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1 Introduction and preliminaries

The contraction principle of Banach is one of the most important results in nonlinear
analysis. After Banach established his existence and uniqueness result, many authors es-
tablished important fixed point theorems in the literature. For the development of our
research, in this article, the article by Matthews [1] is the background.

In 1994, in his elegant article [1], Matthews introduced the notion of a partial metric
space and proved the contraction principle of Banach in this new framework. After then,
many fixed point theorems in partial metric spaces have been given by several authors (for
example, please see [2—24]).

Following Matthews [1], the notion of a partial metric space is given as follows.

Definition 1.1 [1] A partial metric on a nonempty set X is a function p: X x X — R* such
that for all x,y,z € X:

(p1) x=y = px,x) = p(x,y) = p(,y),
(p2) plx,x) < p(x,),

(p3) plx,y) =p©,x),

(pa) p(x,y) <p(x.2) + p(z,y) - p(z,2).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial

metric on X.

It is clear that each partial metric p on X generates a Ty topology 7, on X. The set
{By(x,€) :x € X,e >0}, where B,(x,¢) = {y € X : p(x, ) < p(x,x) + ¢} forallx € X and ¢ > 0,
forms the base of 7,,.
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It is remarkable that if p is a partial metric on X, then the functions

P XxX—->R pry) =2pky) -pkx)-pO,y) 1.1)

and

P X xX >R, p¥(xy) =2p(xy) - min{p(x,x), p(y,y)} 1.2)
are ordinary equivalent metrics on X.

Definition 1.2 [1] Let (X, p) be a partial metric space. Then:
(1) A sequence {x,} in a partial metric space (X, p) converges to a point x € X if and only
if p(x, x) = lim,,_, »c p(x, x,).
(2) A sequence {x,} in a partial metric space (X, p) is called a Cauchy sequence if there
exists (and is finite) lim,,,;;—, oo p(%1, %1,)-
(3) A partial metric space (X, p) is said to be complete if every Cauchy sequence {x,} in
X converges, with respect to 7,, to a point x € X such that

P, x) = 1imy, 00 P(Xn, %)
The following lemma is crucial in proving our main results.

Lemma 1.1 [1] Let (X, p) be a partial metric space.
(1) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric
space (X, p°).
(2) A partial metric space (X, p) is complete if and only if the metric space (X, p®) is
complete. Furthermore, lim,,_, o p*(x,,x) = 0 if and only if

plx,x) = lim p(x,,x) = lim p(x,,x,).
n— 00 n,m— 00

The definition of a 0-complete partial metric space is given by Romaguera [19] as follows.

Definition 1.3 [19] A sequence {x,} in a partial metric space (X, p) is called 0-Cauchy if
1imy, s 400 P(%n, %) = 0. We say that (X, p) is 0-complete if every 0-Cauchy sequence in X
converges, with respect to 7, to a point ¥ € X such that p(x,x) = 0.

We need the following useful lemma in the proof of our main result.

Lemma 1.2 [2] Assume that x, — z as n — +00 in a partial metric space (X, p) such that
p(z,2) = 0. Then lim,,_, , oo p(xy, ) = p(z,y) for every y € X.

In [25], Berinde introduced the nonlinear type weak contraction using a comparison
function. A map ¢: [0, +00) — [0, +00) is called a comparison function if it satisfies:

(i) ¢ is monotone increasing,

(i) lim,_ 100 @™ (t) =0 forall £ > 0.

If ¢ satisfies (i) and

(i) Y52, ¢"(t) converges for all £ > 0,
then ¢ is said to be a (c¢)-comparison function.
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It is an easy matter to see that if ¢ is a comparison function or a (¢)-comparison function,
then ¢(£) < ¢ for all £ > 0 and ¢(0) = 0.

Berinde [26, 27] initiated the concept of weak contraction mappings, the concept of
almost contraction mappings and the concepts of (¢, L)-weak contractions. Berinde [25-
32] studied many interesting fixed point theorems for weak contraction mappings, almost
contraction mappings and (¢, L)-weak contraction mappings in metric spaces. We have

to recall the following definition.

Definition 1.4 [25] A single-valued mapping f: X — X is called a Ciri¢ strong almost

contraction if there exist a constant a € [0,1) and some L > 0 such that

d(x,fy) + d(y, fx)
2

d(fx,fy) <o max{d(x,y),d(x,fx), ay.fy), } + Ld(y,fx)

forall x,y € X.

For some theorems of almost contractive mappings in the sense of Berinde on metric
spaces, we refer the reader to [33—42].

Very recently, Ishak Altun and Ozlem Acar initiated the notions of a (5, L)-weak con-

traction and a (¢, L)-weak contraction in partial metric spaces as follows.

Definition 1.5 [43] Let (X,p) be a partial metric space. A map T is called a (8, L)-weak

contraction if there exist a § € [0,1) and some L > 0 such that

p(Tx, Ty) < 8p(x,y) + Lp* (y, Tx). 1.3)

Because of the symmetry of the distance, the (8, L)-weak contraction condition implicitly

includes the following dual one:
p(Tx, Ty) < 5p(x,y) + Lp" (x, Ty). (1.4)

Thus by (1.3) and (1.4), the (§, L)-weak contraction condition can be replaced by the fol-

lowing condition:

p(Tx, Ty) < p(x,y) + Lmin{pw(y, Tx), p" (x, Ty)}. 1.5)

Definition 1.6 [43] Let (X,p) be a partial metric space. A map T is called (¢, L)-weak

contraction if there exist a comparison function ¢ and some L > 0 such that

p(Tx, Ty) < ¢(p(x,9)) + Lp" (3, Tx). (1.6)

As above, because of the symmetry of the distance, the (¢, L)-weak contraction condi-

tion implicitly includes the following dual one:

p(Tx, Ty) < ¢(p(x,9)) + Lp" (x, Ty). (1.7)


http://www.fixedpointtheoryandapplications.com/content/2013/1/54

Shatanawi and Postolache Fixed Point Theory and Applications 2013, 2013:54 Page 4 of 17
http://www.fixedpointtheoryandapplications.com/content/2013/1/54

Thus, by (1.6) and (1.7), the (¢, L)-weak contraction condition can be replaced by the fol-

lowing condition:

p(Tx, Ty) < 8¢ (p(x,)) + Lmin{p"(y, Tx), p" (x, Ty)}. (1.8)
Altun and Acar [43] proved the following interesting theorems.

Theorem 1.1 [43] Let (X,p) be a 0-complete partial metric space and T: X — X be a
(¢, L)-weak contraction mapping with a (c)-comparison function, then T has a fixed point.

Theorem 1.2 [43] Let (X, p) be a 0-complete partial metric space and T: X — X be a
(¢, L)-weak contraction mapping. Suppose T also satisfies the following condition: There
exist a comparison function ¢, and some Ly > 0 such that

p(Tx, Ty) < ¢1(p(x,9)) + Lip” (%, Tx)
forall x,y € X. Then T has a unique fixed point.

In this paper, we introduce the notion of a generalized (8, L)-weak contraction mapping
and a generalized (¢, L)-weak contraction mapping in partial metric spaces. Then after,
we prove some fixed point results for two mappings S and T and some fixed point results
for a single mapping 7. Our results generalize Theorems 1.1 and 1.2.

2 The main result
We start our work by introducing the following two concepts.

Definition 2.1 Let (X, p) be a partial metric space and 7,S: X — X be two mappings. The
pair (T, S) is called a generalized (8, L)-weak contraction if there exist § € [0,1) and some
L > 0 such that

1
p(Tx, Sy) <4 maX{P(x»y),P(xr Tx),p(y, TJ’), 5 (p(xr 53’) +P(Tx»x))}
+Lmin{pw(x, Sy),pW(Tx,y)} (2.1)
forall x,y € X.

Definition 2.2 Let (X,p) be a partial metric space and T,S: X — X be two mappings.
Then the pair (7, S) is called a generalized (¢, L)-weak contraction if there exist a control

function ¢ and some L > 0 such that
1
p(Tx, Sy) < ¢ (max {p(x, ), px, Tx), p(y, Sy), 5 (p(Tx,9) + p(x, S)) })
+Lmin{pw(x, Sy),pW(Tx,y)} (2.2)
forall x,y € X.

Now, we give and prove our first result.
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Theorem 2.1 Let (X,p) be a 0-complete partial metric space and T,S: X — X be two
mappings such that the pair (T,S) is a generalized (¢, L)-weak contraction. If ¢ is a (c)-

comparison function, then T and S have a common fixed point.

Proof Choose xg € X. Put x; = Txy. Again, put x; = Sx;. Continuing this process, we con-
struct a sequence (x,,) in X such that xy,,,; = Txy, and xy,,,5 = Sxy,,41. Suppose p(x,, x,,41) = 0
for some n € N. Without loss of generality, we assume n = 2k for some k € N. Thus

P&ak, %2141) = 0. Now, by (2.2), we have

PKojes1, Xok+2)

= p(Txok, SXok+1)

<¢ (max { PXaks Xoka1) Pk Txo), P(Kok1, SX2k41)5

% (P(%2> Sxokcs1) + P(Tkcr X2kc41) ) })
+ Lmin{p" (T, x2141) + P %ok Sx2k041) }
=¢ (max {P(xzku, X2k+2), % (DX Xoks2) + P(Kaks1, %2141)) })
+ L min {Pw(x2k+1»x2k+l) +I9W(x2k,x2k+2)}
<¢ (max {P(xzkw Xok+2)s % (p(oks Xaa1) + P(Xai1, %ok42)) D
< ¢(p(xaks1, X2k42))-
Since ¢(¢) < ¢ for all £ > 0, we conclude that p(xy1,%2642) = 0. By (p1) and (p;) of the
definition of partial metric spaces, we have xax.1 = X2k42. SO, Xox = Xogs1 = X2k42. Therefore
%ok = Txor = Sxor and hence x4 is a fixed point of T and S. Thus, we may assume that

P&, x,41) 70 for all n € N. Given n € N. If n is even, then n = 2¢ for some ¢ € N. By (2.2),

we have

P(Xop, Xo41)
= p(Xor1, X2t

= P( Txot, Sxos-1)

<¢ (max {P(xzt, %2t-1), P(X2e, Txor), p(%2¢-1, Sxz-1),
1
3 (p(xa1, Sx3e1) + p(Thos, %2s-1) )
+ Lmin{p" (xas, Sxae1), " (Tx2s, %2-1) |

1
=¢ (max {P(x2t, x2-1), P21, X2641), 3 (P(xzn %r) + p(X2s41, th—l)) })

+ Lmin{p" (xar, %20), " (%2641, %2¢1) }
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Using (p4) of the definition of partial metric spaces and the definition of p”, we arrive at

1
PXar, %r41) < @ (max {P(xzn %2t-1), P(X21, X2141), 2 (p(th—lert) + p(thrx2t+l)) })
< ¢(max{p(xae, %3e-1), p(&20 %2041) }).- (2.3)

If max{p(xas, %2:-1), P(Kor, X2r41)} = P(Xar, %241), then (2.3) yields a contradiction. Thus,

max{p(Xos, X2¢-1), PKo, X2e41)} = p(Kaz, %2¢1) and hence
P20 %2001) < D (P(%2e, %2e1)). (2.4)

If n is odd, then # = 2¢ + 1 for some ¢ € N U {0}. By similar arguments as above, we can
show that

P(Xati1,%2002) < P (p(oe, %2e41)). (2.5)
By (2.4) and (2.5), we have
p(xman) =< ¢(p(xn—1:xn))~ (2.6)

By repeating (2.6) n-times, we get p(x,, x,11) < ¢"(p(x0,%1)). For n,m € N with m > n, we
have

m-1 m-2 m-1
P Xy %) < Zp(xi,xm) - Zp(xm,xm) = Zp(xi,xm)
i=n i=n i=n

m-1 o]
< Zd’i(P(xo,xﬂ) < Z‘ﬁi(P(xo,xﬂ)-

Since ¢ is (c)-comparison, we have Y > ¢'(p(xo,x1)) converges and hence

n—+00

lim Zqﬁi(p(xo,xl)) =0.

So, limy, ;s 100 P(Xy, %) = 0. Thus (x,,) is a 0-Cauchy sequence in X. Since X is 0-complete,
there exists z € X such that x, — z with p(z,z) = 0. So,

lim p(x,,x,) = lim p(x,,z) =p(z,z)=0. (2.7)
n—+00

n,m—>+00

Now, we prove that Sz = z and 7Tz = z. Since p(x2,:1,2) = p(z,z) = 0 and p(x2,42,2) —
p(z,2) = 0, then by Lemma 1.2 we get

lim p(x2,41,52) = p(z, Sz) (2.8)
and
lim p(xo,.2, T2) = p(z, Tz). (2.9)

n—+00
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By using (2.2), we have

P41, 82) = p(Txo, S2)
<¢ <max {p(meZ), P Th2), p(2, S2), %(p(sz;q,Z) +p(%24, S2)) })
+ Lmin{p"(Tx2,,2), p* (%21, S2) }
=¢ <max P2, 2), P2 X2041), (25 S2), %(p(xzm,Z) + p(%on, S2)) })
+ Lmin{p" (x2141,2), p" (%21, S2)}.

On letting n — +00 in the above inequality and using (2.7) and (2.8), we get that p(z, Sz) <
¢(p(z,Sz)). Since ¢(¢) < ¢ for all £ > 0, we conclude that p(z, Sz) = 0. By using (p1) and (p2)
of the definition of partial metric spaces, we get that Sz = z. By similar arguments as above,
we may show that 7z = z. g

The common fixed point of S and T in Theorem 2.1 is unique if we replaced
min{p"”(x, Sy), p* (1%, y)} by min{p*(x, Tx), p" (x, Sy), p” (Tx,)} in (2.2). So, we have the fol-
lowing result.

Theorem 2.2 Let (X,p) be a 0-complete partial metric space and T,S: X — X be two
mappings such that

p(Tx,Sy) < ¢ (max {p(x,y),p(x, Tx), p(y, Sy); %(p(Tx,y) +p(x,5y)) })

+ Lmin{pw(x, Tx), p" (x, Sy),pW(Tx,y)} (2.10)

forall x,y € X. If ¢ is a (c)-comparison function, then the common fixed point of T and S

is unique.

Proof The existence of the common fixed point of T and S follows from Theorem 2.1. To
prove the uniqueness of the common fixed point of 7 and S, we let u, v be two common
fixed points of T and S. Then Tu = Su = u and Tv = Sv = v. Now, we will show that u = v.
By (2.10), we have

p(u,v) = p(Tu, Sv)
< ¢(max{ 2, v), plu, Tet), plv, S), %(p(Tu, v) + plv, Tir)) })
+ Lmin{p"(u, Tu), p* (Tu,v), p* (v, Tut)
- ¢(max {p(u, 100610, P, 5 (P ) + pl0,10) })
+Lmin{p" (u, u), p* (1, V), p" (v, 1)}

= ¢(p(u,v)).

Since ¢(t) < ¢ for all £ > 0, we conclude that p(u, v) = 0. By (p1) and (p) of the definition of
partial metric spaces, we get that u = v. d
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Taking T = § in Theorems 2.1 and 2.2, we have the following results.

Corollary 2.1 Let (X, p) be a 0-complete partial metric space and T : X — X be a mapping
such that

oI T9) < 6 (max {p(x,y),p(x, 1), 005 Ty), - (0T9) + s, T) })

+L min{pw(x, Ty),pW(Tx,y)}
forall x,y € X. If ¢ is a (c)-comparison function, then T has a fixed point.

Corollary 2.2 Let (X, p) be a 0-complete partial metric spaceand T : X — X be a mapping
such that

p(Ix, Ty) < ¢>(max {p(x,y),p(x, Ix), p(y, Ty), %(p(Tx,y) +plx, Ty)) })

+L min{pw(x, Tx), p” (%, Ty),pW(Tx,y)}
forall x,y € X. If ¢ is a (c)-comparison function, then T has a unique fixed point.

By the aid of Lemma 2.1 of Ref. [44], we have the following consequence results of Corol-
laries 2.1 and 2.2.

Corollary 2.3 Let (X, p) be a partial metric space and T,S: X — X be two mappings such
that

1
p(Ix, Ty) < ¢ (max {p(Sx, ), p(Sx, Tx), p(Sy, Ty), 5 (p(Tx, Sy) + p(Sx, Ty)) })
+ Lmin{p"(Sx, Ty), p" (Sy, Tx)}
forall x,y € X. Also, suppose that
(1) TX C SX.
(2) SX is a 0-complete subspace of the partial metric space X.

If ¢ is a (c)-comparison function, then T and S have a coincidence point. Moreover, the

point of coincidence of T and S is unique.

Corollary 2.4 Let (X, p) be a partial metric space and T,S: X — X be two mappings such
that

1
p(Tx, Ty) < ¢ (max {p(Sx, Sy), p(Sx, Tx), p(Sy, Ty), 5 (p(Tx, Sy) + p(Sx, Ty)) })
+L min{ p"(Tx, Sx), p” (Sx, Ty), p" (Sy, Tx)}
forall x,y € X. Also, suppose that

(1) TX C SX.
(2) SX is a 0-complete subspace of the partial metric space X.
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If ¢ is a (c)-comparison function, then the point of coincidence of T and S is unique; that
is, if Tu = Su and Tv = Sv, then Tu = Tv = Sv = Su.

By taking ¢(¢) = kt, k € [0,1) in Corollaries 2.1 and 2.2, we have the following results.

Corollary 2.5 Let (X, p) be a 0-complete partial metric spaceand T : X — X be a mapping
such that

p(Ix, Ty) < kmax{p(x,y),p(x, Tx),p(y, Ty), %(p(Tx,y) +px, Ty))}

+ Lmin{pw(x, Ty),pW(Tx,y)}
forallx,ye X.If0 <k <1, then T has a fixed point.

Corollary 2.6 Let (X,p) bea 0-complete partial metric spaceand T : X — X be a mapping
such that

p(Tx, Ty) < kmaX{p(x,y),p(x, Tx),p(y, Ty), %(p(Tx,y) +p(x, Ty))}

+ Lmin{p" (x, Tx), p* (x, T9), p" (Tx, )}
forallx,y € X.If k € [0,1), then T has a unique fixed point.

By the aid of Lemma 2.1 of Ref. [44], we have the following consequence results of Corol-
laries 2.5 and 2.6.

Corollary 2.7 Let (X, p) be a partial metric space and T,S: X — X be two mappings such
that

1
p(Tx, Ty) < kmax { p(Sx,8y), p(Sx, Tx), p(Sy, T), 5 (p(Tx, Sy) + p(Sx, Ty)) }
+ Lmin {pW(Sx, ), p"(Sy, Tx)}

forall x,y € X. Also, suppose that
(1) TX C SX.

(2) SX is a 0-complete subspace of the partial metric space X.
Ifk €[0,1), then T and S have a coincidence point.

Corollary 2.8 Let (X, p) be a partial metric space and T,S: X — X be two mappings such
that

1
p(Tx,Ty) < ¢ (max {p(Sx, Sy), p(Sx, Ix), p(Sy, Ty), 2 (p(Tx, Sy) + p(Sx, Ty)) })
+ L min { p"(Tx, Sx), p” (Sx, Ty), p" (Sy, Tx)}

forall x,y € X. Also, suppose that
(1) TX C SX.

(2) SX is a 0-complete subspace of the partial metric space X.
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Ifk € [0,1), then the point of coincidence of T and S is unique; that is, if Tu = Su and Tv = Sv,
then Tu = Tv = Sv = Su.

The (c)-comparison function in Theorems 2.1 and 2.2 can be replaced by a comparison
function if we formulated the contractive condition to a suitable form. For this instance,
we have the following result.

Theorem 2.3 Let (X, p) be a 0-complete partial metric space and T: X — X be a mapping
such that

p(Tx, Ty) < ¢p(max{p(x,y), p(x, Tx), p(y, T9)})

+L min{pw(x, Tx), p* (x, Ty), p" (¥, Tx)} (2.11)
forall x,y € X. If ¢ is a comparison function, then T has a unique fixed point.

Proof Choose xy € X. Put x; = Txy. Again, put x; € X such that x; = Tx;. Continuing the
same process, we can construct a sequence (x,) in X such that x,,,; = Tx,. If p(xk, x¢41) = 0
for some k € N, then by the definition of partial metric spaces, we have x; = xx,1 = T,
that is, x is a fixed point of T. Thus, we assume that p(x,,, x,,1) # 0 for all n € N. By (2.11),
we have

Py %ni1) = p(Tx-1, Txy)
< ¢(max{p(x,_1, %), pn-1, Tn1), (%, Tx) })
+ Lmin{p" (X1, Txn), p" X1, T), p" (%, Tp1) }
= ¢(max{p(e,1,%,), P, %11) }) + Lmin{p" (1, %pi1), 2 (0, %) |

= ¢(max{p(n-1,%n), P(Xns Xni1) })-

If

max {P(xn-l»xn),P(xmxml)} = p(Xu, Xns1),
then

P %ni1) < P (PFs ¥ni1)) < P(Xois Foni1)
a contradiction. Thus,

max {p(X_1, %n) PG %1) | = P61, %)
and hence

P& xni1) < ¢ (p(X4-1,%,)) VneN. (2.12)
Repeating (2.12) n times, we get that

p(xm xn+1) < ¢n (P(xo, xl))-
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Now, we will prove that (x,) is a Cauchy sequence in the partial metric space (X, p). For

this, given € > 0, since ﬁ(e — ¢(€)) > 0 and lim,,, ;0 " (p(x0,%1)) = 0, there exists k € N

such that p(x,, x,.1) < ﬁ(e — ¢(€)) for all n > k. Now, given m, n € N with m > n. Claim:

P(xu,xm) < € for all m > n > k. We prove our claim by induction on m. Since k + 1 > k,

then

€— ¢(e)) <E€.

P> Xpe1) < 5—

The last inequality proves our claim for m = k + 1. Assume that our claim holds for m = k.

To prove our claim for m = k + 1, we have

p(xm xk+1) = p(xruxrﬁl) +p(xn+1¢xk+1) _p(xn+1: x}’H—l)
< p(xmxwrl) +p(xn+1,xk+1)

= p(Xps Xui1) + p(Txy, Toy). (2.13)
By (2.11), we have

P(Tx, Tar) < ¢ (max{p(x, 1), (% Tn), P, Tk ) })
+ Lmin{p(x,, Tx,), pan, Toi), p(xi, Txn) }
= ¢(max{p(wn, x4), P(Xs K1) Pk Xki1) })
+ Lmin{p(Xy, %.1), P(ns Kics1)s POks Xine1) |

=< ¢)(max{p(xmxk)1p(xmxn+1)rp(xerk+l) + Lp(xmx}ﬂl)'
If max{p(x,, %), pXn» K1), P(Kks Xicr1)} = (%, %), then by (2.13) we have

P xxe1) < P(Ks K1) + (DX X)) + L%, X111
1+L
2+L

< €.

<

(e=9(e) +9(e)

If max{p(x,, %), P(Xs Xns1)s DXk, Xas1)} = P(Xn, X41), then by (2.13) we have

p(xruxkﬂ) = p(xrnxnﬂ) + ¢(p(xmxn+l)) + Lp(xn)xnﬂ)
< (2 + L)p(xn: xn+1)
<€—¢(e)

< €.
If max{p(x,, %), pXn Xns1), P(Xks k1)) = p(Xks Xi11), then by (2.13) we have

DX Xis1) < P K1) + ¢(p(xk! xk+1)) + Lp(%, X11)

< (1 + L)p(xrnxrﬁl) +p(xk¢xk+l)
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141 1
< 2:L(6_¢(6))+ PYARRAR
< €.

Thus (x,) is a 0-Cauchy sequence in X. Since X is 0-complete, then (x,) converges, with
respect to T, to a point z for some z € X such that

lim p(x,,x,)= lim p(x,,z)=p(zz) =0. (2.14)

n,m—+00 n—+00

Now, assume that p(z, 7z) > 0. By using (p4) of the definition of partial metric spaces and
(2.11), we have
p(z,T2) < p(z,%n:1) + p(Fns1, T2)
= p(&,%n1) + p(Txu, T2)
< p(z,%,1) + p(max{p(x,, 2), p(x, Txn), plz, T2)})
+ Lmin{p"” (x,, Tx,), p" (n, T2), p" (T2, 2) }
= p(z,%41) + ¢ (max{p(x,, 2), p(Xn, %01), (2, T2) })

+ Lmin{p" (s, %541), 0" (% T2), P (%111, S2) }. (2.15)
Since

lim  p(x,,x,41) = nEerp(xn,z) =0

1,m—>+00

and p(z, Tz) > 0, we can choose ng € N such that

max {p(,, 2), s, ¥n1), (2 T2) ) = p(z, T2)

for all # > ngy. Thus (2.15) becomes

Pz, T2) < p(z,%01) + ¢ (p(z, T2)) + Lmin{p" (%, %11), " (%, T2), p" (%11, 2) },

for all n > ny. On letting » — +00 in the above inequality and using 2.14, we get that
p(z, Tz) < ¢(p(z, Tz)) < p(z, Tz), a contradiction. Thus p(z, Tz) = 0. By using (p;) and (p2)
of the definition of a partial metric space, we get that z = T%; that is, z is a fixed point of T'.
To prove that the fixed point of T is unique, we assume that « and v are fixed points of T
Thus, we have Tu = u and Tv = v. By (2.11), we have

p(u,v) = p(Tu, Tv)
< ¢(max{p(u, v), p(u, Tu), p(v, Tv) })

+ Lmin{p(u, Tu), p(u, Tv), p(v, Tu)}
= ¢(p(u,v)).

Since ¢(¢) < ¢t for all £ € N, we have p(u,v) = 0. By (p1) and (p2), we have u = v. O
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By the aid of Lemma 2.1 of Ref. [44], we have the following consequence result of The-

orem 2.3.

Corollary 2.9 Let (X,p) be a partial metric space and T,S: X — X be two mappings such

that for some L > 0, we have

p(Tx, Ty) < ¢(max{p(Sx, Sy), p(Sx, Tx), p(Sy, T7)})
+L min{ P"(Sx, Tx), p* (Sx, Ty), p" (Sy, Tx)}

forall x,y € X. Also, suppose that

(1) TX C SX.

(2) SX is a 0-complete subspace of the partial metric space X.
If ¢ is a comparison function, then T and S have a coincidence point. Moreover, the point
of coincidence of T and S is unique.

The uniqueness of a common fixed point of T"and S in Theorem 2.1 can be proved under
an additional contractive condition based on a comparison function ¢;.

Corollary 2.10 Let (X, p) be a 0-complete partial metric space and T,S: X — X be two
mappings. Assume there exists a (c)-comparison function ¢ such that the pair (T,S) is a
generalized (¢, L)-weak contraction. Also, suppose that there exist a comparison function
¢1 and Ly > 0 such that

(T $) < (max {p(x,y>,p<x, 12,0005,  (P(Te) + s, ) })

+ Lp(x, Tx) (2.16)
forallx,y e X. Then T and S have a unique common fixed point.

Proof The existence of the common fixed point of T and S follows from Theorem 2.1. To
prove the uniqueness of the fixed point, we assume that « and v are two fixed points of T
and S. Then by (2.16), we have

p(u,v) = p(Tu, Sv)
<¢ (max {p(u, v), p(u, Tu), p(v, Sv), %(p(Tu, v) + p(u, Sv)) }) + Lip(u, Tu)
= $1(p(w,v)).
Since ¢ (¢) < ¢ for all £ > 0, we get p(u,v) = 0 and hence u = v. O
Taking S = T in Corollary 2.10, we have the following result.

Corollary 2.11 Let (X, p) be a 0-complete partial metric space and T: X — X be a map-
ping. Assume there exists a (c)-comparison function ¢ such that

p(Tx, Ty) < ¢ (max {p(x,y),p(x, Ix), p(y, Ty), %(p(Tx,y) +plx, Ty)) }) + Lp(x, Tx)
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forallx,y € X. Also, suppose that there exist a comparison function ¢, and Ly > 0 such that

(T2 $9) < (max{p(x,ymx, ), 0,5, £ (P(T3) + s, ) })

+ Lp(x, Tx)

forallx,y € X. Then T has a unique fixed point.
By the aid of Lemma 2.1 of [44], we have the following result.

Corollary 2.12 Let (X,p) be a partial metric space and T,S: X — X be two mappings.

Suppose there exist a (c)-comparison function ¢ and L > 0 such that

(T, Ty) < ¢>(max {p(Sx, 9),p(55 T2), (55, Ty, - (0(T, ) + p(S T5) })

+ L min {pW(Sx, ), p" (Sy, Tx) }

forallx,y € X. Also, assume that there exist a comparison function ¢, and L, > 0 such that

p(IxTy) < ¢ (maX{p(Sx, Sy, p(Sx, Tx), p(Sy, Ty), %(p(Tx, Sy) + p(Sx, Ty)) D

+ Lp(Sx, Tx)

for all x,y € X. Moreover, assume that

(1) TX C SX.

(2) SX isa 0-complete subspace of the partial metric space X.
Then the point of coincidence of T and S is unique.

Now, we introduce an example satisfying the hypotheses of Theorem 2.3 to support the
useability of our results.

Example 2.1 Let X = [0,1]. Define a partial metric p: X x X — [0,+00) by the for-
mula p(x, y) = max{x, y}. Also, define T: X — X by Tx = ;7. and the comparison function
¢: [0, +00) = [0, +00) by () = 15 Then, we have

(1) (X,p) isa 0-complete partial metric space.

(2) Forany L > 0, the inequality

p(Tx, Ty) < ¢(max{p(x,y),p(x, Tx), p(y, Ty)}) +L min{pw(x, Tx), p* (%, Ty), p* (¥, Tx)}

holds for all x,y € X.

(3) There are no (c)-comparison function ¢ and L > 0 such that the inequality

p(Tx, Ty) < qb(p(x,y)) +L min{pw(x, ),p" (¥, Tx)}

holds for all x,y € X.
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Proof To prove (2), given x,y € X. Without loss of generality, we may assume that y < x.

Thus, we have

X y
Tx, Ty) = _
(1% T3) p(1+x 1+y)
X

+X

(%)

qb(max{ (%,9), p(x, Tx), p(, Ty)}) + Lmin{pw(x, Tx), p* (x, Ty), p" (3, Tx)}.

I
S =

To prove (3), we assume that there exist a (c)-comparison function ¢ and some L > 0 such
that

p(Tx, Ty) < ¢(p(x,y)) +Lmin{p x, Ty), p" (v, Tx) }

holds for all x,y € X.
Thus,

1 1 1 1 . W1 1 of 1 1
p\T-,T <¢lp|—— + Lminyp"| =, T P ,T—
n n+1l nl+n n n+1l n+l n

holds for all # € N. Hence

1 1 <4 1 1 Imi Sf1 1 of 1 1
S < - — + L min - ) ’
p n+l n+2 p nl+n p nn+?2 p n+l n+1

holds for all # € N. Therefore, for n € N, we have

1<1
m¢(>

By induction on #, we can show that

1 n
mf‘{b 1)

holds for all #n € N. Since _°°

(¢)-comparison function. O

diverges, we have > -0 ¢"(1) diverges. So, ¢ is not a

n01+n

Remark Example 2.1 satisfies the hypotheses of Theorem 2.3 and does not satisfy the
hypotheses of Theorem 3 and Theorem 4 of [43].

Remarks
(1) Theorem 1.1 [43, Theorem 3] is a special case of Corollary 2.1.
(2) [43, Corollary 1] is a special case of Corollary 2.5.
(3) Theorem 1.2 [43, Theorem 4] is a special case of Corollary 2.10.
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3 Conclusion

In this paper, we introduced the notion of a generalized (¢, L)-weak contraction. In the
first part of this paper, we utilized our definition to derive a common fixed point of two
self-mappings T and S under a (¢)-comparison function ¢. Also, we used Lemma 2.1 of
Ref. [44] to derive a common fixed point of two self-mappings T and S. In the second
part of this paper, we generalized the main result (Theorem 3) of [43] by proving Theo-
rem 2.3 under a comparison function. Also, we utilized Lemma 2.1 of Ref. [44] to derive
a common coincidence point of two self-mappings T and S. Finally, we closed our paper
by introducing Example 2.1 which satisfies the hypotheses of our result Theorem 2.3 and
does not satisfy the hypotheses of Theorems 3, 4 of [43].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors contributed equally and significantly in writing this article. Both authors read and approved the final
manuscript.

Author details
'Department of Mathematics, Hashemite University, Zarga, Jordan. ?Faculty of Applied Sciences, University Politehnica of
Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania.

Acknowledgements
The authors would like to thank the editor and the referees for their useful comments and remarks.

Received: 15 November 2012 Accepted: 21 February 2013 Published: 12 March 2013

References
1. Matthews, SG: Partial metric topology. In: Papers on General Topology and Applications (Flushing, NY, 1992). Ann.
New York Acad. Sci., vol. 728, pp. 183-197 (1994)
2. Abdeljawad, T, Karapinar, E, Tas, K: Existence and uniqueness of a common fixed point on partial metric spaces. Appl.
Math. Lett. 24(11), 1900-1904 (2011)
3. Abdeljawad, T, Karapinar, E, Tas, K: A generalized contraction principle with control functions on partial metric spaces.
Comput. Math. Appl. 63(3), 716-719 (2012)
4. Abdeljawad, T: Fixed points for generalized weakly contractive mappings in partial metric spaces. Math. Comput.
Model. 54(11-12), 2923-2927 (2011)
5. Altun, |, Erduran, A: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl.
2011, Article ID 508730 (2011)
6. Altun, I, Simsek, H: Some fixed point theorems on dualistic partial metric spaces. J. Adv. Math. Stud. 1(1-2), 1-8 (2008)
7. Altun, I, Simsek, H: Some fixed point theorems on ordered metric spaces and application. Fixed Point Theory Appl.
2010, Article ID 6214469 (2010)
8. Altun, |, Sola, F, Simsek, H: Generalized contractions on partial metric spaces. Topol. Appl. 157(18), 2778-2785 (2010)
9. Altun, I, Sadarangani, K: Corrigendum to ‘Generalized contractions on partial metric spaces’ [Topology Appl. 157
(2010) 2778-2785]. Topol. Appl. 158(13), 1738-1740 (2011)
10. Aydi, H: Some fixed point results in ordered partial metric spaces. J. Nonlinear Sci. Appl. 4(2), 1-12 (2011)
11. Aydi, H: Some coupled fixed point results on partial metric spaces. Int. J. Math. Math. Sci. 2011, Article ID 647091
(2011)
12. Aydi, H: Fixed point theorems for generalized weakly contractive condition in ordered partial metric spaces.
J.Nonlinear Anal. Optim. 2(2), 33-48 (2011)
13. Aydi, H, Karapinar, E, Shatanawi, W: Coupled fixed point results for (yr, ¢)-weakly contractive condition in ordered
partial metric spaces. Comput. Math. Appl. 62, 4449-4460 (2011)
14. Ciri¢, L, Samet, B, Aydi, H, Vetro, C: Common fixed points of generalized contractions on partial metric spaces and an
application. Appl. Math. Comput. 218, 2398-2406 (2011)
15. Golubovi¢, Z, Kadelburg, Z, Radenovi¢, S: Coupled coincidence points of mappings in ordered partial metric spaces.
Abstr. Appl. Anal. 2012, Article ID 192581 (2012)
16. Karapinar, E, Erhan, I: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 24, 1894-1899
(2011)
17. Nashine, HK, Kadelburg, Z, Radenovi¢, S: Common fixed point theorems for weakly isotone increasing mappings in
ordered partial metric spaces. Math. Comput. Model. (2011). doi:10.10016/j.mcm.2011.12.019
18. Oltra, S, Valero, O: Banach'’s fixed point theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 36(1-2), 17-26
(2004)
19. Romaguera, S: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010,
Article ID 493298 (2010)
20. Romaguera, S: Fixed point theorems for generalized contractions on partial metric spaces. Topol. Appl. 159, 194-199
(2012)


http://www.fixedpointtheoryandapplications.com/content/2013/1/54
http://dx.doi.org/10.10016/j.mcm.2011.12.019

Shatanawi and Postolache Fixed Point Theory and Applications 2013, 2013:54
http://www.fixedpointtheoryandapplications.com/content/2013/1/54

21.

22.

23.

24.

25.

26.

27.
28.

29.
30.
31
32.
33
34.
35.
36.

37.
38.

39.

40.

41.

42.
43.

44,

Samet, B, Rajovi¢, M, Lazovi¢, R, Stoiljkovi¢, R: Common fixed point results for nonlinear contractions in ordered partial
metric spaces. Fixed Point Theory Appl. 2011, Article ID 71 (2011)

Shatanawi, W, Nashine, HK: A generalization of Banach’s contraction principle for nonlinear contraction in a partial
metric space. J. Nonlinear Sci. Appl. 5,37-43 (2012)

Shatanawi, W, Nashine, HK, Tahat, N: Generalization of some coupled fixed point results on partial metric spaces. Int.
J. Math. Math. Sci. 2012, Article ID 686801 (2012)

Shatanawi, W, Samet, B, Abbas, M: Coupled fixed point theorems for mixed monotone mappings in ordered partial
metric spaces. Math. Comput. Model. 55, 680-687 (2012)

Berinde, V: Approximating fixed points of weak ¢-contractions using the Picard iteration. Fixed Point Theory Appl.
4(2),131-142 (2003)

Berinde, V: Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 9(1),
43-53 (2004)

Berinde, V: On the approximation of fixed points of weak contractive mappings. Carpath. J. Math. 19(1), 7-22 (2003)
Berinde, V: General constructive fixed point theorems for Ciri¢-type almost contractions in metric spaces. Carpath.

J. Math. 24(2), 10-19 (2008)

Berinde, V: Approximating common fixed points of noncommuting discontinuous weakly contractive mappings in
metric spaces. Carpath. J. Math. 25(1), 13-22 (2009)

Berinde, V: Some remarks on a fixed point theorem for Ciri¢-type almost contractions. Carpath. J. Math. 25(2), 157-162
(2009)

Berinde, V: Approximating common fixed points of noncommuting almost contractions in metric spaces. Fixed Point
Theory Appl. 11(2), 179-188 (2010)

Berinde, V: Common fixed points of noncommuting almost contractions in cone metric spaces. Math. Commun.
15(1), 229-241 (2010)

Babu, GVR, Sandhya, ML, Kameswari, MVR: A note on a fixed point theorem of Berinde on weak contractions. Carpath.
J. Math. 24(1), 8-12 (2008)

Pacurar, M: Sequences of almost contractions and fixed points. Carpath. J. Math. 24(2), 101-109 (2008)

Pacurar, M: Iterative Methods for Fixed Point Approximation. Editura Risoprint, Cluj-Napoca (2009)

Pacurar, M: Remark regarding two classes of almost contractions with unique fixed point. Creat. Math. Inform. 19(2),
178-183 (2010)

Pacurar, M: Fixed point theory for cyclic Berinde operators. Fixed Point Theory Appl. 12(2), 419-428 (2011)

Samet, B, Vetro, C: Berinde mappings in orbitally complete metric space. Chaos Solitons Fractals 44(12), 1075-1079
(2011)

Sintunavarat, W, Kumam, P: Weak condition for generalized multi-valued (f, ¢, B)-weak contraction mappings. Appl.
Math. Lett. 24(4), 460-465 (2011)

Shatanawi, W: Some fixed point results for a generalized vr-weak contraction mappings in orbitally metric spaces.
Chaos Solitons Fractals 45, 520-526 (2012)

Shatanawi, W, Al-Rawashdeh, A: Common fixed points of almost generalized (7, ¢p)-contractive mappings in ordered
metric spaces. Fixed Point Theory Appl. 2012, Article ID 80 (2012)

Suzuki, T: Fixed point theorems for Berinde mappings. Bull. Kyushu Inst. Technol.,, Pure Appl. Math. 58, 13-19 (2011)
Altun, I, Acar, O: Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces. Topol.
Appl. 159, 2642-2648 (2012)

Haghi, RH, Rezapour, S, Shahzad, N: Some fixed point generalizations are not real generalizations. Nonlinear Anal. 74,
1799-1803 (2011)

doi:10.1186/1687-1812-2013-54
Cite this article as: Shatanawi and Postolache: Coincidence and fixed point results for generalized weak contractions
in the sense of Berinde on partial metric spaces. fixed Point Theory and Applications 2013 2013:54.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

Page 17 of 17


http://www.fixedpointtheoryandapplications.com/content/2013/1/54

	Coincidence and ﬁxed point results for generalized weak contractions in the sense of Berinde on partial metric spaces
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	The main result
	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


