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1 Introduction
Nonlinear analysis plays an important role in optimization problems, economics and
transportation. The theory of variational inequalities has emerged as a rapidly growing
area of research because of its applications; see [–] fore more details and the refer-
ences therein. To study variational inequalities based on iterative methods has been at-
tracting many authors’ attention. For the iterative methods, the most popular method is
the Mann iterative method which was introduced by Mann in ; see [] and the ref-
erences therein. The Mann iterative process has been proved to be weak convergence for
nonexpansive mappings in infinite dimension spaces; see [] and the reference therein.
Recently, many authors studied the modification of Mann iterative methods. The most
popular one is to use projections. We call the method a hybrid projection method; see
[] and the reference therein. In this paper, we study equilibrium problems, fixed point
problems and variational inequalities based on the hybrid projectionmethod. Strong con-
vergence theorems for common solutions of the problems are established in infinite di-
mension Hilbert spaces.

2 Preliminaries
Throughout this paper, we always assume that H is a real Hilbert space with the inner
product 〈·, ·〉 and the norm ‖ · ‖. Let C be a nonempty closed convex subset of H . Let
S : C → C be a mapping. In this paper, we use F(S) to denote the fixed point set of S.
Recall that the mapping S is said to be nonexpansive if

‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ C.
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S is said to be quasi-nonexpansive if F(S) 	= ∅ and

‖Sx – y‖ ≤ ‖x – y‖, ∀x ∈ C, y ∈ F(S).

Let A : C →H be a mapping. Recall that A is said to be monotone if

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.

A is said to be strongly monotone if there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖x – y‖, ∀x, y ∈ C.

For such a case, A is also said to be α-strongly monotone. A is said to be inverse-strongly
monotone if there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

For such a case, A is also said to be α-inverse-strongly monotone. A is said to be Lipschitz
if there exits a constant L >  such that

‖Ax –Ay‖ ≤ L‖x – y‖, ∀x, y ∈ C.

For such a case, A is also said to be L-Lipschitz. A set-valued mapping T :H → H is said
to be monotone if for all x, y ∈ H , f ∈ Tx and g ∈ Ty imply 〈x – y, f – g〉 > . A monotone
mapping T : H → H is maximal if the graph G(T) of T is not properly contained in the
graph of any othermonotonemapping. It is known that amonotonemappingT ismaximal
if and only if, for any (x, f ) ∈H ×H , 〈x – y, f – g〉 ≥  for all (y, g) ∈G(T) implies f ∈ Tx.
Let F be a bifunction of C ×C into R, where R denotes the set of real numbers and A :

C →H is an inverse-strongly monotonemapping. In this paper, we consider the following
generalized equilibrium problem:

Find x ∈ C such that F(x, y) + 〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

In this paper, the set of such an x ∈ C is denoted by EP(F ,A), i.e.,

EP(F ,A) =
{
x ∈ C : F(x, y) + 〈Ax, y – x〉 ≥ ,∀y ∈ C

}
.

To study the generalized equilibrium problems (.), we may assume that F satisfies the
following conditions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x)≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y → F(x, y) is convex and lower semi-continuous.
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Next, we give two special cases of the problem (.).
(I) If A≡ , then the generalized equilibrium problem (.) is reduced to the following

equilibrium problem:

Find x ∈ C such that F(x, y) ≥ , ∀y ∈ C. (.)

(II) If F ≡ , then the problem (.) is reduced to the following classical variational
inequality:

Find x ∈ C such that 〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

It is known that x ∈ C is a solution to (.) if and only if x is a fixed point of the mapping
PC(I – λA), where λ >  is a constant and I is the identity mapping.
Recently, many authors studied the problems (.), (.) and (.) based on hybrid pro-

jection methods; see, for example, [–] and the references therein. Motivated by these
results, we investigated the common element problems of the generalized equilibrium
problem (.) and quasi-nonexpansive mappings based on the shrinking projection algo-
rithm. A strong convergence theorem of common elements is established in the frame-
work of Hilbert spaces.
In order to prove our main results, we also need the following definitions and lemmas.
The following lemma can be found in [] and [].

Lemma . Let C be a nonempty closed convex subset of H and let F : C × C → R be a
bifunction satisfying (A)-(A). Then, for any r >  and x ∈H , there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Further, define

Trx =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all r >  and x ∈H . Then the following hold:
(a) Tr is single-valued;
(b) Tr is firmly nonexpansive, i.e., for any x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

(c) F(Tr) = EP(F);
(d) EP(F) is closed and convex.

Lemma . [] Let B be a monotone mapping of C into H and NCv the normal cone to C
at v ∈ C, i.e.,

NCv =
{
w ∈H : 〈v – u,w〉 ≥ ,∀u ∈ C

}

http://www.fixedpointtheoryandapplications.com/content/2013/1/59
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and define a mapping M on C by

Mv =

⎧⎨
⎩
Bv +NCv, v ∈ C,

∅, v /∈ C.

Then M is maximal monotone and  ∈Mv if and only if 〈Bv,u – v〉 ≥  for all u ∈ C.

3 Main results
Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
Fm be a bifunction from C × C to R which satisfies (A)-(A) and Am : C → H be a κm-
inverse-strongly monotone mapping for every  ≤ m ≤ N , where N denotes some positive
integer. Let S : C → C be a continuous quasi-nonexpansive mapping which is assumed
to be demiclosed at zero and let B : C → H be a β-inverse-strongly monotone mapping.
Assume thatF :=

⋂N
m= EP(Fm,Am)∩VI(C,B)∩F(S) 	= ∅. Let {λn} be a positive sequence in

[, β] and {rn,m} be a positive sequence in [, κm] for every  ≤ m ≤ N . Let {αn}, {βn,}, . . .
and {βn,N } be sequences in [, ]. Let {xn} be a sequence generated in the following iterative
process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

C = C,

zn = ProjC(
∑N

m= βn,mun,m – λnB
∑N

m= βn,mun,m),

yn = αnxn + ( – αn)Szn,

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+x, n≥ ,

where {un,m} is such that

Fm(un,m,um) + 〈Amxn,um – un,m〉 + 
rn,m

〈um – un,m,un,m – xn〉 ≥ , ∀um ∈ C

for each  ≤ m≤ N .Assume that the above sequence also satisfies the following restrictions:
(a) αn ≤ a < ;
(b)

∑N
m= βn,m =  and  ≤ b ≤ βn,m <  for each  ≤ m ≤ N ;

(c)  < c≤ λn ≤ d < β and  < e≤ rn,m ≤ f < κm for each  ≤ m ≤ N ,
where a, b, c, d, e and f are real numbers. Then the sequence {xn} strongly converges to
ProjF x.

Proof In view of Lemma ., we see that

un,m = Trn,m (xn – rn,mAmxn), ∀ ≤m ≤ N .

Letting p ∈F , we obtain that

p = Sp = ProjC(I – λnB)p = Trn,m (p – rn,mAmp), ∀m ∈ {, , . . . ,N}.

http://www.fixedpointtheoryandapplications.com/content/2013/1/59
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In view of the restriction (c), we obtain that

∥∥(I – rn,mAm)x – (I – rn,mAm)y
∥∥

= ‖x – y‖ – rn,m〈x – y,Amx –Amy〉 + rn,m‖Amx –Amy‖

≤ ‖x – y‖ – rn,m(κm – rn,m)‖Amx –Amy‖

≤ ‖x – y‖, ∀x, y ∈ C.

This shows that I – rn,mAm is nonexpansive for every m ∈ {, , . . . ,N}. In view of the re-
striction (c), we also see that I – λnB is nonexpansive.
Next, we show that Cn is closed and convex. In view of the assumption in the main body

of the theorem, we see that C = C is closed and convex. Suppose that Ci is closed and
convex for some i ≥ . We show that Ci+ is closed and convex for the same i. Indeed, for
any v ∈ Ci, we see that

‖yi – v‖ ≤ ‖xi – v‖

is equivalent to

‖yi‖ – ‖xi‖ – 〈v, yi – xi〉 ≥ .

Thus Ci+ is closed and convex. This shows that Cn is closed and convex.
Next, we show thatF ⊂ Cn for each n≥ . From the assumption, we see thatF ⊂ C = C.

Assume that F ⊂ Ci for some i ≥ . For any v ∈F ⊂ Ci, we see that

‖yi – v‖ = ∥∥αixi + ( – αi)Szi – v
∥∥

≤ αi‖xi – v‖ + ( – αi)‖zi – v‖

≤ αi‖xi – v‖ + ( – αi)
N∑

m=

βi,m‖ui,m – v‖

≤ αi‖xi – v‖ + ( – αi)
N∑

m=

βi,m
∥∥Tri,m (I – ri,mAm)xi – v

∥∥

≤ αi‖xi – v‖ + ( – αi)
N∑

m=

βi,m
∥∥(I – ri,mAm)xi – v

∥∥

≤ ‖xi – v‖.

This shows that v ∈ Ci+. This proves that F ⊂ Cn. Notice that xn = ProjCn x. For each
v ∈F ⊂ Cn, we have

‖x – xn‖ ≤ ‖x – v‖.

In particular, we have

‖x – xn‖ ≤ ‖x – ProjF x‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/59
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This implies that {xn} is bounded. Since xn = ProjCn x and xn+ = ProjCn+ x ∈ Cn+ ⊂ Cn,
we arrive at

 ≤ 〈x – xn,xn – xn+〉 ≤ –‖x – xn‖ + ‖x – xn‖‖x – xn+‖.

It follows that

‖xn – x‖ ≤ ‖xn+ – x‖.

This implies that limn→∞ ‖xn – x‖ exists. On the other hand, we have

‖xn – xn+‖

= ‖xn – x‖ + 〈xn – x,x – xn+〉 + ‖x – xn+‖

= ‖xn – x‖ – ‖xn – x‖ + 〈xn – x,xn – xn+〉 + ‖x – xn+‖

≤ ‖x – xn+‖ – ‖xn – x‖.

It follows that

lim
n→∞‖xn – xn+‖ = . (.)

Notice that xn+ = ProjCn+ x ∈ Cn+. It follows that

‖yn – xn+‖ ≤ ‖xn – xn+‖.

This in turn implies that

‖yn – xn‖ ≤ ‖yn – xn+‖ + ‖xn – xn+‖ ≤ ‖xn – xn+‖.

In view of (.), we obtain that

lim
n→∞‖xn – yn‖ = . (.)

On the other hand, we have

‖xn – yn‖ = ( – αn)‖xn – Szn‖.

It follows from (.) that

lim
n→∞‖xn – Szn‖ = . (.)

For any p ∈F , we have from Lemma . that

‖un,m – p‖ = ∥∥Trn,m (I – rn,mAm)xn – Trn,m (I – rn,mAm)p
∥∥

≤ ∥∥(xn – p) – rn,m(Amxn –Amp)
∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/59
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= ‖xn – p‖ – rn,m〈xn – p,Amxn –Amp〉 + rn,m‖Amxn –Amp‖

≤ ‖xn – p‖ – rn,m(κm – rn,m)‖Amxn –Amp‖,
∀m ∈ {, , . . . ,N}. (.)

On the other hand, we have

‖yn – p‖ = ∥∥αnxn + ( – αn)Szn – p
∥∥

≤ αn‖xn – p‖ + ( – αn)‖Szn – p‖

≤ αn‖xn – p‖ + ( – αn)‖zn – p‖

≤ αn‖xn – p‖ + ( – αn)
N∑

m=

βn,m‖un,m – p‖. (.)

Substituting (.) into (.), we arrive at

‖yn – p‖ ≤ ‖xn – p‖ – ( – αn)
N∑

m=

βn,mrn,m(κm – rn,m)‖Amxn –Amp‖. (.)

This in turn implies that

( – αn)βn,mrn,m(κm – rn,m)‖Amxn –Amp‖

≤ ‖xn – p‖ – ‖yn – p‖

≤ (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖, ∀m ∈ {, , . . . ,N}.

In view of the restrictions (a)-(c), we obtain from (.) that

lim
n→∞‖Amxn –Amp‖ = , ∀m ∈ {, , . . . ,N}. (.)

On the other hand, we have from Lemma . that

‖un,m – p‖ =
∥∥Trn,m (I – rn,mAm)xn – Trn,m (I – rn,mAm)p

∥∥

≤ 〈
(I – rn,mAm)xn – (I – rn,mAm)p,un,m – p

〉

=


(∥∥(I – rn,mAm)xn – (I – rn,mAm)p

∥∥ + ‖un,m – p‖

–
∥∥(I – rn,mAm)xn – (I – rn,mAm)p – (un,m – p)

∥∥)

≤ 

(‖xn – p‖ + ‖un,m – p‖ – ∥∥xn – un,m – rn,m(Amxn –Amp)

∥∥)

=


(‖xn – p‖ + ‖un,m – p‖ – (‖xn – un,m‖

– rn,m〈xn – un,m,Amxn –Amp〉 + rn,m‖Amxn –Amp‖
))
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/59
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This implies that

‖un,m – p‖ ≤ ‖xn – p‖ – ‖xn – un,m‖ + rn,m‖xn – un,m‖‖Amxn –Amp‖. (.)

Notice that

‖yn – p‖ ≤ αn‖xn – p‖ + ( – αn)‖Szn – p‖

≤ αn‖xn – p‖ + ( – αn)‖zn – p‖

≤ αn‖xn – p‖ + ( – αn)
N∑

m=

βn,m‖un,m – p‖. (.)

Substituting (.) into (.), we see that

‖yn – p‖ ≤ ‖xn – p‖ + ( – αn)
N∑

m=

βn,mrn,m‖xn – un,m‖‖Amxn –Amp‖

– ( – αn)
N∑

m=

βn,m‖xn – un,m‖

≤ ‖xn – p‖ +
N∑

m=

rn,m‖xn – un,m‖‖Amxn –Amp‖

– ( – αn)
N∑

m=

βn,m‖xn – un,m‖, ∀ ≤ m ≤ N . (.)

It follows that

( – αn)βn,m‖xn – un,m‖

≤ ‖xn – p‖ – ‖yn – p‖ +
N∑

m=

rn,m‖xn – un,m‖‖Amxn –Amp‖

≤ (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖ +
N∑

m=

rn,m‖xn – un,m‖‖Amxn –Amp‖,

∀≤ m ≤ N . (.)

In view of the restrictions (a) and (b), we obtain from (.) and (.) that

lim
n→∞‖xn – un,m‖ = , ∀≤ m ≤ N . (.)

Since {xn} is bounded, we may assume that there is a subsequence {xni} of {xn} converging
weakly to some point x. It follows from (.) that uni ,m converges weakly to x for every
m ∈ {, , . . . ,N}.
Next, we show that x ∈ EP(Fm,Am) for every m ∈ {, , . . . ,N}. Since un,m = Trn,m (xn –

rn,mAmxn) for any u ∈ C, we have

Fm(un,m,um) + 〈Amxn,um – un,m〉 + 
rn,m

〈um – un,m,un,m – xn〉 ≥ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/59
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From the condition (A), we see that

〈Amxn,um – un,m〉 + 
rn,m

〈um – un,m,un,m – xn〉 ≥ Fm(um,un,m). (.)

Replacing n by ni, we arrive at

〈Amxni ,um – uni ,m〉 +
〈
um – uni ,m,

uni ,m – xni
rni ,m

〉
≥ Fm(um,uni ,m). (.)

For tm with  < tm ≤  and um ∈ C, let utm = tmum + ( – tm)x. Since um ∈ C and x ∈ C, we
have utm ∈ C for every  ≤ m ≤ N . It follows from (.) that

〈utm – uni ,m,Amutm〉

≥ 〈utm – uni ,m,Amutm〉 – 〈Amxni ,m,utm – uni ,m〉 –
〈
utm – uni ,m,

uni ,m – xni
rni ,m

〉

+ Fm(utm ,uni ,m)

= 〈utm – uni ,m,Amutm –Amuni ,m〉 + 〈utm – uni ,m,Amuni ,m –Amxni〉

–
〈
utm – uni ,m,

uni ,m – xni
rni ,m

〉
+ Fm(utm ,uni ,m). (.)

From (.), we have Amuni ,m – Amxni →  as i → ∞ for every  ≤ m ≤ N . On the other
hand, we obtain from the monotonicity of Am that 〈utm – uni ,m,Amutm – Amuni ,m〉 ≥ . It
follows from (A) that

〈utm – x,Amutm〉 ≥ Fm(utm ,x), ∀ ≤ m ≤ N . (.)

From (A) and (A), we obtain from (.) that

 = Fm(utm ,utm ) ≤ tmFm(utm ,um) + ( – tm)Fm(utm ,x)

≤ tmFm(utm ,um) + ( – tm)〈utm – x,Amutm〉
= tmFm(utm ,um) + ( – tm)tm〈um – x,Amutm〉,

which yields that

Fm(utm ,um) + ( – tm)〈um – x,Amutm〉 ≥ , ∀ ≤ m ≤ N .

Letting tm →  in the above inequality for every ≤ m ≤ N , we arrive at

Fm(x,um) + 〈um – x,Amξ 〉 ≥ , ∀ ≤ m ≤ N .

This shows that x ∈ EP(Fm,Am) for every ≤ m ≤ N , that is, x ∈ ⋂N
m= EP(Fm,Am). Putting

wn =
∑N

m= βn,mun,m, we see that

‖wn – p‖ ≤ ‖xn – p‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/59
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and

‖yn – p‖ =
∥∥αnxn + ( – αn)Szn – p

∥∥

≤ αn‖xn – p‖ + ( – αn)‖Szn – p‖

≤ αn‖xn – p‖ + ( – αn)‖zn – p‖

≤ αn‖xn – p‖ + ( – αn)
∥∥(I – λnB)wn – p

∥∥

≤ ‖xn – p‖ – ( – αn)λn(β – λn)‖Bwn – Bp‖. (.)

This in turn implies that

( – αn)λn(β – λn)‖Bwn – Bp‖ ≤ ‖xn – p‖ – ‖yn – p‖

≤ (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖. (.)

In view of the restriction (a)-(c), we obtain from (.) that

lim
n→∞‖Bwn – Bp‖ = . (.)

On the other hand, we have from the firm nonexpansivity of ProjC that

‖zn – p‖ =
∥∥ProjC(I – λnB)wn – ProjC(I – λnB)p

∥∥

≤ 〈
(I – λnB)wn – (I – λnB)p, zn – p

〉

=


(∥∥(I – λnB)wn – (I – λnB)p

∥∥ + ‖zn – p‖

–
∥∥(I – λnB)wn – (I – λnB)p – (zn – p)

∥∥)

≤ 

(‖wn – p‖ + ‖zn – p‖ – ∥∥wn – zn – λn(Bwn – Bp)

∥∥)

≤ 

(‖xn – p‖ + ‖zn – p‖ – ‖wn – zn‖

+ λn〈wn – zn,Bwn – Bp〉 – λ
n‖Bwn – Bp‖).

This implies that

‖zn – p‖ ≤ ‖xn – p‖ – ‖wn – zn‖ + λn‖wn – zn‖‖Bwn – Bp‖,

from which it follows that

‖yn – p‖ ≤ αn‖xn – p‖ + ( – αn)‖Szn – p‖

≤ αn‖xn – p‖ + ( – αn)‖zn – p‖

≤ ‖xn – p‖ – ( – αn)‖wn – zn‖

+ λn‖wn – zn‖‖Bwn – Bp‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/59
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Hence, we get that

( – αn)‖wn – zn‖

≤ ‖xn – p‖ – ‖yn – p‖ + λn‖wn – zn‖‖Bwn – Bp‖
≤ (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖ + λn‖wn – zn‖‖Bwn – Bp‖.

In view of the restriction (a), we obtain from (.) and (.) that

lim
n→∞‖wn – zn‖ = . (.)

Note that

‖zn – xn‖ ≤ ‖zn –wn‖ + ‖wn – xn‖ ≤ ‖zn –wn‖ +
N∑

m=

βn,m‖un,m – xn‖.

In view of (.) and (.), we get that

lim
n→∞‖zn – xn‖ = . (.)

Next, we prove that x ∈ VI(C,B). In fact, let M be the maximal monotone mapping
defined by

My =

⎧⎨
⎩
By +NCy, y ∈ C,

∅, y /∈ C.

For any given (s, t) ∈G(T), we have t – Bs ∈ NCs. Since zn ∈ C, by the definition of NC , we
have

〈s – zn, t – Bs〉 ≥ . (.)

In view of the algorithm, we obtain that

〈
s – zn, zn – (I – λnB)wn

〉 ≥ 

and hence
〈
s – zn,

zn –wn

λn
+ Bwn

〉
≥ . (.)

Since B is monotone, we obtain from (.) that

〈s – zni , t〉 ≥ 〈s – zni ,Bs〉

≥ 〈s – zni ,Bs〉 –
〈
s – zni ,

zni –wni
λni

+ Bwni

〉

= 〈s – zni ,Bs – Bzni〉 + 〈s – zni ,Bzni – Bwni〉
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–
〈
s – zni ,

zni –wni
λni

〉

≥ 〈s – zni ,Bzni – Bwni〉 –
〈
s – zni ,

zni –wni
λni

〉
.

It follows from (.) that zni ⇀ x. On the other hand, we have that B is 
β
-Lipschitz con-

tinuous. It follows from (.) that

〈s – x, t〉 ≥ .

Notice that M is maximal monotone and hence  ∈ Mx. This shows that x ∈ VI(C,B).
Notice that

‖xn – Sxn‖ ≤ ‖xn – Szn‖ + ‖Szn – Sxn‖.

We find from (.) and (.) that

lim
n→∞‖xn – Sxn‖ = . (.)

Next, we prove that x ∈ F(S). Since S is demiclosed at zero, we see that x ∈ F(S). This
proves that x ∈F . Notice that ProjF x ⊂ Cn+ and xn+ = ProjCn+ x, we have

‖x – xn+‖ ≤ ‖x – ProjF x‖.

On the other hand, we have

‖x – ProjF x‖ ≤ ‖x – x‖
≤ lim inf

i→∞ ‖x – xni‖

≤ lim sup
i→∞

‖x – xni‖

≤ ‖x – ProjF x‖.

We, therefore, obtain that

‖x – x‖ = lim
i→∞‖x – xni‖ = ‖x – ProjF x‖.

This implies xni → x = ProjF x. Since {xni} is an arbitrary subsequence of {xn}, we obtain
that xn → ProjF x as n→ ∞. This completes the proof. �

If S is an identity mapping, we obtain from Theorem . the following.

Corollary . Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Let Fm be a bifunction from C × C to R which satisfies (A)-(A) and Am : C → H be
a κm-inverse-strongly monotone mapping for every  ≤ m ≤ N , where N denotes some
positive integer. Let B : C → H be a β-inverse-strongly monotone mapping. Assume that
F :=

⋂N
m= EP(Fm,Am) ∩ VI(C,B) 	= ∅. Let {λn} be a positive sequence in [, β] and {rn,m}

http://www.fixedpointtheoryandapplications.com/content/2013/1/59
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be a positive sequence in [, κm] for every  ≤ m ≤ N . Let {αn}, {βn,}, . . . and {βn,N } be
sequences in [, ]. Let {xn} be a sequence generated in the following iterative process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

C = C,

yn = αnxn + ( – αn)ProjC(
∑N

m= βn,mun,m – λnB
∑N

m= βn,mun,m),

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+x, n≥ ,

where {un,m} is such that

Fm(un,m,um) + 〈Amxn,um – un,m〉 + 
rn,m

〈um – un,m,un,m – xn〉 ≥ , ∀um ∈ C

for each  ≤ m≤ N .Assume that the above sequence also satisfies the following restrictions:
(a) αn ≤ a < ;
(b)

∑N
m= βn,m =  and  ≤ b ≤ βn,m <  for each  ≤ m ≤ N ;

(c)  < c≤ λn ≤ d < β and  < e≤ rn,m ≤ f < κm for each  ≤ m ≤ N ,
where a, b, c, d, e and f are real numbers. Then the sequence {xn} strongly converges to
ProjF x.

If N = , we obtain from Theorem . the following.

Corollary . Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Let F be a bifunction from C × C to R which satisfies (A)-(A) and A : C → H be a κ-
inverse-strongly monotone mapping. Let S : C → C be a continuous quasi-nonexpansive
mapping which is assumed to be demiclosed at zero and let B : C → H be a β-inverse-
strongly monotone mapping.Assume thatF := EP(F ,A)∩VI(C,B)∩F(S) 	= ∅. Let {λn} be a
positive sequence in [, β] and {rn} be a positive sequence in [, κ]. Let {αn} be a sequence
in [, ]. Let {xn} be a sequence generated in the following iterative process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

C = C,

yn = αnxn + ( – αn)SProjC(un – λnBun),

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+x, n≥ ,

where {un} is such that

F(un,u) + 〈Axn,u – un〉 + 
rn

〈u – un,un – xn〉 ≥ , ∀um ∈ C.

Assume that the above sequence also satisfies the following restrictions:
(a) αn ≤ a < ;
(b)  < b ≤ λn ≤ c < β and  < d ≤ rn ≤ e < κ for each  ≤ m ≤ N ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/59
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where a, b, c, d and e are real numbers. Then the sequence {xn} strongly converges to
ProjF x.

If B is a zero operator, we obtain from Theorem . the following.

Corollary . Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Let Fm be a bifunction from C×C to R which satisfies (A)-(A) and Am : C →H be a κm-
inverse-strongly monotone mapping for every  ≤ m ≤ N , where N denotes some positive
integer. Let S : C → C be a continuous quasi-nonexpansive mapping which is assumed to
be demiclosed at zero.Assume thatF :=

⋂N
m= EP(Fm,Am)∩F(S) 	= ∅.Let {rn,m} be a positive

sequence in [, κm] for every  ≤ m ≤ N .Let {αn}, {βn,}, . . . and {βn,N } be sequences in [, ].
Let {xn} be a sequence generated in the following iterative process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

C = C,

yn = αnxn + ( – αn)S
∑N

m= βn,mun,m,

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+x, n≥ ,

where {un,m} is such that

Fm(un,m,um) + 〈Amxn,um – un,m〉 + 
rn,m

〈um – un,m,un,m – xn〉 ≥ , ∀um ∈ C

for each  ≤ m≤ N .Assume that the above sequence also satisfies the following restrictions:
(a) αn ≤ a < ;
(b)

∑N
m= βn,m =  and  ≤ b ≤ βn,m <  for each  ≤ m ≤ N ;

(c)  < c≤ rn,m ≤ d < κm for each  ≤ m ≤ N ,
where a, b, c and d are real numbers. Then the sequence {xn} strongly converges to ProjF x.

Finally, we consider the following optimization problem: Find an x* such that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ(x*) =minx∈C ϕ(x),

ϕ(x*) =minx∈C ϕ(x),
...

ϕN (x*) =minx∈C ϕN (x),

where ϕm : C → R is a convex and lower semicontinuous function for each  ≤ m ≤ N ,
where N ≥  is some positive integer.

Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Let ϕm be a proper convex and lower semicontinuous function for every  ≤ m ≤ N , where
N denotes some positive integer. Assume that F := OP(ϕ) ∩ VI(C,B) ∩ F(S) 	= ∅, OP(ϕ)
denotes the solution set of the above optimization problem. Let {αn}, {βn,}, . . . and {βn,N } be
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sequences in [, ]. Let {xn} be a sequence generated in the following iterative process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

C = C,

yn = αnxn + ( – αn)
∑N

m= βn,mun,m,

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+x, n≥ ,

where {un,m} is such that

ϕm(um) – ϕm(un,m) +


rn,m
〈um – un,m,un,m – xn〉 ≥ , ∀um ∈ C

for each  ≤ m≤ N .Assume that the above sequence also satisfies the following restrictions:
(a) αn ≤ a < ;
(b)

∑N
m= βn,m =  and  ≤ b ≤ βn,m <  for each  ≤ m ≤ N ;

(c)  < c≤ rn,m ≤ d <∞ for each  ≤ m ≤ N ,
where a, b, c and d are real numbers. Then the sequence {xn} strongly converges to ProjF x.

Proof Putting S = I , Am = B =  and Fm(x, y) = ϕ(y) – ϕ(x), we find from Theorem . the
desired conclusion immediately. �
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