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Abstract
The concept of a generalized ordered g-quasicontraction is introduced, and some
fixed and common fixed point theorems for a g-nondecreasing generalized ordered
g-quasicontraction mapping in partially ordered complete metric spaces are proved.
We also show the uniqueness of the common fixed point in the case of a generalized
ordered g-quasicontraction mapping. Finally, we prove fixed point theorems for
mappings satisfying the so-called weak contractive conditions in the setting of a
partially ordered metric space. Presented theorems are generalizations of very recent
fixed point theorems due to Golubović et al. (Fixed Point Theory Appl. 2012:20, 2012).
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1 Introduction
The Banach fixed point theorem for contraction mappings has been extended in many
directions (cf. [–]). Very recently Golubović et al. [] presented some new results for
ordered quasicontractions and g-quasicontractions in partially ordered metric spaces.
Recall that if (X,�) is a partially ordered set and f : X → X is such that for x, y ∈ X,

x � y implies fx � fy, then a mapping F is said to be non-decreasing. The main result of
Golubović et al. [] is the following fixed point theorem.

Theorem . (See [], Theorem ) Let (X,d,�) be a partially ordered metric space and
let f , g : X → X be two self-maps on X satisfying the following conditions:

(i) fX ⊂ gX ;
(ii) gX is complete;
(iii) f is g-nondecreasing;
(iv) f is an ordered g-quasicontraction;
(v) there exists x ∈ X such that gx � fx;
(vi) if {gxn} is a nondecreasing sequence that converges to some gz ∈ gX , then gxn � gz

for each n ∈N and gz � g(gz).
Then f and g have a coincidence point, i.e., there exists z ∈ X such that fz = gz. If, in

addition,
(vii) f and g are weakly compatible [, ], i.e., fx = gx implies fgx = gfx for each x ∈ X ,

then they have a common fixed point.
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Liu and Ješić Fixed Point Theory and Applications 2013, 2013:53 Page 2 of 19
http://www.fixedpointtheoryandapplications.com/content/2013/1/53

An open problem is to find sufficient conditions for the uniqueness of the common fixed
point in the case of an ordered g-quasicontraction in Theorem ..
In Section  of this article, we introduce generalized ordered g-quasicontractions in

partially ordered metric spaces and prove the respective (common) fixed point theorems
which generalize the results of Theorem ..
In Section  of this article, the uniqueness of a common fixed point theorem is obtained

when for all x,u ∈ X, there exists a ∈ X such that fa is comparable to fx and fu in addition
to the hypotheses in Theorem . of Section . Our results are an answer to finding suf-
ficient conditions for the uniqueness of a common fixed point in the case of an ordered
g-quasicontraction in Theorem .. Finally, two examples show that the comparability is a
sufficient condition for the uniqueness of a common fixed point in the case of an ordered
g-quasicontraction, so our results are extensions of known ones.
In Section  of this article, we consider weak contractive conditions in the setting of a

partially ordered metric space and prove respective common fixed point theorems.

2 Common fixed points of a generalized ordered g-quasicontraction
We start this section with the following definitions. Consider a partially ordered set (X,�)
and two mappings f : X → X and g : X → X such that f (X)⊂ g(X).

Definition . (See []) We will say that the mapping f is g-nondecreasing (resp., g-
nonincreasing) if

gx� gy ⇒ fx � fy ()

(resp., gx� gy ⇒ fx � fy) holds for each x, y ∈ X.

Definition . (See []) We will say that the mapping f is an ordered g-quasicontraction
if there exists α ∈ (, ) such that for each x, y ∈ X satisfying gy� gx, the inequality

d(fx, fy) ≤ α ·M(x, y)

holds, where

M(x, y) =max
{
d(gx, gy),d(gx, fx),d(gy, fy),d(gx, fy),d(gy, fx)

}
.

Definition . Wewill say that themapping f is a generalized ordered g-quasicontraction
if there is a continuous and non-decreasing functionψ : [, +∞)→ [, +∞) withψ(s+t) ≤
ψ(s) +ψ(t) for each s, t > , ψ(t)≥ t for t ≥  and there exists α ∈ (, )

ψ
(
d(fx, fy)

) ≤ αmax
{
ψ

(
d(gx, gy)

)
,ψ

(
d(gx, fx)

)
,ψ

(
d(gy, fy)

)
,

ψ
(
d(gx, fy)

)
,ψ

(
d(gy, fx)

)}
()

for all x, y ∈ X for which gx
 gy;

It is obvious that if ψ = I , then a generalized ordered g-quasicontraction reduces to an
ordered g-quasicontraction.
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For arbitrary x ∈ X, one can construct the so-called Jungck sequence {yn} in the follow-
ing way: Denote y = fx ∈ f (X) ⊂ g(X); there exists x ∈ X such that gx = y = fx; now
y = fx ∈ f (X) ⊂ g(X) and there exists x ∈ X such that gx = y = fx and the procedure
can be continued.

Theorem. Let (X,�) be a partially ordered set and suppose there is ametric d on X such
that (X,d) is a complete metric space. Let f , g : X → X be two self-maps on X satisfying the
following conditions:

(i) f (X) ⊂ g(X);
(ii) g(X) is closed;
(iii) f is a g-nondecreasing mapping;
(iv) f is a generalized ordered g-quasicontraction;
(v) there exists an x ∈ X with gx � fx;
(vi) {g(xn)} ⊂ X is a non-decreasing sequence with g(xn) → gz in g(X), then gxn � gz,

gz � g(gz), ∀n hold.
Then f and g have a coincidence point. Further, if f and g are weakly compatible, then f

and g have a common fixed point.

Proof Let x ∈ X be such that gx � fx. Since f (X) ⊂ g(X), we can choose x ∈ X so that
gx = fx. Again from f (X) ⊂ g(X), we can choose x ∈ X such that gx = fx. Continuing
this process, we can construct a Jungck sequence {yn} in X such that

gxn+ = fxn = yn, ∀n≥ . ()

Since gx � fx and gx = fx, we have gx � gx. Then by (),

fx � fx. ()

Thus, by (), gx � gx. Again by (),

fx � fx, ()

that is, gx � gx. Continuing this process, we obtain

fx � fx � fx � fx � · · · � fxn � fxn+. ()

Let O(yk ,n) = {yk , yk+, . . . , yk+n}. We will claim that {yn} is a Cauchy sequence. To prove
our claim, we follow the arguments of Das and Naik []. Fix k ≥  and n ∈ {, , . . .}. If
diam[O(yk ;n)] = , then yk = yk+, which yields that {yn} is a constant sequence and also a
Cauchy sequence. Then our claims holds. Thus we suppose that diam[O(yk ;n)] > . Now,
for i, j with  ≤ i < j , by (), we have

ψ
(
d(yi, yj)

)
= ψ

(
d(fxi, fxj)

)
≤ αmax

{
ψ

(
d(gxi, gxj)

)
,ψ

(
d(gxi, fxi)

)
,ψ

(
d(gxj, fxj)

)
,ψ

(
d(xi, fxj)

)
,ψ

(
d(gxj, fxi)

)}
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= αmax
{
ψ

(
d(yi–, yj–)

)
,ψ

(
d(yi–, yi)

)
,ψ

(
d(yj–, yj)

)
,ψ

(
d(yi–, yj)

)
,ψ

(
d(yj–, yi)

)}
≤ αψ

(
diam

[
O(yi–; j – i + )

])
,

and so

ψ
(
d(yi, yj)

) ≤ αψ
(
diam

[
O(yi–; j – i + )

])
. ()

Now, for some i, j with k ≤ i < j ≤ k + n, diam[O(yk ;n)] = d(yi, yj). If i > k by () and (),
then we have

ψ
(
diam

[
O(yk ;n)

]) ≤ αψ
(
diam

[
O(yi–; j – i + )

])
≤ αψ

(
diam

[
O(yk ;n)

])
. ()

It follows that ψ(diam[O(yk ;n)]) = , as diam[O(yk ;n)] ≤ ψ(diam[O(yk ;n)]) = , then
diam[O(yk ;n)] = . It is a contradiction! Thus,

diam
[
O(yk ;n)

]
= d(yk , yj) for j with k < j ≤ k + n. ()

Also, by () and (), we have

ψ
(
diam

[
O(yk ;n)

])
= ψ

(
d(yk , yj)

)
≤ αψ

(
diam

[
O(yk–; j – k + )

])
≤ αψ

(
diam

[
O(yk–;n + )

])
. ()

Using the triangle inequality, by (), () and (), we obtain that

ψ
(
diam

[
O(yl;m)

])
= ψ

(
d(yl, yj)

)
≤ ψ

(
d(yl, yl+) + d(yl+, yj)

)
≤ ψ

(
d(yl, yl+)

)
+ψ

(
d(yl+, yj)

)
≤ ψ

(
d(yl, yl+)

)
+ αψ

(
diam

[
O(yl+;m – )

])
≤ ψ

(
d(yl, yl+)

)
+ αψ

(
diam

[
O(yl;m)

])
, ()

and so

ψ
(
diam

[
O(yl;m)

]) ≤ 
 – α

ψ
(
d(yl, yl+)

)
. ()

As a result, we have

ψ
(
diam

[
O(yk ;n)

]) ≤ αψ
(
diam

[
O(yk–;n + )

])
≤ α · αψ

(
diam

[
O(yk–;n + )

])
≤ αkψ

(
diam

[
O(y;n + k)

])

≤ αk

 – α
ψ

(
d(y, y)

)
. ()
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Now let ε > , there exists an integer n such that

αkψ
(
d(y, y)

)
< ( – α)ε for all k > n. ()

Form > n > n, we have

ψ
(
d(ym, yn)

) ≤ ψ
(
diam

[
O(yn ;m – n)

])

≤ αn

 – α
ψ

(
d(y, y)

)
< ε. ()

Since ψ(t) ≥ t as t > , then d(ym, yn) ≤ ψ(d(ym, yn)) < ε. Therefore, {yn} is a Cauchy se-
quence.
Since by () we have {fxn = gxn+} ⊆ g(X) and g(X) is closed, then there exists z ∈ X such

that

lim
n→∞ gxn = gz. ()

Now we show that z is a coincidence point of f and g . Since from condition (iv) and () we
have gxn � gz for all n, then by the triangle inequality and (), we have that

ψ
(
d(fz, gz)

) ≤ ψ
(
d(gz, fxn) + d(fxn, fz)

)
≤ ψ

(
d(gz, fxn)

)
+ψ

(
d(fxn, fz)

)
≤ ψ

(
d(gz, fxn)

)
+ αmax

{
ψ

(
d(gxn, gz)

)
,ψ

(
d(gxn, fxn)

)
,

ψ
(
d(gz, fz)

)
,ψ

(
d(gxn, fz)

)
,ψ

(
d(gz, fxn)

)}
. ()

So, letting n → ∞ yields ψ(d(fz, gz)) ≤ αψ(d(fz, gz)). Hence ψ(d(fz, gz)) = , hence
d(fz, gz) = , which yields fz = gz. Thus we have proved that f and g have a coincidence
point.
Suppose now that f and g commute at z. Set w = fz = gz. Then

fw = f (gz) = g(fz) = gw. ()

Since from (vi) we have that gz � g(gz) = gw and as fz = gz and fw = gw, from () we have
that

ψ
(
d(fz, fw)

) ≤ αmax
{
ψ

(
d(gz, gw)

)
,ψ

(
d(gz, fz)

)
,ψ

(
d(gw, fw)

)
,

ψ
(
d(gz, fw)

)
,ψ

(
d(gw, fz)

)}
= αψ

(
d(gz, gw)

)
. ()

Hence, ψ(d(fz, fw)) = , that is, d(w, fw) = . Therefore,

fw = gw = w. ()

Thus, we have proved that f and g have a common fixed point. �
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Accordingly, we can also obtain the results similar to Theorem  in [].

Theorem . Let the conditions of Theorem . be satisfied, except that (iii), (v) and (vi)
are, respectively, replaced by:

(iii′) f is a g-nonincreasing mapping;
(v′) there exists x ∈ X such that fx and gx are comparable;
(vi′) if {gxn} is a sequence in g(X) which has comparable adjacent terms and that converges

to some gz ∈ gX , then there exists a subsequence gxnk of {gxn} having all the terms com-
parable with gz and gz is comparable with ggz. Then all the conclusions of Theorem .
hold.

Proof Regardless of whether fx � gx or gx � fx (condition (v′)), Lemma  of [] im-
plies that the adjacent terms of the Jungck sequence {yn} are comparable. This is again
sufficient to imply that {yn} is a Cauchy sequence. Hence, it converges to some gz ∈ gX.
By (vi′), there exists a subsequence ynk = fxnk = gxnk+, k ∈ N, having all the terms com-

parable with gz. Hence, we can apply the contractive condition to obtain

ψ
(
d(fz, gz)

) ≤ ψ
(
d(gz, fxnk )

)
+ψ

(
d(fz, fxnk )

)
≤ ψ

(
d(gz, fxnk )

)
+ αmax

{
ψ

(
d(gz, gxnk )

)
,ψ

(
d(gz, fz)

)
,

ψ
(
d(gxnk , fxnk )

)
,ψ

(
d(gz, fxnk )

)
,ψ

(
d(gxnk , fz)

)}
.

Letting k → ∞, it yields that ψ(d(fz, gz)) ≤ αψ(d(gz, fz)), then ψ(d(fz, gz)) = . Thus
d(fz, gz) = . It follows that fz = gz = w. The rest of conclusions follow in the same way
as in Theorem .. �

Corollary . (a) Let (X,�) be a partially ordered set and suppose there is a metric d on
X such that (X,d) is a complete metric space. Let f : X → X be a nondecreasing self-map
such that for some α ∈ (, )

d(fx, fy) ≤ αmax
{
d(x, y),d(x, fx),d(y, fy),d(x, fy),d(y, fx)

}

for all x, y ∈ X for which x 
 y. Suppose also that either

(i) {xn} ⊂ X is a non-decreasing sequence with xn → u in X , then xn � u, ∀n hold, or
(ii) f is continuous.

If there exists an x ∈ X with x � fx, then f has a fixed point.
(b) The same holds if f is nonincreasing, there exists x comparable with fx and (i) is

replaced by

(i′) if a sequence {xn} converging to some u ∈ X has every two adjacent terms comparable,
then there exists a subsequence {xnk } having each term comparable with x.

Proof (a) If (i) holds, then take ψ = I and g = I (I = the identity mapping) in Theorem ..
If (ii) holds, then from () with g = I , we get

z = lim
n→∞xn+ = lim

n→∞ fxn = f
(
lim
n→∞xn

)
= fz. ()
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(b) Let u be the limit of the Picard sequence {f nx} and let f nk x be a subsequence having
all the terms comparable with u. Then we can apply the contractivity condition to obtain

ψ
(
d(fu,u)

) ≤ ψ
(
d
(
u, f nk+x

)
+ d

(
fu, f nk+x

))
≤ ψ

(
d
(
u, f nk+x

))
+ψ

(
d
(
fu, f nk+x

))
≤ ψ

(
d
(
u, f nk+x

))
+ αmax

{
ψ

(
d
(
u, f nk x

))
,ψ

(
d(u, fu)

)
,

ψ
(
d
(
f nk x, f nk+x

))
,ψ

(
d
(
u, f nk+x

))
,ψ

(
d
(
fu, f nk x

))}
.

Letting k → ∞, we have that

ψ
(
d(fu,u)

) ≤ αmax
{
,ψ

(
d(u, fu)

)
, , ,ψ

(
d(u, fu)

)}
= αψ

(
d(u, fu)

)
.

It follows that ψ(d(fu,u)) = . Thus d(fu,u) =  as d(fu,u) ≤ ψ(d(fu,u)) = . Therefore,
fu = u.
Note also that instead of the completeness of X, its f -orbitally completeness is sufficient

to obtain the conclusion of the corollary. �

3 Uniqueness of a common fixed point of f and g
The following theoremgives the sufficient condition for the uniqueness of a commonfixed
point of f and g .

Theorem . In addition to the hypotheses of Theorem ., suppose that for all x,u ∈ X,
there exists a ∈ X such that

fa is comparable to fx and fu. ()

Then f and g have a unique common fixed point.

Proof Since a set of common fixed points of f and g is not empty due to Theorem .,
assume now that x and u are two common fixed points of f and g , i.e.,

fx = gx = x, fu = gu = u. ()

We claim that gx = gu.
By assumption, there exists a ∈ X such that fa is comparable to fx and fu. Define a se-

quence {gan} such that a = a and

gan = fan– for all n. ()

Further, set x = x and u = u and in the same way define {gxn} and {gun} such that

gxn = fxn–, gun = fun– for all n. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/53
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Since fx (= gx = gx) is comparable to fa (= fa = ga) and f is g-nondecreasing, it is easy
to show

gx
 ga. ()

Recursively, we can get that

gan � gx for all n. ()

By (), we have that

ψ
(
d(gan+, gx)

)
= ψ

(
d(fan, fx)

)
≤ αmax

{
ψ

(
d(gan, gx)

)
,ψ

(
d(gan, fan)

)
,ψ

(
d(gx, fx)

)
,

ψ
(
d(gan, fx)

)
,ψ

(
d(gx, fan)

)}
. ()

By the proof of Theorem ., we obtain that {gan} is a convergent sequence, and there
exists gā such that gan → gā. Letting n → ∞ in () and ψ is continuous, we can obtain
that

lim
n→∞ψ

(
d(gan+, gx)

)
= ψ

(
d(gā, gx)

)

≤ αmax
{
ψ

(
d(gā, gx)

)
, , ,ψ

(
d(gā, fx)

)
,ψ

(
d(gx, gā)

)}
= αψ

(
d(gā, gx)

)
.

Therefore, we obtain

ψ
(
d(gā, gx)

)
= .

Since ψ(t)≥ t as t ≥ , then d(gā, gx) =  and hence

gā = gx. ()

Similarly, we can show that

lim
n→∞ψ

(
d(gan+, gu)

)
= ψ

(
d(gā, gu)

)

≤ αmax
{
ψ

(
d(gā, gu)

)
, , ,ψ

(
d(gā, fu)

)
,ψ

(
d(gu, gā)

)}
= αψ

(
d(gā, gu)

)
.

Therefore, we obtain

ψ
(
d(gā, gu)

)
= .

Since ψ(t)≥ t as t ≥ , then d(gā, gu) =  and hence

gā = gu. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/53
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Thus, from () and (), we have gx = gu. It follows that

x = fx = gx = gu = fu = u. ()

It means that x is the unique common fixed point of f and g . �

Remark . Theorem . can be considered as an answer to Theorem  in []. We find
the sufficient conditions for the uniqueness of the common fixed point in the case of an
ordered g-quasicontraction. In this paper, condition (vi) in Theorem . is weaker than the
ordered g-quasicontraction in []. When ψ = I (I = the identity mapping), our condition
(vi) reduces to the ordered g-quasicontraction in [].

Example . Let X = {(, ), (, )}, let (a,b) � (c,d) if and only if a ≤ c and b ≥ d, and let
d be the Euclidean metric. We define the functions as follows:

f
(
(x, y)

)
=

(
x, y – 

)
, g

(
(x, y)

)
=

(
x, y – 

)
for all (x, y) ∈ X.

Let φ,ψ : [,∞)→ [,∞) be given by

ψ(t) =


t for all t ∈ [,∞).

Obviously, for (, ) and (, ) ∈ X, but f ((, )) = (, ) is not comparable to g((, )) =
(, ). However, f and g have two common fixed points (, ) and (, ) since

f
(
(, )

)
= g(, ) = (, ), f

(
(, )

)
= g

(
(, )

)
= (, ).

Example . Let X = [–∞, +∞) with the usual metric d(x, y) = |x – y| for all x, y ∈ X. Let
f : X → X and g : X → X be given by

f (x) =
x


, g(x) =


x

for all x, y, z,w ∈ X. Let φ,ψ : [,∞)→ [,∞) be given by

ψ(t) = t for all t ∈ [,∞).

It is easy to check that all the conditions of Theorem . are satisfied.

ψ
(
d(fx, fy)

)
=




|x – y|

≤  · α · 


|x – y|

≤ max

{
 · 


|x – y|,  ·

∣∣∣∣x –
x


∣∣∣∣,  ·
∣∣∣∣y –

y


∣∣∣∣,

 ·
∣∣∣∣x –

y


∣∣∣∣,  ·
∣∣∣∣y –

x


∣∣∣∣
}

= max
{
ψ

(
d(gx, gy)

)
,ψ

(
d(gx, fx)

)
,ψ

(
d(gy, fy)

)
,ψ

(
d(gx, fy)

)
,ψ

(
d(gy, fx)

)}
.

It holds when α = 
 and gx ≥ gy, i.e., 

x ≥ 
y, i.e., x≥ y.
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In addition, ∀x,u ∈ X, there exists a ∈ X such that fa = a
 is comparable to fx = x

 and
fu = u

 . So, all the conditions of Theorem . are satisfied.
By applying Theorem ., we conclude that f and g have a unique common fixed point.

In fact, f and g have only one common fixed point. It is x = .

4 Weak ordered contractions
We denote by � the set of functions ψ : [, +∞) → [, +∞) satisfying the following hy-
potheses:

(ψ) ψ is continuous and nondecreasing,
(ψ) ψ(t) =  if and only if t = .

We denote by � the set of functions φ : [, +∞) → [, +∞) satisfying the following hy-
potheses:

(φ) lims→t+ φ(s) >  for all t > ,
(φ) φ(t) =  if and only if t = .

Let (X,d) be a metric space and let f , g : X → X. In the article [] (in the setting of
partially ordered metric spaces), the authors obtained contractive conditions of the form

ψ
(
d(fx, fy)

) ≤ ψ
(
M(x, y)

)
– φ

(
M(x, y)

)
, ()

where

M(x; y) =max

{
d(gx, gy),d(gx, fx),d(gy, fy),

d(gx, fy) + d(gy, fx)


}
. ()

We will use here the following more general contractive condition:

M(x, y) =max
{
d(gx, gy),d(gx, fx),d(gy, fy),d(gx, fy),d(gy, fx)

}
. ()

We begin with the following result.

Theorem . Let (X,d,�) be a partially ordered metric space and let f and g be self-
mappings of X satisfying the following conditions:

(i) f (X)⊂ g(X);
(ii) g(X) is complete;
(iii) f is g-nondecreasing;
(iv) f and g satisfy the following condition:

ψ
(
d(fx, fy)

) ≤ ψ
(
M(x, y)

)
– φ

(
M(x, y)

)
()

for all x, y ∈ X such that gy� gx, where ψ ∈ � , φ ∈ � and

M(x, y) =max
{
d(gx, gy),d(gx, fx),d(gy, fy),d(gx, fy),d(gy, fx)

}
. ()

Suppose that, in addition,
(v) ψ(t) – φ(t) is nondecreasing;
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(vi) ψ(s + t) ≤ ψ(s) +ψ(t) for each s, t > ;
(vii) limt→+∞ φ(t) = ∞;
(viii) there exists x ∈ X such that gx � fx;
(ix) if {gxn} is a nondecreasing sequence that converges to some gz ∈ gX , then gxn � gz

for each n ∈N and gz � g(gz).
Then f and g have a coincidence point. If, in addition,
(x) f and g are weakly compatible, then they have a common fixed point.

Further, if
(xi) for arbitrary v,w ∈ X , there exists y ∈ X such that fy is comparable to fv and fw,

then f and g have a unique common fixed point.

Proof As in the proof of Theorem ., we can construct a nondecreasing Jungck sequence
{yn} with

yn = fxn = gxn+

for all n ≥ . Denote

O(yk ,n) = {yk , yk+, yk+, . . . , yk+n}, ()

O(yk) = {yk , yk+, yk+, . . . , yk+n, . . .}. ()

We will prove that the Jungck sequence {yn} is bounded, that is,

diam
(
O(y)

)
= diam

({y, y, y, . . . , yn, . . .}) ≤ K ()

for some K ∈R. Let k < n be any fixed positive integer and let diam(O(yk ,n)) = d(yi, yj) for
some i, j with k ≤ i < j ≤ k + n. We will show that

ψ
(
diam

(
O(yk ,n)

)) ≤ ψ
(
diam

(
O(yi–, j – i + )

))
– φ

(
diam

(
O(yi–, j – i + )

))
. ()

Since diam(O(yk ,n)) = d(yi, yj), yi = fxi, yj = fxj and gxi � gxj, then from () we have

ψ
(
diam

(
O(yk ,n)

))
= ψ

(
d(fxi, fxj)

) ≤ ψ
(
M(xi,xj)

)
– φ

(
M(xi,xj)

)
, ()

where

M(xi,xj) = max
{
d(gxi, gxj),d(gxi, fxi),d(gxj, fxj),d(gxi, fxj),d(gxj, fxi)

}
= max

{
d(yi–, yj–),d(yi–, yi),d(yj–, yj),d(yi–, yj),d(yj–, yi)

}
.

Since yi–, yi, yj–, yj ∈O(yi–, j – i + ), then

M(xi,xj) ≤ diam
({yi–, yi, yj–, yj}) ≤ diam

(
O(yi–, j – i + )

)
.

So, from (v),

ψ
(
M(xi,xj)

)
– φ

(
M(xi,xj)

) ≤ ψ
(
diam

(
O(yi–, j – i + )

))
– φ

(
diam

(
O(yi–, j – i + )

))
.

Hence from () we obtain ().

http://www.fixedpointtheoryandapplications.com/content/2013/1/53
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Note that φ(diam(O(yi–, j – i + ))) > , and so from (),

diam
(
O(yk ,n)

)
< diam

(
O(yi–, j – i + )

)
. ()

Now we will show that if diam(O(yk ,n)) = d(yi, yj), then i = k, that is,

diam
(
O(yk ,n)

)
= d(yk , yj) for some k < j ≤ k + n. ()

Suppose, to the contrary, that i > k. Then {yi–, yi, . . . , yj} ⊆ {yk , yk+, . . . , yi, . . . , yj} and hence
we conclude that

diam
(
O(yk ,n)

)
= d(yi, yj) = diam

(
O(yi–, j – i + )

)
= diam

(
O(yi, j – i)

)
= diam

(
O(yk , j – k)

)
.

This contradicts (). Therefore, i = k and so we have proved ().
We will prove that the Jungck sequence {yn} is bounded. From () it follows that

diam(O(y,n)) = d(y, yj) for some yj ∈ {y, y, . . . , yn}. By the triangle inequality,

diam
(
O(y,n)

)
= d(y, yj) ≤ d(y, y) + d(y, yj).

Now, from (ψ) and (ψ), we get

ψ
(
diam

(
O(y,n)

)) ≤ ψ
[
d(y, y) + d(y, yj)

]
≤ ψ

(
d(y, y)

)
+ψ

(
d(y, yj)

)
. ()

Since d(y, yj) = d(fx, fxj) and as gx � gxj, from () we have

ψ
(
d(y, yj)

) ≤ ψ
(
M(x,xj)

)
– φ

(
M(x,xj)

)
,

where

M(x,xj) =max
{
d(y, yj–),d(y, y),d(yj–, yj),d(y, yj),d(yj–, y)

}
.

Clearly,M(x,xj) ≤ diam{y, y, yj–, yj} ≤ diam(O(y,n)). Thus by (v), we get

ψ
(
M(x,xj)

)
– φ

(
M(x,xj)

) ≤ ψ
(
diam

(
O(y,n)

))
– φ

(
diam

(
O(y,n)

))
.

Now, by (),

ψ
(
diam

(
O(y,n)

)) ≤ ψ
(
d(y, y)

)
+ψ

(
diam

(
O(y,n)

))
– φ

(
diam

(
O(y,n)

))
.

Hence

φ
(
diam

(
O(y,n)

)) ≤ ψ
(
d(y, y)

)
. ()
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Since diam({y, y, . . . , yn}) ≤ diam({y, y, . . . , yn+}), the sequence {diam(O(y,n))}∞n= is
nondecreasing, and so there exists its limit diam(O(y)), which is finite or infinite. Sup-
pose that limn→∞ diam(O(y,n)) = +∞. Then (vii) implies that the left-hand side of ()
becomes unboundedwhen n tends to infinity, but the right-hand side is bounded, a contra-
diction. Therefore, limn→∞ diam(O(y,n)) = diam(O(y)) < +∞. Thus we have proved ().
Now we show that {yn} is a Cauchy sequence. For all n≥ , set similarly as in (),

O(yn) = {yn, yn+, . . .}.

Clearly, O(yn+) ⊂ O(yn) and so diam(O(yn+)) ≤ diam(O(yn)). Therefore, {diam(O(yn))}∞n=
is the monotone decreasing sequence of finite nonnegative numbers and converges to
some δ ≥ .
We will prove that δ = . Let n≥  and s ≥ n + . Since gxn+ � gxs, from (),

ψ
(
d(yn+, ys)

)
= ψ

(
d(fxn+, fxs)

) ≤ ψ
(
M(xn+,xs)

)
– φ

(
M(xn+,xs)

)
,

where

M(xn+,xs) =max
{
d(yn, ys–),d(yn, yn+),d(ys–, ys),d(yn, ys),d(ys–, yn+)

}
.

Since yn, yn+, ys–, ys ∈ {yn, yn+, . . .} = O(yn), we conclude that M(xn+,xs) ≤ diam(O(yn)),
and so by (v), we get

ψ
(
d(yn+, ys)

) ≤ ψ
(
diam

(
O(yn)

))
– φ

(
diam

(
O(yn)

))
. ()

Since lims→+∞ d(yn+, ys) = diam(O(yn+)) and ψ is continuous, we have lims→+∞ ψ(d(yn+,
ys)) = ψ(diam(O(yn+))). Thus, taking the limit in () when s → +∞, we get

ψ
(
diam

(
O(yn+)

)) ≤ ψ
(
diam

(
O(yn)

))
– φ

(
diam

(
O(yn)

))
. ()

Suppose that limn→∞ diam(O(yn)) = δ > . Since diam(O(yn)) → δ+ as n → ∞, then from
(φ), we have limn→∞ φ(diam(O(yn))) = q > . Therefore, taking the limits as n → +∞ in
() and using the continuity of ψ , we get

ψ(δ)≤ ψ(δ) – q <ψ(δ),

a contradiction. Therefore, δ =  and so we have proved that

lim
n→∞diam

({yn, yn+, . . .}) = .

Hence we conclude that {yn} is a Cauchy sequence.
Since yn = fxn = gxn+, by the assumption (ii) that g(X) is complete, there is some z ∈ X

such that

lim
n→∞ gxn = gz.
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We show that fz = gz. Suppose, to the contrary, that d(fz, gz) > . Condition (ix) implies
that gxn � gz and we can apply the contractive condition () to obtain

ψ
(
d(fz, fxn+)

) ≤ ψ
(
M(z,xn+)

)
– φ

(
M(z,xn+)

)
, ()

where

M(z,xn+) = max
{
d(gz, gxn+),d(gz, fz),d(gxn+, fxn+),d(gz, fxn+),d(gxn+, fz)

}
= max

{
d(gz, fxn),d(gz, fz),d(fxn, fxn+),d(gz, fxn+),d(fxn, fz)

}
.

By the triangle inequality,

d(gz, fz) ≤ d(gz, fxn+) + d(fz, fxn+).

Now, from (ψ) and (ψ),

ψ
(
d(gz, fz)

) ≤ ψ
[
d(gz, fxn+) + d(fz, fxn+)

]
≤ ψ

(
d(gz, fxn+)

)
+ψ

(
d(fz, fxn+)

)
.

Hence from () we have

ψ
(
d(gz, fz)

) ≤ ψ
(
d(gz, fxn+)

)
+ψ

(
M(z,xn+)

)
– φ

(
M(z,xn+)

)
. ()

Since limn→∞ fxn = gz, for large enough n, we have

M(z,xn+) =max
{
d(gz, fz),d(fxn, fz)

}
.

IfM(z,xn+) = d(gz, fz), then from ()

ψ
(
d(gz, fz)

) ≤ ψ
(
d(gz, fxn+)

)
+ψ

(
d(gz, fz)

)
– φ

(
d(gz, fz)

)
.

Letting n tend to infinity and using the continuity of ψ , we get

ψ
(
d(gz, fz)

) ≤ ψ
(
d(gz, fz)

)
– φ

(
d(gz, fz)

)
.

Hence φ(d(gz, fz)) = , a contradiction with (φ) and the assumption d(gz, fz) > .
Similarly, ifM(z,xn+) = d(fxn, fz), then from ()

ψ
(
d(gz, fz)

) ≤ ψ
(
d(gz, fxn)

)
+ψ

(
d(fxn, fz)

)
– φ

(
d(fxn, fz)

)
.

Letting n tend to infinity and having in mind that d(fxn, fz) → d(gz, fz)+, we obtain

ψ
(
d(gz, fz)

) ≤ ψ
(
d(gz, fz)

)
– lim

d(fxn ,fz)→d(gz,fz)+
φ
(
d(fxn, fz)

)

and hence we get

lim
d(fxn ,fz)→d(gz,fz)+

φ
(
d(fxn, fz)

) ≤ ,
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a contradiction with (φ). Thus our assumption d(gz, fz) >  is wrong. Therefore, d(gz,
fz) = . Hence gz = fz, that is, z is a coincidence point of f and g .
If the condition (x) is fulfilled, put w = fz = gz. We will show that w is a common fixed

point of f and g . Since fz = gz and f and g are weakly compatible, we obtain, by the defini-
tion of weak compatibility, that fgz = gfz. Thus we have fw = gw. Using the condition (ix)
that gz � ggz = gw, we can apply the contractive condition () to obtain

ψ
(
d(fw, fz)

) ≤ ψ
(
M(w, z)

)
– φ

(
M(w, z)

)
,

where

M(w, z) =max
{
d(gw, gz),d(gw, fw),d(gz, fz),d(gw, fz),d(gz, fw)

}
= d(fw, fz).

Thus

ψ
(
d(fw, fz)

) ≤ ψ
(
d(fw, fz)

)
– φ

(
d(fw, fz)

)
.

Hence φ(d(fw, fz)) = , and so by (φ), d(fw, fz) = . Hence fw = fz. Therefore

w = fz = fw = ffz = gfz = gw.

Thus we showed that w is a common fixed point of f and g .
Suppose now that the condition (xi) is fulfilled. Since a set of common fixed points of f

and g is not empty, assume that w and v are two common fixed points of f and g , i.e.,

fw = gw = w, fv = gv = v. ()

We claim that gw = gv.
By assumption, there exists y ∈ X such that fy is comparable to fw and fv. Define a

sequence {gyn} such that

gyn = fyn– for all n. ()

Further, set w = w and v = v and, in the same way, define {gwn} and {gvn} such that

gwn = fwn–, gvn = fvn– for all n. ()

From () and (), we have fw = gw = gw and fv = gv = gv. Since fy is comparable
to fw and fv, and f is g-nondecreasing, it is easy to show

gw
 gy. ()

Recursively, we can get that

gyn � gw for all n. ()
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By (), we have that

ψ
(
d(gyn+, gw)

)
= ψ

(
d(fyn, fw)

)
≤ ψ

(
max

{
d(gyn, gw),d(gyn, fyn),d(gw, fw),d(gyn, fw),d(gw, fyn)

})
– φ

(
max

{
d(gyn, gw),d(gyn, fyn),d(gw, fw),d(gyn, fw),d(gw, fyn)

})
. ()

Similarly as in the proof of Theorem ., we can prove that {gyn} is a convergent sequence.
Thus there exists ȳ ∈ X such that gyn → gȳ. Since also limn→∞ fyn = gȳ, for large enough
n, we have

max
{
d(gyn, gw),d(gyn, fyn),d(gw, fw),d(gyn, fw),d(gw, fyn)

}
= d(gȳ, gw).

Thus from (), for large enough n,

ψ
(
d(gyn+, gw)

) ≤ ψ
(
d(gȳ, gw)

)
– φ

(
d(gȳ, gw)

)
. ()

Letting n → ∞ in (), by (ψ) we get

lim
n→∞ψ

(
d(gyn+, gw)

)
= ψ

(
d(gȳ, gw)

) ≤ ψ
(
d(gȳ, gw)

)
– φ

(
d(gȳ, gw)

)
.

Hence we obtain

ψ
(
d(gȳ, gw)

)
= .

Then by (ψ), d(gȳ, gw) =  and hence

gȳ = gw. ()

Similarly, we can show that

lim
n→∞ψ

(
d(gyn+, gv)

)
= ψ

(
d(gȳ, gv)

) ≤ ψ
(
d(gȳ, gv)

)
– φ

(
d(gȳ, gv)

)
,

and hence we obtain

gȳ = gv. ()

Therefore, from () and (), we have gw = gv. It follows that

w = fw = gw = gv = fv = v. ()

It means that w is the unique common fixed point of f and g . �
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Corollary . Let (X,d,�) be a complete partially ordered metric space and let f be a
self-mapping of X satisfying the following condition:

d(fx, fy) ≤ m(x, y) – φ
(
m(x, y)

)

for all x, y ∈ X such that gy� gx, where

m(x, y) =max
{
d(x, y),d(x, fx),d(y, fy),d(x, fy),d(y, fx)

}

and φ ∈ �. Suppose that, in addition, t – φ(t) is non-decreasing, limt→+∞ φ(t) = ∞, there
exists x ∈ X such that x � fx and if {fxn} is a nondecreasing sequence such that it con-
verges to some z ∈ X, then fxn � z. Then f has a unique fixed point.

Proof Taking ψ(t) = t and g(t) = t in the proof of Theorem ., we obtain Corollary ..
�

Remark . Theorem . extends Theorem  due to Berinde [], Theorems . and .
due to Beg and Abbas [] and Theorem . due to Song [].

We present an example to show that our result is a real generalization of the recent result
of Golubović et al. [] as well as of the existing results in the literature.

Example. LetX = [,  ] be the closed interval with the usualmetric and let f , g : X → X
and ψ ,φ : [, +∞) → [, +∞) be mappings defined as follows:

f (x) = x – x for all x ∈ X,

g(x) = x for all x ∈ X,

ψ(t) = t for all x ∈ X,

φ(t) = t for ≤ t ≤ 

,

φ(t) =


t for t >



.

Let x, y in X be arbitrary. We say that x � y if x ≤ y. For any x, y ∈ X such that x � y, we
have

M(x, y) =max
{
d
(
g(x), g(y)

)
,d

(
g(x), f (x)

)
,d

(
g(y), f (y)

)
,d

(
g(x), f (y)

)
,d

(
g(y), f (x)

)}
= d

(
g(y), f (x)

)
,

ψ
(
d
(
g(y), f (x)

))
= d

(
g(y), f (x)

)
=

∣∣y – x
(
 – x

)∣∣
= y – x

(
 – x

)
.

Since y ≥ y – x( – x) for all x ∈ [,  ], it follows that

–y ≤ –
(
y – x

(
 – x

)).
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Thus we have

ψ
(
d
(
f (x), f (y)

))
=

∣∣y – y – x + x
∣∣ = (

y – x
(
 – x

))
– y

≤ (
y – x

(
 – x

))
–

(
y – x

(
 – x

))
= d

(
g(y), f (x)

)
–

[
d
(
g(y), f (x)

)]
= ψ

(
M(x, y)

)
– φ

(
M(x, y)

)
.

Therefore, f and g satisfy (). Also, it is easy to see that themappingsψ(t) andφ(t) possess
all properties (ψ), (ψ) and (φ), (φ) respectively, as well as hypotheses (v), (vi) and (vii)
in Theorem .. Thus we can apply our Theorem . and Corollary ..
On the other hand, for x =  and each y > , the contractive condition in Theorems 

and  of Golubović et al. []:

d(fx, fy) ≤ λ ·M(x, y), ()

where  < λ <  and

M(x; y) =max
{
d(gx; gy);d(gx; fx);d(gy; fy);d(gx; fy),d(gy; fx)

}
,

is not satisfied. Indeed,

M(; y) = max
{
d
(
g(); g(y)

)
;d

(
g(); f ()

)
;d

(
g(y); f (y)

)
;d

(
g(); f (y)

)
,d

(
g(y); f ()

)}
= max

{
y; ; y;

(
y – y

)
, y

}
= y.

Thus, for any fixed λ;  < λ < , we have, for x =  and each y ∈ X with  < y <
√
 – λ,

d
(
f (), f (y)

)
= y – y =

(
 – y

)
y > λ · y

= λ · d(
g(y), g()

)
= λ ·M(, y).

Thus, f does not satisfy (). Therefore, the theorems of Jungck and Hussain [],
Al-Thagafi and Shahzad [] and Das and Naik [] also cannot be applied.
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