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1 Introduction
In 1994, the split feasibility problem in finite dimensional Hilbert spaces was first intro-
duced by Censor and Elfving [1] for modeling inverse problems which arise from medical
image reconstruction. Since then, the split feasibility problem has received much attention
due to its applications in signal processing, image reconstruction, approximation theory,
control theory, biomedical engineering, communications, and geophysics. For examples,
one can refer to [1-5] and related literature.

We know that the split feasibility problem can be formulated as the following problem:

(SFP) Find x € H; such that x € C and Ax € Q,

where C and Q are nonempty closed convex subsets of Hilbert spaces H; and H,, respec-
tively, and A : H; — H, is an operator. It is worth noting that a special case of problem
(SEP) is the convexly constrained linear inverse problem in the finite dimensional Hilbert
space [6]:

(CLIP) Find x € C such that Ax = b, where b € H,.

Originally, problem (SFP) was considered in Euclidean spaces. (Note that if H; and H,
are two Euclidean spaces, then A is a matrix.) In 1994, problem (SFP) in finite dimensional
Hilbert spaces was first introduced by Censor and Elfving [1] for modeling inverse prob-

lems which arise from medical image reconstruction. Since then, many researchers have
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studied (SFP) in finite dimensional or infinite dimensional Hilbert spaces. For example,
one can see [2, 7-16] and related literature.
In 2002, Byrne [2] first introduced the following recursive procedure:

KXn+l = PC (xn - pnA*(I - PQ)Axn)) (11)

where the stepsize 7, is chosen in the interval (0,2/]|A||%), and Pc and P are the metric
projections onto C € R” and Q € R”, respectively. This algorithm is called CQ algorithm.
Note that A may be not invertible. In 2010, Wang and Xu [11] modified Byrne’s CQ algo-
rithm and gave a weak convergence theorem in infinite dimensional Hilbert spaces.

In 2004, motivated by the works on CQ algorithm (1.1), Yang [14] considered (SFP) un-
der the following conditions:

C:= {xeR":c(x)fO} and Q:= {xeRm:q(x)SO},

where ¢ : R” — R and g : R” — R are convex and lower semicontinuous functions. In
fact, Yang [14] studied the following problem, and we call this problem the relaxed split
feasibility problem:

(RSFP) Find x € R” such that ¢(¥) < 0 and g(Ax) < 0.

In 2010, Xu [13] modified and extended Yang’s algorithm and gave a weak convergence
theorem in infinite dimensional Hilbert spaces.

On the other hand, let H be a real Hilbert space, and B be a set-valued mapping with
domain D(B) := {x € H : B(x) # #}. Recall that B is called monotone if (x —v,x — y) > 0 for
any u € Bx and v € By; B is maximal monotone if its graph {(x,y) : x € D(B),y € Bx} is not
properly contained in the graph of any other monotone mapping. An important problem
for set-valued monotone mappings is to find x € H such that 0 € Bx. Here, X is called a zero
point of B. A well-known method for approximating a zero point of a maximal monotone
mapping defined in a real Hilbert space is the proximal point algorithm first introduced
by Martinet [17] and generated by Rockafellar [18]. This is an iterative procedure, which
generates {x,} by x; =x € H and

Kn+l =]gnxm ne Nr (12)

where {8,} € (0,00), B is a maximal monotone mapping in a real Hilbert space, and /2 is
the resolvent mapping of B defined by /Z = (I + rB)™! for each r > 0. In 1976, Rockafellar
[18] proved the following in the Hilbert space setting: If the solution set B~1(0) is nonempty
and liminf,_.» B, > 0, then the sequence {x,} in (1.2) converges weakly to an element of
B71(0). In particular, if B is the subdifferential df of a proper lower semicontinuous and
convex function f : H — R, then (1.2) is reduced to

1
2

Xpyl = Alg E/I;ll!ll{f(y) + ||J/ - xn||2 }7 neNlN. (13)
In this case, {x,} converges weakly to a minimizer of f. Later, many researchers have stud-
ied the convergence theorems of the proximal point algorithm in Hilbert spaces. For ex-
amples, one can refer to [19-24] and references therein.
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Let H; and H, be two real Hilbert spaces, B, : H; — Hj and B, : Hy — H, be two set-
valued maximal monotone mappings, A : H; — H; be a linear and bounded operator, and
A* be the adjoint of A. In this paper, motivated by the works in [13, 14] and related litera-
ture, we consider the following split variational inclusion problem:

(SFVIP) Find x € H; such that 0 € B;(x) and 0 € B,(AX).

Clearly, we know that the following split variational inclusion problem (SFVIP) is a gen-
eralization of variational inclusion problem. Further, we observed that problem (SFVIP)
was introduced by Moudafi [25], and Moudafi [25] gave a weak convergence theorem for
problem (SFVIP). The following is an iteration process given by Moudafi [25]:

Xt = I (0 + yA* (2 = 1) Ax,).

It is worth noting that X and y are fixed numbers. Hence, it is important to establish
generalized iteration processes and the related strong convergence theorems for problem
(SEVIP).

Besides, we know that the following problems are special cases of problem (SFVIP).

(SFOP) Find x € H; such that f(x) = minyey, f(y) and g(A¥) = minyep, g(2), where

f:H; — Rand g: H, — R are two proper, lower semicontinuous, and convex
functions.

(SFP) Find x € H; such that x € C and Ax € Q, where C and Q are two nonempty
closed convex subsets of real Hilbert spaces H; and Ha, respectively.

In this paper, we first consider a split variational inclusion problem and give several
strong convergence theorems in Hilbert spaces, like the Halpern-Mann type iteration
method, the regularized iteration method. As applications, we consider algorithms for
a split feasibility problem and a split optimization problem and give strong convergence
theorems for these problems in Hilbert spaces. Our results for the split feasibility problem
improve the related results in the literature.

2 Preliminaries
Throughout this paper, let N be the set of positive integers and let R be the set of real
numbers. Let H be a (real) Hilbert space with the inner product (-, -) and the norm || - ||,
respectively. We denote the strong convergence and the weak convergence of {x,} tox € H
by x, — x and x,, — x, respectively. From [26], for each x,y € H and X € [0,1], we have
2

|22+ @ =2)y]” = Allell® + @ = Wyl = 21 - 1) llx = yII*.
Hence, we also have

20—y, u—v) = lx—vI[* + ly—ull® = llx - ul* - [y - v|?
for all x,y,u,v € H. Furthermore, we know that

lax + By + yzl® = allxll® + Bllyl® + ¥ Iz - aBllx - ylI* — ayllx —zII* - By lly - 2II”

foreachx,y,z€e Hand o, 8,y € [0,1] witha + B+ y =1 [27].
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Lemma 2.1 [28] Let H be a (real) Hilbert space, and let x,y € H. Then ||x + y||*> < ||x||> +
2%+ ).

Let C be a nonempty closed convex subset of a real Hilbert space H, andlet T:C — H
be a mapping. Let Fix(T) := {x € C: Tx = x}. Then T is said to be a nonexpansive mapping
if |Tx — Ty|| < |lx — y|| for every x,y € C. T is said to be a quasi-nonexpansive mapping
if Fix(T) # ¥ and || Tx — y|| < |l — y|| for every x € C and y € Fix(T). It is easy to see that
Fix(T) is a closed convex subset of C if T is a quasi-nonexpansive mapping. Besides, T is
said to be a firmly nonexpansive mapping if | Tx — Ty||? < (x —y, Tx — Ty) for every x,y € C,
that is, | Tx — Ty||2 < |lx = y||®> = || = T)x — (I = T)y||? for every x,y € C.

Lemma 2.2 [29] Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C — H be a nonexpansive mapping, and let {x,} be a sequence in C. If x, — w and
lim,,_, o ||x, — Tx,|| = O, then Tw = w.

Let C be a nonempty closed convex subset of a real Hilbert space H. Then, for each
x € H, there is a unique element x € C such that ||x — ¥|| = mincc [|x — y||. Here, we set
Pcx = x and Pc is said to be the metric projection from H onto C.

Lemma 2.3 [30] Let C be a nonempty closed convex subset of a Hilbert space H. Let Pc be
the metric projection from H onto C. Then, for each x € H and z € C, we know that z = Pcx
ifand only if (x —z,z—y) > 0 forall y € C.

The following result is an important tool in this paper. For similar results, one can
see [31].

Lemma 2.4 Let H be a real Hilbert space. Let B: H —o H be a set-valued maximal mono-
tone mapping, B > 0, and let ]g be a resolvent mapping of B.
(i) Foreach >0, ]g is a single-valued and firmly nonexpansive mapping;
(i) DUE) = H and Fix(J§) = {x € D(B): 0 € Bx};
(iii) - JExll < llx = Jx| for all 0 < B <y and for all x € H;
(iv) (I —]g) is a firmly nonexpansive mapping for each B > 0;
(v) Suppose that B™(0) #@. Then ||x — J§x|> + |[fx — %||* < |lx — X||* for each x € H,
each x € BY(0), and each B > 0.
(vi) Suppose that B™(0) # 0. Then (x —]gx,lgx —w) >0 for each x € H and each
w € BY0), and each 8 > 0.

Lemma 2.5 Let H; and H, be two real Hilbert spaces, A : Hl — Hj be a linear operator,
and A* be the adjoint of A, and let § > 0 be fixed. Let B : Hy — Hj be a set-valued maximal
monotone mapping, and let ]g be a resolvent mapping of B. Let T : Hy — H; be defined by
Tx .= A*(I —]g)Axfor each x € Hy. Then

() 10 —JE)Ax - (I - JB)Ay|1® < (T — Ty, — ) for all x,y € Hy;

(ii) |IA*(I -J§)Ax = A*(I - J)Ay|> < | AN - (Tx - Ty, x - y) for all x,y € H,.

Proof (i) By Lemma 2.4,
(T — Ty,x - y) = (A*(I - J§)Ax — A*(I - J§ ) Ay, x — )
=((I-J§)Ax - (I-J§)Ay, Ax - Ay)

(G AZES YV
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for all x,y € H;. (ii) Further, we have

a1 =I)Ax —a* (LT Ay " < WA - | (1 =) Ax (1= T Ay

< IAI® - (Tx - Ty,x -y)
for all x,y € H. Therefore, the proof is completed. g

Lemma 2.6 Let Hy and H, be two real Hilbert spaces, A : H — H, be a linear operator,
and A* be the adjoint of A, and let B > 0 be fixed, and let p € (0, W). Let By : Hy —o H; be
a set-valued maximal monotone mapping, and let ]gz be a resolvent mapping of By. Then
* By * By 2
[ = pA™(1 = J5*)Ax] = [y - A" (1= T5*) ]|

< llx =17 = (20 - P?IAIP) | (1 - J§*)Ax - (1= J5) Ay
for all x,y € Hy. Furthermore, I — pA*(I — ]gz )A is a nonexpansive mapping.

Proof For all x,y € H;, we have
|[x = pA* (1 - 132 Ax] = [y - pA* (1 - )4y ] |
= e —yI* = 2p(x - 3, A* (I - J3*) Ax — A*(I - ] ) Ay)
+ 02 AY (1732 Ax - A* (1 - 1%) Ay ||®
= = yI* = 2p(Ax — Ay, (I - J5*)Ax — (I - J5*) Ay)

+ A (-] Ax - AT (1-]) ). 2.1)

Hence, it follows from (2.1) and Lemma 2.4 that

|[x— pa™ (1-713%)Ax] - [y - pA*(1 - ;) 9] |

<l —yl? =20 (1 -JE2) Ax - (1 - J22) &y |
+ 02| AN (1= J2)Ax - A* (1= 4y |

< llx= 1% = (20 = P2 IAI) | (1= J§2)Ax — (1= J5?) Ay
for all x,y € H;. Therefore, the proof is completed. O

The following is a very important result for various strong convergence theorems. Re-
cently, many researchers have studied Halpern’s type strong convergence theorems by us-
ing the following lemma and got many generalized results. For examples, one can see [32,
33]. In this paper, we also use this result to get our strong convergence theorems, and our
results for the split feasibility problem improve the results in the literature.

Lemma 2.7 [34] Let {a,} be a sequence of real numbers such that there exists a subse-
quence {n;} of {n} such that a,, < an. for all i € N. Then there exists a nondecreasing
sequence {my} C N such that my — 00, @y, < A1 and ay < ay, . are satisfied by all
(sufficiently large) numbers k € N. In fact, my = max{j < k:a; < a;.1}.
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Lemma 2.8 [35] Let{a,},cn be a sequence of nonnegative real numbers, {«,} be a sequence
of real numbers in [0,1] with Y-, o, = 00, {u,} be a sequence of nonnegative real numbers
with Y o2ty < 00, {t,} be a sequence of real numbers with limsupt, < 0. Suppose that
apn < (1 —ay)a, + ayt, + u, for each n € N. Then lim,,_, o a,, = 0.

3 Halpern-Mann type algorithm with perturbations
In this section, we first give the following result.

Lemma 3.1 Let Hy and H, be two real Hilbert spaces, A : Hl — H, be a linear and bounded
operator, and let A* denote the adjoint of A. Let By : Hy —o Hi, and B, : Hy — Hy be two
set-valued maximal monotone mappings, and let >0 and y > 0. Given any x € H;.
(i) I is a solution of (SEVIP), then 3 (% — y A*(I - J§*)A%) = &.
(i) Suppose that ]gl (x—yA* —]ﬁ: YA%) = x and the solution set of (SEVIP) is nonempty.
Then x is a solution of (SEVIP).

Proof (i) Suppose that x € H; is a solution of (SEVIP). Then x € B;'(0) and Ax € B;%(0).
By Lemma 2.4, it is easy to see that

T (& - yA (I = J2)AR) = T} (5 - yA* (AR - 2 AR)) =] () = &.
(ii) Suppose that i is a solution of (SEVIP) and /' (¥ ~ y A*(I - /;)A%) = X. By Lemma 2.4,
((a_c —yA*( —]gz)Aa_c) —X,% - w) >0 for each w € B{'(0).
That is,
(A* (I —]52 )Aa’c,a’c - w> <0 for each w € B{*(0). (3.1)
By (3.1) and A* is the adjoint of A,
(Aa'c —]§2A5C,A5c —Aw) <0 foreach we B*(0). (3.2)

On the other hand, by Lemma 2.4 again,

(Ax - J?A%,v - J;?A%) <0 for each v € B, (0). (3.3)
By (3.2) and (3.3),
(A -2 A%,v - ]2 A% + Ax - Aw) < 0 (3.4)

for each w € B;'(0) and each v € B;'(0). That is,
= oAl = s
x—Jg AxH §<Ax—]}S Ax,Aw—v> (3.5)

for each w € B7*(0) and each v € B;'(0). Since w is a solution of (SFVIP), w € B{!(0) and
Aiw € B;1(0). So, it follows from (3.5) that A% = J5>A%. So, A% € Fix(J?) = B;1(0). Further,

X=J (% - yA (I - J5?)AR) = J5 ().

Then x € Fix(lgl) = B7}(0). Therefore, ¥ is a solution of (SFVIP). O
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Theorem 3.1 Let Hy and H, be two real Hilbert spaces, A : HA — H, be a linear and
bounded operator, and let A* denote the adjoint of A. Let By : Hy —o Hy and B, : Hy —o H, be
two set-valued maximal monotone mappings. Let {a,}, {b,}, {c,}, and {d,} be sequences of
real numbers in [0,1] with a, + b, + ¢, + d, =1 and 0 < a, <1 for each n € N. Let {B,}
be a sequence in (0,00). Let {v,} be a bounded sequence in H. Let u € H be fixed. Let
{pn} € (O, HAWI++1)' Let Q2 be the solution set of (SEVIP) and suppose that Q2 # (). Let {x,}
be defined by

KXyel = Apld + byxy, + cnjgnl [x,, — puA* (1 —]gj )Ax,,] +d,v,

for each n € N. Assume that:

(i) limy— oo @y = limy,— oo Z—Z =0; ) 02y =005 Y oy dy < 00;

(if) liminf,_ o ¢,0, > 0, liminf,_, o b,c, >0, liminf,_, o, B, > 0.

Then lim,,_, o x,, = X, Wwhere x = Pqu.

Proof Let x = Pqu, where Pg is the metric projection from H; onto 2. Then, for each
n €N, it follows from Lemma 2.6 that
61— %
< apllu— x| + bpllxn — X + dullve — %]
+ el gy [0 = pud™ (1= J7) A ] - &
< ayllte = X|| + byl — Xl| + dllve — X1 + | [0 — puA™ (I = J52) Axa]
- [ - oA (1 -732)AR]|

<aullu—x| + by + co)llx, — x| + dullv, — X|.
This implies that {x,} is a bounded sequence. Besides, by Lemmas 2.4 and 2.6, we have

752 [ = pud” (1 =52 ) Acea] - 2|
< [ [ = 0uA™ (1= T2 ) A ] - [ = 0™ (1 - J2) AR] |
< Nl = ZI2 = (200 = PZIAI) | (I = T52) A — (I - J52) AZ |

= Jlxs — %1% = (200 = P2IAIP) | (1 = T22) A, | (3.6)
Hence, it follows from Lemma 2.1 that

o1 — 2]
= @t + bt + cal [ — puA* (I = J52) A ] + dv — E|)*
< Bl = ) + caUpt [ — puA* (- J52) Ax] = ) + du(v, - B)|*
20, (1 — %, X1 — F)
= (1= ) |0 en = )+ €, 51 [0 = uA" (I = 52 ) Aa] = 3) + (v = )

+ 261,,, (u - J_C, KXnl — 9_C>, (37)
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, Gyt Cn d dn__ Further, by (3.6) and (3.7), we have

T buteptdy? N T byteytdy

/= n
where b, = 72—

=2
%641 — 2|

< Balltn — EI? + cu[ I [0 — pu* (I = T32) Ax] = E[* + | vy — %I

+ 20, (1 — X, X1 — V) — bycy ”xn —]gj [x,, — P A* (1 —jgj)Ax] ”2
< Bl — &1 + ca(lx = %12 = (200 = P2IAIP) | Ay — T3> A |*)
|V = I + 2,14 = %, 2011 = V) = b0 = T2 [0 — puA* (1 - J12) Ax] |

n

= (bn + Cn)”xn _9_6”2 + dn”Vn _7_5”2 + 261,,(% _J_C:xnﬂ _9_C>
B 2
- Cn(zlon - ;03”14”2) ”Axn —]ﬁnzAx,, ”

—b,c, ||x,, —]gi [x,, - ,o,,A*( —]gj)Ax] ||2 (3.8)
Since liminf,_, » 8, > 0, we may assume that 8, > 8 > 0 for each n € N. Next, we consider
two cases.

Case 1: There exists a natural number N such that ||x,,; —X|| < ||x, —X|| for each n > N.
So, lim,,_, , ||, — %|| exists. Hence, it follows from (3.8) and (i) that

1im c,(20, = oy IAI) [ A, ~ T52 A ]|* = 0.

Clearly, ¢,(2p, — p2||A|*) > T - Since liminf,_ o0 ¢, s > 0, we have
lim | Ax, - J52 A, = 0. (3.9)
n—00 n

By (3.9) and Lemma 2.4,
lim || Ax, - J5>Ax,| = 0. (3.10)
n—00

Similarly, we know that
Jim [, — T2 [ = puA™ (1 = J32) A ] | = 0. (3.11)

Further, there exists a subsequence {x,, } of {x,} such that x,, — z for some z € C and

limsup(u — X, %,,1 — X) = lim (u — X, %, — %) = (4 — X,z - X). (3.12)

n—00 k—00

Clearly, Ax,, — Az. By (3.10), Lemmas 2.2 and 2.4, we know that Az € B;'(0). Besides, it
follows from Lemma 2.4 that

s [6n = 0w A" (1 = T2 ) Aa] = Jgrtal| < pall ALl [ A = T2 A (3.13)
By (3.9) and (3.13),

lim |75 [0 — puA™ (I = J52 ) A ] = J 516 | = 0. (3.14)

n—00 n
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By (3.11) and (3.14),
lim %, = /514 = 0. (3.15)
n—00

By (3.15) and Lemma 2.4,
lim %, = /5" = 0. (3.16)
n—00

Then it follows from (3.16) and Lemma 2.2 that z € B{1(0). So, z is a solution of (SFVIP).
By (3.12) and Lemma 2.3,

lim sup(u — x,%,,1 —x) < 0. (3.17)
n—0o0

By assumptions, (3.8), (3.17), and Lemma 2.8, we know that lim,,_, - %, = X.
Case 2: Suppose that there exists {#;} of {n} such that ||x,, —X|| < ||%,,, —X| foralli e N.
By Lemma 2.7, there exists a nondecreasing sequence {m1;} in N such that m; — oo,

%6m = %Il < %me1 =% and  flae = %[ < [[ %41 — %] (3.18)
for all k € N. By (3.8) and (3.18), we have

ll%m, — %I
< otmy1 — %I
< By + )y, = XN + Ay Vi = ZI* + 20, (= %y Xy 11 — X)
= oy (20m; 'Ol’zl’lk A1) [ A, —]BikAxmk HZ

= by Cmy ||xmk _jg;k [x””k - 'OmkA*( _]gik )Ax'"k] ”2 (3.19)

Following a similar argument as the proof of Case 1, we have

. B B

i T2 [ = o A* (22 YA ]| =0, 620)

lim Ay, T A | = lim [, T ]| = 0 (3.21)
and

lim sup(u — X, Xy 1 — %) < 0. (3.22)

k— o0
By (3.19),
- 2 dmk - 2 - -
1%, = %117 < —= Vi = XII° + 218 = X, Xy 11 — X). (3.23)
Ay

By assumption, (3.22), and (3.23),

lim ||, — %] = 0. (3.24)
k—o00

Page 9 of 20
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Besides, we have

”xmkﬂ — Xy I
< @y 11 = X | + oy [, —fg,lnk [ = o A™(1 _Jgik)Axmk] I

+ dmk”mG _xmk”‘ (325)

By assumptions, (3.20), and (3.25),

B 1= % ]| = 0. (3.26)
By (3.24) and (3.26),

lim [|%, 11 — X[ = 0. (3.27)

k—o00

By (3.18) and (3.27),
lim ||xx — x| = 0.
k—o00
Therefore, the proof is completed. d

In Theorem 3.1, if we set v, = 0 and d,, = 0 for each n € N, then we get the following
result.

Corollary 3.1 Let Hy and H, be two real Hilbert spaces, A : Hl — Hy be a linear and
bounded operator, and let A* denote the adjoint of A. Let By : Hy —o Hy and By : Hy —o H;
be two set-valued maximal monotone mappings. Let {a,}, {b,}, and {c,} be sequences of
real numbers in [0,1] with a, + b, + ¢, =1 and 0 < a, <1 for each n € N. Let {B,} be a
sequence in (0,00). Let u € H be fixed. Let {p,} (0, —%—). Let Q be the solution set of

lA]2+1
(SEVIP) and suppose that Q2 # (. Let {x,} be defined by

Kpal 1= Aplh + by + cnlgi [%n — puA*(1 —]gj A%,

for each n € N. Assume that lim, ooa, = 0, Y oy a, = 00, liminf,_ e cypy > O,

liminf,_, o b,c, > 0, and liminf,_, o, B, > 0. Then lim,,_, », x,, = X, where x = Pqu.

Further, we can get the following result by Corollary 3.1 and Lemma 2.8. In fact, Corol-
lary 3.1 and Theorem 3.2 are equivalent.

Theorem 3.2 Let H; and H, be two real Hilbert spaces, A : Hy — Hj be a linear and
bounded operator, and let A* denote the adjoint of A. Let By : Hy —o Hy and B, : Hy — H,
be two set-valued maximal monotone mappings. Let {a,}, {b,}, and {c,} be sequences of real
numbers in [0,1] with a, + b, + ¢, =1and 0 < a, <1 for each n € N. Let {B8,} be a sequence
in (0,00). Let {v,} be a bounded sequence in H. Let u € H be fixed. Let {p,} C (0, um\%u)‘ Let
Q2 be the solution set of (SEVIP) and suppose that Q # 0. Let {v,} be a bounded sequence.
Let {x,} be defined by

KXpal 1= Anld + by + c,,lgi [0 — pnA™(1 —]5: JA%, ] + vy
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for each n € N. Assume that im0 ay =0, Y o) @y =00, Y ooy [Vall < 00, liminf, .o ¢, X

on >0, liminf,_,  b,c, >0, and liminf,_, , B, > 0. Then lim,_, o, x,, = X, where x = Pqu.

Proof Let {y,} be defined by
st = Atk + by + cul ) [9n — puA™ (1= T52) Ay,].

By Corollary 3.1, lim,,_, oo ¥, = ¥, where X = Pqu. Besides, we know that

141 = Vsl
By * By By * By
= ||]ﬂ" [xn - PaA (1 _]ﬂn )Axn] _]ﬂn [yn - PaA (I ) » )Ayn] ”
+byl| %0 = yull + [[vall
< (bu + cn) |y = Yull + [IVall
=1 —-a,)lx, = Yull + lvall. (3.28)

By (3.28) and Lemma 2.8, lim,,_, o ||%, = ¥4|| = 0. So, lim,,_, o x,, = X, where X = Pou. There-

fore, the proof is completed. O

4 Regularized method for (SFVIP)

Lemmad4.1 Let Hy and H, be two real Hilbert spaces, A : H — H, be a linear and bounded
operator, and let A* denote the adjoint of A. Let By : Hy —o Hy and By : Hy — Hj be two set-
valued maximal monotone mappings. Let B >0, a € (0,1), and p € (0,2/(||A]|? +2)). Then

15 [(1 = ap)x— pA* (- J5*)Ax] - (1= ap)y - pA* (I -]*) Ay]| < (L —ap)llx -yl
for all x,y € H,.
Proof For each x,y € Hi, it follows from Lemma 2.4 and Lemma 2.5 that
75 (@ = ap)x = pA* (1-J§)Ax) =5 (L= ap)y — pA* (1= J*) )|
< @ -ap)w-y) - p(A* (I -J?)Ax - A*(1-J) ) |
= (1—ap) e - yII” = 2(1 - ap)plx — y, A*(I ~ J52) Ax — A*(I - 52 Ay)
o’ AT (I =) Ax - AT (1= ) |

(=7 Ax A (172 Ay

<@-ap)lx-ylI> -2 -anp)p
A2

0|4 (1T Ax = A (1= 2) )|

If p € (0,2/||A||? + 2), then 2(1 — ap)p(1/|lA||?) = p?. This implies that the conclusion of
Lemma 4.1 holds. O

Theorem 4.1 Let Hy and H, be two real Hilbert spaces, A : HL — Hj be a linear and
bounded operator, and let A* denote the adjoint of A. Let By : Hy —o Hy and B, : Hy —o H, be

two set-valued maximal monotone mappings. Let {B,,} be a sequence in (0, 00), {a,,} < (0,1),

Page 11 of 20
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and {p,} C (0,2/(||A]|? + 2)). Let Q be the solution set of (SEVIP) and suppose that Q # .
Let {x,} be defined by

Kn+l = ]gj [(1 - anpn)xn - ;OnA* (I _Igj)Axn]
for each n € N. Assume that:

[e¢]
Zanp,, = 00, liminfp, >0 and liminfg,>0.
n=1

lim a, =0,
n—00 n— 00

n—00

Then lim,_, oo X, = X, where x = Pg0, i.e., X is the minimal norm solution of (SEVIP).

Proof Let x = Pg0. Take any w € 2 and let w be fixed. Then we know that

”xn+l - W”
L= - (122 ] ]
= 5[ = @npn)n — puA™ (I = J52) A ] Tt [w = puA™ (I = T2 ) AW]|

< 5 = @upn)tn — puA* (I = J52) Axn] = J5 [ = @npu)w — puA* (I -T2 ) AW] |

T (= anpm)w — puA* (I = ]2 ) Aw] — T2 [w = puA* (I - ]2 ) Aw]|

n

+|

<A -awp)llx, = wll + anpullwl

for each n € N. Then {x,} is a bounded sequence. Further, we have

o — w?

= Va0 = @upun = pud (= J2) Axa] = T [w = pud” (1 = T2 ) Aw] |

< [ = @non)tn = puA* (I = T2 )A%s] = [w = puA* (I - T52) AW] |
= [0 = puA" (1= J52) A,] = [w = pu A (I = T52) AW] = e
= [0 = puA™ (1= J52) Ax,] = [w = A" (1= J2) Aw] |

= 2[00 = PaA™ (I = T2 ) A = [w = A" (1= T2 Aw], )

2
+ Ay |1 %5 |

for each n € N. By (4.1) and Lemma 2.6,

[1%41 — W||2
< 12w = Wi = (200 = P2IANP) | (1 - T52) A — (1 - T52) AW
= 2,0 [n = ™ (I = T2 ) Aea] = [w = pu A" (I = ]2 ) AW], )

2
+ @y 1%l

< N = wI? = (2w — P2 IAI) | Ay ~ T2 A" + @l

+ 20| [0 = A" (1= T32) A ] = [w = pud” (I = T2 ) Aw] | - 1]


http://www.fixedpointtheoryandapplications.com/content/2013/1/350

Chuang Fixed Point Theory and Applications 2013, 2013:350
http://www.fixedpointtheoryandapplications.com/content/2013/1/350

< % = wI? = (2 — P2 IAI) | Ay — T2 A * + @l

+ 20,05 [1%0 — Wl - %l
for each n € N. By (4.1)-(4.2), Lemma 2.4, we know that

” (1= @n0n)%, — pnA*(I _]/?:)Axn — Xn+l ||2 + ”xwrl - W||2
< | = anpu)n — puAd* (I = J52) Aty — w]*
= || = anpu)xn — puA*(I —];]333 JAx, —w + p, A (I —]‘EZ)AWH2

2 2
= ||xn - W” + 2ﬂnpn||xn - W” : ”xn” + ﬂnpnnxn”

for each n € N. Next, we know that

” (1= @ 0n)%, — pnA*(I _]g: )Axn — Xn+l ”2
= |lxn _xn+1”2 + “ﬂnpnxn + pnA* (1 _Igj)Axn ||2

- 2<xn — Xn+1> A Pu¥Xn + IOnA* (1 - ]gj)Axn>
for each n € N, and
||xn+1 - ]gnlxn ||
= 7 [ = @t = A" (1 = T2 ) Asea] = Tt
<[ = @npun)sn — puA* (I = T52) An] = x|

< anpullXnll + on ”A>k (I _]Bj)Ax” H

B
< anpull®all + pull Al - |Axy — 5> Ay |
for each n € N. Further, we have

=2
ll%41 — ||

= ”]g; [(1 - anpn)xn - pnA* (1 —]gj )Axn] - 9_6”2

< (A= @up)tn = PuA* (I = J52) Ay — % + puA™ (I = ]2 ) AR, 01 — X)

= (1= 3Pty — PuA (I = J52) A%ty — (1= @np)% + puA™ (I = J52 ) AR, Xpi1 — )

— ApPn <9_Cr Xn+l — 7_C>
for each n € N. Hence,

=2
ll%41 — ||

Page 13 of 20

(4.4)

(4.5)

(4.6)

= H(l - anpn)xn - pnA* ([ _jﬁBj)Axn - (1 - anpn);c + IOVIA* (I _jgj)A;C” ) ||xn+1 _‘7_6”

+ A P (—%, X1 — X)

<A -ane)llxy =% - [1%041 — Xl + @ 0n {—%, X1 — X)
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_ 2
< (1-a,pn)

1
- 2 - 2 - -
= 2 ”xn _x” + 5 ”xn+l _x” + dynPn (_xrxn+l _x>

< (1 —E ) o =17 + 5 ot = F1P + @0y (5 3
for each # € N. This implies that
%01 = 2% < (1= @np) 10 = X1 + 2000 (~5%, %1 — X) (4.7)
for each n € N.
Case 1: There exists a natural number N such that ||x,.1 — X|| < ||x, —X|| for each n > N.

So, lim,,_,  ||%,; — X|| exists.

Hence, it follows from lim,,_, o ||x,, — X|| exists and (4.2) that

lim (20, - p2IA|1%) || Axn — J 52 Ax, |*=o. (4.8)
n—00
Clearly,
20A1° 40,
200 = P2IAN? = pu(2 = pullAIP) = pal 2 - = . 4.9
on = PAIANIP = pa(2 = pull ||)_p< AP<2) AP sz (4.9)

By assumption, (4.8), and (4.9),
lim || Ax, — ]2 A, | = 0. (4.10)

Without loss of generality, we may assume that 8, > 8 > 0 for each n € N. By (4.10) and
Lemma 2.4,

lim || Ax, - J5>Ax,| = 0. (4.11)
n—00

By assumption, (4.5), and (4.10),
lim [|x.1 /g% = 0. (4.12)
n—00

By assumption, lim,_,  ||x, — || exists, {x,} is a bounded sequence, and (4.3), we know
that

lim [|(1 = @upn)x — puA” (I = J52) A%y = Znsa | = 0. (4.13)
n—0oQ
Clearly,
| @noun + ouA™ (I = J52) A || < @npullall + pullAll - Ay — T3> A (4.14)
for each n € N. By assumption, (4.10), and (4.14),

lim ”a,,,o,,x,, + p,,A*(I —]E:)Ax,, H =0. (4.15)

n—00
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By (4.15),

lim (x,, — Xpe1s G Prn + p,,A*(I —]gj )Ax,,) =0. (4.16)

n—00

By (4.4), (4.13), (4.15), and (4.16), we know that
lim %41 — x4l = 0. (417)
n—0oQ

By (4.12) and (4.17),
lim %, — J§' %] = 0. (4.18)

Since {x,} is a bounded sequence, there exists a subsequence {%n;} of {x,,} such that Xy, — 2
for some z € H; and

lim sup(—x,x,;; — %) = lim (=%, %y — X) = (=%, 2 — X).
n—00 n—00

Then Ax,; — Az € H,. By (4.11), (4.18), Lemma 2.2, and Lemma 2.4, we know that z €
B;'(0) and Az € B;%(0). That is, z € Q. By Lemma 2.3,

lim sup(—x,x,;1 — %) = (—-%,z—x) <O0. (4.19)

n—00

By (4.7), (4.19), and Lemma 2.8, we know that lim,,_, » x,, = X, where x = Pg0.
Case 2: Suppose that there exists {#;} of {n} such that ||x,, — %| < ||x,,41 —x| forall i € N.
By Lemma 2.7, there exists a nondecreasing sequence {m1} in N such that my — oo,

% = XN < Mer =21 and  |lax = %[ < [[Kmge1 — X (4.20)
for each k € N. By (4.2), we have

e = %I
< o = FI” = (20 = P 1AI®) [ A =52, A [

+ Ay Py %y ”2 + 20 Py %, = X -+ 1%, || (4.21)
for each k € N. By (4.20) and (4.21),
2 2 B, 2
(20m; = P MAIP) [ Aty =T A |

=12 =112 2 =
< 1%y = X7 = 1%mge1 = XN + Gy Lo [ Emg 1™ + 2 0y 1%y, = XN - 1% |

= Ay Py, ”xmk ”2 + 2amkpmk ”xmk - x|l - ”xmk I (4.22)
for each k € N. Then following the same argument as the above, we know that

lim Az, =2 A | =0, (4.23)

Page 15 of 20
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kli)rglO”Axmk —]ngxmk || =0, (4.24)
lim [0~ T, Ao, | = 0. (4.25)
By (4.3),

B 2
” (1- ﬂmkpmk)xmk - pmkA*( _]531]( )Axmk — Xy +1 ”
- T YL T 2
= ||xmk x|l ||xmk+1 x|I” + amkpmknxmk x|l ”xmk” +“mkpmk||xmk”

=< 2ﬂmk,0mk ”xmk —x| - ”xmk Il + Ay Py ”xmk ”2 (4.26)
for each k € N. This implies that
i N By 2
kilgo || (1 - amk pmk)xmk - pmkA (1 - ]ﬁmk )Axmk - xmk+1 || =0. (427)

Following the same argument as the above, we know that

. . B
Jim 201 = 2 |l = Tim e =T, X | =0 (4.28)
and
lim sup(—x, X1 — %) = (—x%,z—x) < 0. (4.29)
k—o00

By (4.7) and (4.20),

=12 =12 =12 = =
Ay Py ”xmk _x” = ”xmk _x” - ”xmk+l _x” + 2“mkpmk <_x’xmk+1 _x>

= 28y Py (% X1 — X)

for each k € N. This implies that

1%, = ZII* < 2(=%, X1 — %) (4.30)
for each k € N. By (4.29) and (4.30),

klgglo 1%, — %]l = 0. (4.31)
By (4.28) and (4.31),

M %y = x| < Hm o = Xl + Hm 2, —x[| = 0. (4.32)
By (4.20) and (4.32),

kll)nolo llxx — x| = 0. (4.33)

Therefore, the proof is completed. d
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5 Applications: (SFOP) and (SFP)
We get the following results by Theorems 3.1 and 3.2, respectively.

Theorem 5.1 Let Hy and H, be two real Hilbert spaces, A : H — H, be a linear and
bounded operator, and let A* denote the adjoint of A. Let f : HL — R and g : H, — R be
two proper lower semicontinuous and convex functions. Let {a,}, {b,}, {c,}, and {d,} be
sequences of real numbers in [0,1] witha, + b, + ¢, +d, =1 and 0 < a, <1 for each n € N.
Let {B,} be a sequence in (0,00). Let {v,,} be a bounded sequence in H. Let u € H be fixed.
Let {p,} C (0, \IM\LZH)' Let Q2 be the solution set of (SFOP) and suppose that Q # (. Let {x,}

be defined by

Y = arg minep, (g(2) + 55112 — Axall?},
Zn = % — PnA" (AXy — Yn),

Wy = argminyem, (f ) + 55, 1y — zal*),
Kpil = Al + by, + oWy, +d,v,, neN.

Assume that:
(i) lim,— o0 ay = lim,_, Z—Z =0; ) 02y =005 Y ooy dy < 00;
(if) liminf,_ » ¢, 0, > 0; liminf,_, o b,c, > 0; liminf,_, o, B, > 0.
Then lim,,_, o, x,, = X, where x = Pqu.

Theorem 5.2 Let Hy and Hy be two real Hilbert spaces, A : Hy — Hj be a linear and
bounded operator, and let A* denote the adjoint of A. Let f : Hi — R and g : Hy — R be
two proper lower semicontinuous and convex functions. Let {a,}, {b,}, and {c,} be sequences
of real numbers in [0,1] with a, + b, + ¢, =1 and 0 < a, <1 for each n € N. Let {B,} be a
sequence in (0,00). Let {v,} be a bounded sequence in H. Let u € H be fixed. Let {p,}
(0, IIMLZH)' Let Q2 be the solution set of (SFOP) and suppose that Q # (. Let {x,} be defined

by

Yy = arg mingepy, {g(2) + ﬁ llz — Ax, |1,
Zy =Xy — pnA*(Ale _yl’l)’
W, = argminyep {f () + ﬁ”y—znﬂz},

Kpal = Al + by + oWy + v, mneN.

Assume that lim,_ooa, = 0, Y voyay = 00, Y oot Ivall < 00, liminf,_oochp, > 0,
liminf,_, o b,c, > 0, liminf,_, o B, > 0. Then lim,,_, o, x,, = X, where x = Pqu.

By Theorem 4.1, we get the following result.

Theorem 5.3 Let H; and H, be two real Hilbert spaces, A : Hy — H, be a linear and
bounded operator, and let A* denote the adjoint of A. Let f : Hy — R and g : Hy — R be
two proper lower semicontinuous and convex functions. Let {B,} be a sequence in (0,00),
{a,} € (0,1), and {p,} € (0,2/(|A||? + 2)). Let Q be the solution set of (SFOP) and suppose
that Q # 0. Let {x,} be defined by

Y = AT MiNgers, (g(2) + 35~ 112 = Axa %),
Zn = (1= anpn)%n — PuA*(Axy = Y1),
Xne1 = argMingeps {€0) + 5 1y = 24l*), meN.
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Assume that lim,,_, » a, = 0, Zf’il a,p, = 00, liminf,_, o p, > 0, and liminf,_, o, B, > 0.
Then lim,,_, o x,, = X, where x = Pg0, i.e., X is the minimal norm solution of (SFOP).

Let H be a Hilbert space and let g be a proper lower semicontinuous convex function of
H into (—00, 00). Then the subdifferential dg of g is defined as follows:

dgx) = {ze H:g(x) + (z,y —x) <g(y), ¥y € H}

for all x € H. Let C be a nonempty closed convex subset of a real Hilbert space H, and i¢
be the indicator function of C, i.e.,

. 0 ifxeC,
lcx = .
oo ifxéC.

Further, we also define the normal cone Ncu of C at u as follows:
Ncu = {zeH: (z,v—u) <0,Yve C}.

Then ic is a proper lower semicontinuous convex function on H, and the subdifferential
dic of ic is a maximal monotone operator. So, we can define the resolvent J; © of dic for
A>0,ie.,

JiCx = I+ Adic)
for all x € H. By definitions, we know that

dicx = {z€H:icx+ (z,y—x) <icy,Vy € H}
={zeH:(z,y-x) <0,V¥ye C}

= ch

for all x € C. Hence, for each 8 > 0, we have that

u=Jyx & xeu+pPdicu & x-uepPNcu

& (x-—u,y-u)<0, VyeC

& u=Pcex.
Hence, we have the following result by Theorem 3.2.

Theorem 5.4 Let C and Q be two nonempty closed convex subsets of Hy and H,, respec-
tively. Let A : Hy — Hy be a linear and bounded operator, and let A* denote the adjoint
of A. Let {ay,}, {b,}, and {c,} be sequences of real numbers in [0,1] with a, + b, + ¢, =1 and
0 <a, <1 foreachn e N. Let {B,} be a sequence in (0,00). Let {v,,} be a bounded sequence
inH.Letu € H befixed. Let {p,,} < (0, WLZH). Let 2 be the solution set of (SFP) and suppose
that Q # . Let {x,} be defined by

KXpsl = Aplh + byx, + c,Pc [xn — P A% - PQ)Axn] + v,
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for each n € N. Assume that lim,_.cca, = 0, Y ooy a, = 00, liminf,_.c ¢,0, > 0, and

liminf,_, o b,¢, > 0. Then lim,,_, o, x,, = X, where x = Pqu.

By Theorem 4.1, we get the following result.

Theorem 5.5 Let C and Q be two nonempty closed convex subsets of H; and H,, respec-

tively. Let A : Hi — Hj be a linear and bounded operator, and let A* denote the adjoint
of A. Let {B,,} be a sequence in (0,00), {a,} € (0,1), and {p,} < (0,2/(|A||> +2)). Let Q be
the solution set of (SFP) and suppose that Q2 # (. Let {x,} be defined by

%ne1 1= Pc[(1 = @npn)xn — pud* (I - Po)Ax, |

for each n € N. Assume that lim,_, . a, = 0, ZZZI aupy = 00, liminf,_, o p, > 0, and

liminf, . B, > 0. Then lim,_, » x, = X, where x = PO, i.e., x is the minimal norm solu-
tion of (SFP).

Remark 5.1 Theorem 5.5 improves some conditions of [13, Theorem 5.5].
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