2 — ) - (p - w)]*

< o |V (Wikn) = Ap|* + 1w = pI* = %01 — pII®
+ 2445 || (20 = ) = (0 = ) | 1 Bozs = Bop|
+ 20, || y.f (W) — Ap)|| 1y — Pl

< |y (Wix) = Ap|* + (1160 =PIl + 191 = P11 [ = e |
+ 2445 || (20 = ) = (0 = ) | 1Bozs — Bop|

+ 20t || v f (W) = Ap ||y = -

Note that ||Byz, — Bop|| — 0 as n — oo. Then we have

lim [z~ ) - (- w)]| = 0. (3.16)

In addition, from the firm nonexpansivity of Té}?"p), we have
ll2, - pII?
= | 799 (e = 8, Fx) = TSV (0 - 8,p)||°
=< ((xn - (Sann) - (1” - aan): Zn _p>
1
= S [l6on = 80Fx) = (0 =8, Ep)|” + 1z = pI?
~ [0 = 8uFxa) = (0 = 8.Ep) - a = )]

= [”xn —P”Z + ”Zrl —P||2 - ”xn —Zn— 6n(Fxn —FP)”2]

DBl

[”xn —P||2 + ||Zn —P||2 - ”xn _Zn||2 + Z‘Sn(Fxn _Fp’xn - Zn>
— 8.l Fx, — Epl1?],

which implies that

2, = pII* < %0 = pII* = 1% = 241> + 28, | Fx,, — Ep|l 1% — 2a. (3.17)
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From (3.1), (3.4) and (3.17), we have

ne1 - 112
= [otn (v (W) = Ap) + (I~ 2, A)(Wry — P
< o[y f (Woa) = Ap|* + (L= era?)lyn - pII?
+ 20 | vf (Wox) — Ap| lys —
< o[ yf(Wo) = Ap|” + (1= P12 - pII®
+ 20 | vf (Woxn) = Ap| lys —
< |y (Wix) = Ap|* + A = ) [1960 = p1I* = 12 — 21
+ 28, || Ex,y = Eplll|% = 2all] + 200 ]| vf (Woix) = Ap | 19 — pI-

It follows that

(1 —0[,17)”96,, _Zn”2
2 2 2
<oy |vf (W) = Ap|” + %0 = pII* = %01 = pl
+2(1 = )8l Fxt — Eplll|%n — 2|l + 20t ||y f (Woin) = Ap|| s — Pl
2
< || yf(Woxn) = Ap ||~ + (I =PIl + 1001 =PI 160 = s
+2(1 = )8, | Ext — Eplll|%n — 2|l + 20t || f (Wo) = Ap|| 1 — pII.

Since ||Fx,, — Fp|| — 0 as n — 00, we obtain

lim ||x, —z,] = 0. (3.18)
n—00

Thus, from (3.15), (3.16) and (3.18), we obtain that

Tim lzy = yull = Tim [z — 40) = (0 = 0) + (1t = yn) + (0 = 1)

< lim “z,,—u,,—(p—u)” + lim ||u,,—yn+(p—u)n
n— 00 n— 00

=0
and
lim ||x, —y,|l < lim ||x, -z, + Lim ||z, -y,
n— o0 n—oQ n— 00
=0.

Step 6. limy, .o 1y1 — Wiyl = 0.
Indeed, observe that
len = Wiyl < 10 = %paall + 16041 = Wiyl

= [|%n = Xpaa |l + ”Oanf(ann) + (I =y A)Wpyn — Wiyn ”
< 1% = et | + [ [F (W) | + NANI Wonpall]-
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From Step 3 and ¢, — 0 as n — 00, we have lim,,_, o ||x, — W,,9,,|| = 0. Consequently,

lim [y, = Wyl < lim (”yn =%l + %0 = Wn}’n”)
n—>00 n—>00
=0.

Step 7. limsup,,_, . (vf(x") — Ax",x, —x') <0, where x” = Pz(yf + (I - A)(x).
Indeed, take a subsequence {x,,} of {x,} such that

limsup(yf (x') — Ax ', %, —x') = lim (yf (x) — Ax 2, —x ).
=00

n—00

Correspondingly, there exists a subsequence {y,,} of {y,}. Since {y,,} is bounded, there
exists a subsequence of y,, which converges weakly to w. Without loss of generality, we can
assume that y,, — w. Next we show w € §. First, we prove that w € Q. Utilizing Lemma 2.1,

we have for all x,y € C

[r@-ro)l’
= | T T2 (x — aBox) — By T2 (% — 112Box) |
- TR [T2 0 - 12Bry) = mBITE (- paBoy) ]|
< | T2 (x = aBax) = T2 (y - paBay)
=[BT~ waBw) = BT (= paBoy)] |
< |72 - 2Box) = TR0 = maBoy) |
+ (i = 28D || BLTE (x = a2 Box) - BITS (3 - 112Boy) |
< | T2 (x — 112Box) — T2 (y — 12 Bay) I?
< |-y - u2(Bax - Bsy) ||
< |l = ylI* + pa(pea — 282)[|Box — Boyll®

2
<l ="

This shows that I' : C — C is nonexpansive. Note that

INCARINCA]
||Zn _yn”

“yn - F()/n)“

IA

— 0 asn— oo.

According to Lemma 2.2 and Lemma 2.3, we obtain w € €.
Next, let us show that w € GMEP. From z, = Ts(f;)"p)(x,, - 8,Fx,), we obtain

1
O(z4,9) + 9(¥) — ¢(2n) +3—(y ZnsZn — (%0 — 8,F%0)) > 0, Vye€C.

n

It follows from (H2) that

0() — @(zn) + (y — 24, Fx) + Si(y—z,,,zn -%,) > 0Oy,z,), VyeC. (3.19)

n
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Replacing n by n;, we have

Zn,' _xn,'
) —@(zy) + (y — 2, Fxp,) + <y—z,,i, 3 > > 0,zy), VyeC.
:

i

Letz, =ty+ (1 —t)wforall t € [0,1] and y € C. Then we have z, € C. It follows from (3.19)
that

(2t — Zujs Fzi) > (2t — 2 Fze) — (2¢) + @0(2n;) — (20 — Zuy Fx;)

Zp; — X,
- <Zt - Zni’ - : > + ®(Zt’ Zn,')
B

= (2t = Zu; Fzt — Fzu;) + (24 = 2y Fz; — FXy)

Zn; — X
- (z) + o(zy;) - <Zt ~Znp > + O(zs, 2;)-

i

Since ||z,; — %4,]l = 0, we have ||Fz,, — Fx,,|| — 0. From the monotonicity of F, we have

(Fzy — Fzp;y2¢ — 24;) > 0.

From (H4), the weakly lower semicontinuity of ¢, % — 0 and z,; = w, we have

(z¢ —w, Fzs) > —9(z,) + o(W) + O(z;, W) (3.20)
as i — oo. By (H1), (H4) and (3.20), we obtain

0 = Oz, z¢) + 0(z:) — (z)

= O(zuty+ L -t)w) + p(ty + A - )w) — o(z,)

< 10(z;,) + (1 - )O(z, w) + tp(y) + (1 = )p(w) — p(2:)

= 1[O(z5,) + 9(9) — 9(z0) ]| + 1 - O)[O(z, w) + (W) — (2]
t{O(z,y) + () — 9(z)] + (1 = t)(z; — w, Fz,)
= 1[O(z1,9) + 0(y) — 9(z)) ] + (1 - Dty — w, Fzy).

IA

Hence we obtain

0= 0(z,9) + () - ¢(z) + A=)y — w, Fz,).
Putting ¢t — 0, we have

0= O(w,y) + () - p(w) + (y—w,Fw), VyeC.

This implies that w € GMEP.
Since Hilbert spaces satisfy Opial’s condition, it follows from Step 5 that

liminf |y, —w|| < liminf|y,, — W,w|
11— 00 11— 00

=< hlrgglf[llyn, - Wnyn,-” + Wnyn,- - WnW”]

Page 17 of 21
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< limsup ||y, = Wy, || + liminf | Wy,y,, — W,w||
i—o00 =00

= liminf | Wyy,, — Wawll
i—00

< liminf ||y, — wl,
1— 00

which derives a contraction. This implies that w € F(W,,). It follows from F(W,) =
MY, F(T;) that w e (Y, F(T).
Since x” = Pz (yf + (I = A))(x"), we have

lirfisip(yf(x )—AX %, —x ) = nlingo(yf(x ) —Ax %y, — X))

= (yf(x*) —Ax,w-— x*)
<0.

Step 8. x, — x as 1 — 00.
Indeed, from Lemma 2.6 and (3.4), we have

ERe—

= ey f (Woa) + (I = au ) Wy, — ||

= |~ s A) (Wi = &) + et (v (W) - Ax)||*
< || - oud)( ,,y,,—x)” + 20, (Y f (W) — A%, %1 — X )
< (L=, |9n = 2| + 200 (yf (Wyty) — Ax 2001 — )

< (1= o) = &))" + 20y [ (Win) —f (&), i1 — )
2,y f () = A g — )

R R PN |
+ 2,y f () — Ax' 50t — )

< - [ (o= + s - )

+ 2an(yf(x$) —Ax %01 — x*>,
which implies that

Jsensa =]

(1- Ol,,7)2 +a,ya
< (2
l-a,ya

- (1- D -

20,7 —ay)[  a,p? o2 1 .
e Tl ) = A =]
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Put

_ 20{;1(7 - 053/)
l1-a,ya

and

5 ap 1 7—1ay(”f ()~ A% st ‘x*>]'

20,7 —ay)[  an7?
Sn =
l-o,ya

Then we can write the last inequality as
A1 = (1 - Vn)ﬂn + %‘n-

It follows from condition (i) and Step 6 that

00
E VYn = +00
n=1

and

. Sn . an72 =12
limsup — = limsup z(inxn - ||

n—oo Vn n—>00

Y —ay)

1 . R N
+ 7_o”/(yf(x)—Ax ,xn+1—x)}

<0.

Hence, applying Lemma 2.4, we immediately obtain that x,, — x" as n — oo. This com-
pletes the proof. O

As corollaries of Theorem 3.1, we have the following results.

Corollary 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
0,G1,Gy : C x C — R be three bifunctions which satisfy assumptions (H1)-(H4) and
¢ : C — R be a lower semicontinuous and convex function satisfying (Al) or (A2). Let the
mappings By, B, : C — H be B;-inverse strongly monotone and B,-inverse strongly mono-
tone, respectively. Let Ty, T, ..., Tn be a finite family of nonexpansive mappings of C into
H such that § = ﬂﬁl F(T;)) "MEP N Q # ¢. Let f be a contraction of H into itself with a
constant « (0 < o < 1) and let A be a strongly positive linear bounded operator with a coeffi-
cient’y > 0 such that ||A|| < 1. Assume that 0 <y < g Let x) € C and let {x,} be a sequence
defined by

Ozmy) + () = ¢(2n) + 5. (0 = 2w 24 = %) 20, VyeC,
Y= T T2 (20 — 112Bazn) — taBI T2 (20 — 112B22,,)],
Xn+l = Oan/f(ann) + (1 - anA) Wnym n= 1;

where oy, € [0,1], 1 € (0,281), 2 € (0,282) and {8,} C (0, 00) satisfy the following condi-
tions:
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() limyoo 0y =0, Y ooy, =00 and Y oo, |01 — 0y| < 00;
(i) limy— oo Ani =0, Y oo [Ani — An-14l <00 foralli=1,2,...,N,
(iii) 0 <liminf,_ o8, <limsup,_, . 8, < 00 and 21;1:1 [8,141 — 8] < 0.
Then {x,} converges strongly to x = Py, ryrmepne 7+ (= AN and (x',y") is a
solution of problem (1.4), wherey = T2 (x" - j12Box”), which solves the following variational
inequality:

N
(A-yhHx,x—x)=0, Vae(|E(T)NMEPNS.
i=1

Proof In Theorem 3.1, foralln >0, z,, = T;S)"”)(xn — 8,Fx,) is equivalent to

1
Oz, ) + 0(¥) — @(z) + (Fxy, y — z) + S—Qy—zn,zn -x,) >0, VyeC. (3.21)
n

Putting F = 0, we obtain

O (21, 9) + () — ¢(2n) + %O’_Zmzn_xn) >0, vyeC O
n
Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H and let
G1, Gy : C x C — R be two bifunctions with satisfy assumptions (H1)-(H4). Let the map-
pings F,By, B, : C — H be ¢ -inverse strongly monotone, pi-inverse strongly monotone and
Ba-inverse strongly monotone, respectively. Let T, Ty, .. ., T be a finite family of nonexpan-
sive mappings of C into H such that ﬂfil F(T;)) N VI(A,C) N Q2 # ¢. Let f be a contraction
of H into itself with a constant a (0 < « < 1) and let A be a strongly positive linear bounded
operator with a coefficient y > 0 such that ||A|| < 1. Assume that 0 < y < g Let x, € C and
let {x,} be a sequence defined by

zy = Pc(x, — 8Fxy),
Y= T T2 (20 — 112Bazn) — 1t BITS2 (20 — 112B22,,)],
KXn+l = Oan/f(ann) +(1- anA)WnJ’n: n>1,

where o, € [0,1], 1 € (0,281), 2 € (0,28;) and {8,,} C [0,2¢] satisfy the following condi-
tions:
(i) limyooty =0, Y ooyt =0and Y o) oty — oty < 00;

(i) limy— o0 Ani =0 and Y oo [hpi —An-1il <00 foralli=1,2,...,N;

(i) liminf, 008y >0 and > oo 18,1 — 8] < 00.

Then {x,} converges strongly to x = PmﬁlF(TmVI(A,C)m(yf +(I-A)) and (x',y) isa
solution of problem (1.4), wherey = T2 (x' — j12Box’), which solves the following variational
inequality:

N
(A-yx',x-x)=0, Vxe(|F(T)NVIAC)NQ.
i=1

Proof Put ® =0 and ¢ = 0 in Theorem 3.1. Then we have from (3.21) that

1
(FXp, ¥ — 24) + 8—(y—z,,,z,,—x,,) >0, VyeCn=>1

n

Page 20 of 21
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That is,
Y = Zny%n = 8pFxy —2,) <0, VyeC.

It follows that Pc(x, — 8,Fx,) = z, for all # > 1. We can obtain the desired conclusion

easily. O

Remark 3.1 We can see easily that Takahashi and Takahashi [18], Peng and Yao’s [1] results
are special cases of Theorem 3.1.
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