
Chuang Fixed Point Theory and Applications 2013, 2013:350
http://www.fixedpointtheoryandapplications.com/content/2013/1/350

RESEARCH Open Access

Strong convergence theorems for the split
variational inclusion problem in Hilbert
spaces
Chih-Sheng Chuang*

*Correspondence:
cschuang1977@gmail.com
Department of Applied
Mathematics, National Sun Yat-sen
University, Kaohsiung, Taiwan

Abstract
In this paper, we first consider a split variational inclusion problem and give several
strong convergence theorems in Hilbert spaces, like the Halpern-Mann type iteration
method and the regularized iteration method. As applications, we consider the
algorithms for a split feasibility problem and a split optimization problem and give
strong convergence theorems for these problems in Hilbert spaces. Our results for the
split feasibility problem improve the related results in the literature.
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1 Introduction
In , the split feasibility problem in finite dimensional Hilbert spaces was first intro-
duced by Censor and Elfving [] for modeling inverse problems which arise frommedical
image reconstruction. Since then, the split feasibility problemhas receivedmuch attention
due to its applications in signal processing, image reconstruction, approximation theory,
control theory, biomedical engineering, communications, and geophysics. For examples,
one can refer to [–] and related literature.
We know that the split feasibility problem can be formulated as the following problem:

(SFP) Find x̄ ∈H such that x̄ ∈ C and Ax̄ ∈Q,

where C and Q are nonempty closed convex subsets of Hilbert spaces H and H, respec-
tively, and A : H → H is an operator. It is worth noting that a special case of problem
(SFP) is the convexly constrained linear inverse problem in the finite dimensional Hilbert
space []:

(CLIP) Find x̄ ∈ C such that Ax̄ = b,where b ∈H.

Originally, problem (SFP) was considered in Euclidean spaces. (Note that if H and H

are two Euclidean spaces, thenA is a matrix.) In , problem (SFP) in finite dimensional
Hilbert spaces was first introduced by Censor and Elfving [] for modeling inverse prob-
lems which arise from medical image reconstruction. Since then, many researchers have
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studied (SFP) in finite dimensional or infinite dimensional Hilbert spaces. For example,
one can see [, –] and related literature.
In , Byrne [] first introduced the following recursive procedure:

xn+ = PC
(
xn – ρnA∗(I – PQ)Axn

)
, (.)

where the stepsize τn is chosen in the interval (, /‖A‖), and PC and PQ are the metric
projections ontoC ⊆R

n andQ ⊆R
m, respectively. This algorithm is called CQ algorithm.

Note that A may be not invertible. In , Wang and Xu [] modified Byrne’s CQ algo-
rithm and gave a weak convergence theorem in infinite dimensional Hilbert spaces.
In , motivated by the works on CQ algorithm (.), Yang [] considered (SFP) un-

der the following conditions:

C :=
{
x ∈R

n : c(x) ≤ 
}

and Q :=
{
x ∈R

m : q(x)≤ 
}
,

where c : Rn → R and q : Rm → R are convex and lower semicontinuous functions. In
fact, Yang [] studied the following problem, and we call this problem the relaxed split
feasibility problem:

(RSFP) Find x̄ ∈R
n such that c(x̄)≤  and q(Ax̄) ≤ .

In , Xu [] modified and extended Yang’s algorithm and gave a weak convergence
theorem in infinite dimensional Hilbert spaces.
On the other hand, let H be a real Hilbert space, and B be a set-valued mapping with

domain D(B) := {x ∈ H : B(x) �= ∅}. Recall that B is called monotone if 〈u – v,x – y〉 ≥  for
any u ∈ Bx and v ∈ By; B is maximal monotone if its graph {(x, y) : x ∈ D(B), y ∈ Bx} is not
properly contained in the graph of any other monotone mapping. An important problem
for set-valuedmonotonemappings is to find x̄ ∈H such that  ∈ Bx̄. Here, x̄ is called a zero
point of B. A well-known method for approximating a zero point of a maximal monotone
mapping defined in a real Hilbert space is the proximal point algorithm first introduced
by Martinet [] and generated by Rockafellar []. This is an iterative procedure, which
generates {xn} by x = x ∈ H and

xn+ = JBβnxn, n ∈N, (.)

where {βn} ⊆ (,∞), B is a maximal monotone mapping in a real Hilbert space, and JBr is
the resolvent mapping of B defined by JBr = (I + rB)– for each r > . In , Rockafellar
[] proved the following in theHilbert space setting: If the solution set B–() is nonempty
and lim infn→∞ βn > , then the sequence {xn} in (.) converges weakly to an element of
B–(). In particular, if B is the subdifferential ∂f of a proper lower semicontinuous and
convex function f :H →R, then (.) is reduced to

xn+ = argmin
y∈H

{
f (y) +


βn

‖y – xn‖
}
, n ∈N. (.)

In this case, {xn} converges weakly to a minimizer of f . Later, many researchers have stud-
ied the convergence theorems of the proximal point algorithm in Hilbert spaces. For ex-
amples, one can refer to [–] and references therein.
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Let H and H be two real Hilbert spaces, B : H � H and B : H � H be two set-
valued maximal monotone mappings, A :H →H be a linear and bounded operator, and
A∗ be the adjoint of A. In this paper, motivated by the works in [, ] and related litera-
ture, we consider the following split variational inclusion problem:

(SFVIP) Find x̄ ∈H such that  ∈ B(x̄) and  ∈ B(Ax̄).

Clearly, we know that the following split variational inclusion problem (SFVIP) is a gen-
eralization of variational inclusion problem. Further, we observed that problem (SFVIP)
was introduced by Moudafi [], and Moudafi [] gave a weak convergence theorem for
problem (SFVIP). The following is an iteration process given by Moudafi []:

xn+ := JBλ

(
xn + γA∗(JBλ – I

)
Axn

)
.

It is worth noting that λ and γ are fixed numbers. Hence, it is important to establish
generalized iteration processes and the related strong convergence theorems for problem
(SFVIP).
Besides, we know that the following problems are special cases of problem (SFVIP).
(SFOP) Find x̄ ∈H such that f (x̄) =miny∈H f (y) and g(Ax̄) =miny∈H g(z), where

f :H →R and g :H →R are two proper, lower semicontinuous, and convex
functions.

(SFP) Find x̄ ∈H such that x̄ ∈ C and Ax̄ ∈Q, where C and Q are two nonempty
closed convex subsets of real Hilbert spaces H and H, respectively.

In this paper, we first consider a split variational inclusion problem and give several
strong convergence theorems in Hilbert spaces, like the Halpern-Mann type iteration
method, the regularized iteration method. As applications, we consider algorithms for
a split feasibility problem and a split optimization problem and give strong convergence
theorems for these problems in Hilbert spaces. Our results for the split feasibility problem
improve the related results in the literature.

2 Preliminaries
Throughout this paper, let N be the set of positive integers and let R be the set of real
numbers. Let H be a (real) Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖,
respectively.We denote the strong convergence and the weak convergence of {xn} to x ∈ H
by xn → x and xn ⇀ x, respectively. From [], for each x, y ∈H and λ ∈ [, ], we have

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖.

Hence, we also have

〈x – y,u – v〉 = ‖x – v‖ + ‖y – u‖ – ‖x – u‖ – ‖y – v‖

for all x, y,u, v ∈H . Furthermore, we know that

‖αx + βy + γ z‖ = α‖x‖ + β‖y‖ + γ ‖z‖ – αβ‖x – y‖ – αγ ‖x – z‖ – βγ ‖y – z‖

for each x, y, z ∈H and α,β ,γ ∈ [, ] with α + β + γ =  [].
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Lemma . [] Let H be a (real) Hilbert space, and let x, y ∈ H . Then ‖x + y‖ ≤ ‖x‖ +
〈y,x + y〉.

Let C be a nonempty closed convex subset of a real Hilbert space H , and let T : C → H
be a mapping. Let Fix(T) := {x ∈ C : Tx = x}. Then T is said to be a nonexpansive mapping
if ‖Tx – Ty‖ ≤ ‖x – y‖ for every x, y ∈ C. T is said to be a quasi-nonexpansive mapping
if Fix(T) �= ∅ and ‖Tx – y‖ ≤ ‖x – y‖ for every x ∈ C and y ∈ Fix(T). It is easy to see that
Fix(T) is a closed convex subset of C if T is a quasi-nonexpansive mapping. Besides, T is
said to be a firmly nonexpansive mapping if ‖Tx–Ty‖ ≤ 〈x– y,Tx–Ty〉 for every x, y ∈ C,
that is, ‖Tx – Ty‖ ≤ ‖x – y‖ – ‖(I – T)x – (I – T)y‖ for every x, y ∈ C.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T : C → H be a nonexpansive mapping, and let {xn} be a sequence in C. If xn ⇀ w and
limn→∞ ‖xn – Txn‖ = , then Tw = w.

Let C be a nonempty closed convex subset of a real Hilbert space H . Then, for each
x ∈ H , there is a unique element x̄ ∈ C such that ‖x – x̄‖ = miny∈C ‖x – y‖. Here, we set
PCx = x̄ and PC is said to be the metric projection from H onto C.

Lemma . [] Let C be a nonempty closed convex subset of a Hilbert space H . Let PC be
the metric projection from H onto C. Then, for each x ∈H and z ∈ C, we know that z = PCx
if and only if 〈x – z, z – y〉 ≥  for all y ∈ C.

The following result is an important tool in this paper. For similar results, one can
see [].

Lemma . Let H be a real Hilbert space. Let B :H �H be a set-valued maximal mono-
tone mapping, β > , and let JBβ be a resolvent mapping of B.

(i) For each β > , JBβ is a single-valued and firmly nonexpansive mapping;
(ii) D(JBβ ) =H and Fix(JBβ ) = {x ∈D(B) :  ∈ Bx};
(iii) ‖x – JBβ x‖ ≤ ‖x – JBγ x‖ for all  < β ≤ γ and for all x ∈ H ;
(iv) (I – JBβ ) is a firmly nonexpansive mapping for each β > ;
(v) Suppose that B–() �= ∅. Then ‖x – JBβ x‖ + ‖JBβ x – x̄‖ ≤ ‖x – x̄‖ for each x ∈ H ,

each x̄ ∈ B–(), and each β > .
(vi) Suppose that B–() �= ∅. Then 〈x – JBβ x, JBβ x –w〉 ≥  for each x ∈H and each

w ∈ B–(), and each β > .

Lemma . Let H and H be two real Hilbert spaces, A : H → H be a linear operator,
and A∗ be the adjoint of A, and let β >  be fixed. Let B :H �H be a set-valuedmaximal
monotone mapping, and let JBβ be a resolvent mapping of B. Let T :H → H be defined by
Tx := A∗(I – JBβ )Ax for each x ∈ H. Then

(i) ‖(I – JBβ )Ax – (I – JBβ )Ay‖ ≤ 〈Tx – Ty,x – y〉 for all x, y ∈H;
(ii) ‖A∗(I – JBβ )Ax –A∗(I – JBβ )Ay‖ ≤ ‖A‖ · 〈Tx – Ty,x – y〉 for all x, y ∈H.

Proof (i) By Lemma .,

〈Tx – Ty,x – y〉 = 〈
A∗(I – JBβ

)
Ax –A∗(I – JBβ

)
Ay,x – y

〉
=

〈(
I – JBβ

)
Ax –

(
I – JBβ

)
Ay,Ax –Ay

〉
≥ ∥∥(

I – JBβ
)
Ax –

(
I – JBβ

)
Ay

∥∥
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for all x, y ∈ H. (ii) Further, we have

∥∥A∗(I – JBβ
)
Ax –A∗(I – JBβ

)
Ay

∥∥ ≤ ‖A‖ · ∥∥(
I – JBβ

)
Ax –

(
I – JBβ

)
Ay

∥∥

≤ ‖A‖ · 〈Tx – Ty,x – y〉

for all x, y ∈ H. Therefore, the proof is completed. �

Lemma . Let H and H be two real Hilbert spaces, A : H → H be a linear operator,
and A∗ be the adjoint of A, and let β >  be fixed, and let ρ ∈ (, 

‖A‖ ). Let B :H �H be
a set-valued maximal monotone mapping, and let JBβ be a resolvent mapping of B. Then

∥∥[
x – ρA∗(I – JBβ

)
Ax

]
–

[
y – ρA∗(I – JBβ

)
Ay

]∥∥

≤ ‖x – y‖ – (
ρ – ρ‖A‖)∥∥(

I – JBβ

)
Ax –

(
I – JBβ

)
Ay

∥∥

for all x, y ∈H. Furthermore, I – ρA∗(I – JBβ )A is a nonexpansive mapping.

Proof For all x, y ∈H, we have

∥∥[
x – ρA∗(I – JBβ

)
Ax

]
–

[
y – ρA∗(I – JBβ

)
Ay

]∥∥

= ‖x – y‖ – ρ
〈
x – y,A∗(I – JBβ

)
Ax –A∗(I – JBβ

)
Ay

〉
+ ρ∥∥A∗(I – JBβ

)
Ax –A∗(I – JBβ

)
Ay

∥∥

= ‖x – y‖ – ρ
〈
Ax –Ay,

(
I – JBβ

)
Ax –

(
I – JBβ

)
Ay

〉
+ ρ∥∥A∗(I – JBβ

)
Ax –A∗(I – JBβ

)
Ay

∥∥. (.)

Hence, it follows from (.) and Lemma . that

∥∥[
x – ρA∗(I – JBβ

)
Ax

]
–

[
y – ρA∗(I – JBβ

)
Ay

]∥∥

≤ ‖x – y‖ – ρ
∥∥(
I – JBβ

)
Ax –

(
I – JBβ

)
Ay

∥∥

+ ρ∥∥A∗(I – JBβ

)
Ax –A∗(I – JBβ

)
Ay

∥∥

≤ ‖x – y‖ – (
ρ – ρ‖A‖)∥∥(

I – JBβ

)
Ax –

(
I – JBβ

)
Ay

∥∥

for all x, y ∈ H. Therefore, the proof is completed. �

The following is a very important result for various strong convergence theorems. Re-
cently, many researchers have studied Halpern’s type strong convergence theorems by us-
ing the following lemma and got many generalized results. For examples, one can see [,
]. In this paper, we also use this result to get our strong convergence theorems, and our
results for the split feasibility problem improve the results in the literature.

Lemma . [] Let {an} be a sequence of real numbers such that there exists a subse-
quence {ni} of {n} such that ani < ani+ for all i ∈ N. Then there exists a nondecreasing
sequence {mk} ⊆ N such that mk → ∞, amk ≤ amk+ and ak ≤ amk+ are satisfied by all
(sufficiently large) numbers k ∈ N. In fact,mk =max{j ≤ k : aj < aj+}.
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Lemma. [] Let {an}n∈N be a sequence of nonnegative real numbers, {αn} be a sequence
of real numbers in [, ] with

∑∞
n= αn =∞, {un} be a sequence of nonnegative real numbers

with
∑∞

n= un < ∞, {tn} be a sequence of real numbers with lim sup tn ≤ . Suppose that
an+ ≤ ( – αn)an + αntn + un for each n ∈N. Then limn→∞ an = .

3 Halpern-Mann type algorithmwith perturbations
In this section, we first give the following result.

Lemma. Let H andH be two realHilbert spaces,A :H → H be a linear and bounded
operator, and let A∗ denote the adjoint of A. Let B : H � H, and B : H � H be two
set-valued maximal monotone mappings, and let β >  and γ > . Given any x̄ ∈H.

(i) If x̄ is a solution of (SFVIP), then JBβ (x̄ – γA∗(I – JBβ )Ax̄) = x̄.
(ii) Suppose that JBβ (x̄ – γA∗(I – JBβn )Ax̄) = x̄ and the solution set of (SFVIP) is nonempty.

Then x̄ is a solution of (SFVIP).

Proof (i) Suppose that x̄ ∈ H is a solution of (SFVIP). Then x̄ ∈ B–
 () and Ax̄ ∈ B–

 ().
By Lemma ., it is easy to see that

JBβ

(
x̄ – γA∗(I – JBβ

)
Ax̄

)
= JBβ

(
x̄ – γA∗(Ax̄ – JBβ Ax̄

))
= JBβ (x̄) = x̄.

(ii) Suppose that w̄ is a solution of (SFVIP) and JBβ (x̄–γA∗(I– JBβ )Ax̄) = x̄. By Lemma .,

〈(
x̄ – γA∗(I – JBβ

)
Ax̄

)
– x̄, x̄ –w

〉 ≥  for each w ∈ B–
 ().

That is,

〈
A∗(I – JBβ

)
Ax̄, x̄ –w

〉 ≤  for each w ∈ B–
 (). (.)

By (.) and A∗ is the adjoint of A,

〈
Ax̄ – JBβ Ax̄,Ax̄ –Aw

〉 ≤  for each w ∈ B–
 (). (.)

On the other hand, by Lemma . again,

〈
Ax̄ – JBβ Ax̄, v – JBβ Ax̄

〉 ≤  for each v ∈ B–
 (). (.)

By (.) and (.),

〈
Ax̄ – JBβ Ax̄, v – JBβ Ax̄ +Ax̄ –Aw

〉 ≤  (.)

for each w ∈ B–
 () and each v ∈ B–

 (). That is,

∥∥Ax̄ – JBβ Ax̄
∥∥ ≤ 〈

Ax̄ – JBβ Ax̄,Aw – v
〉

(.)

for each w ∈ B–
 () and each v ∈ B–

 (). Since w̄ is a solution of (SFVIP), w̄ ∈ B–
 () and

Aw̄ ∈ B–
 (). So, it follows from (.) that Ax̄ = JBβ Ax̄. So, Ax̄ ∈ Fix(JBβ ) = B–

 (). Further,

x̄ = JBβ

(
x̄ – γA∗(I – JBβ

)
Ax̄

)
= JBβ (x̄).

Then x̄ ∈ Fix(JBβ ) = B–
 (). Therefore, x̄ is a solution of (SFVIP). �
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Theorem . Let H and H be two real Hilbert spaces, A : H → H be a linear and
bounded operator, and let A∗ denote the adjoint of A. Let B :H �H and B :H �H be
two set-valued maximal monotone mappings. Let {an}, {bn}, {cn}, and {dn} be sequences of
real numbers in [, ] with an + bn + cn + dn =  and  < an <  for each n ∈ N. Let {βn}
be a sequence in (,∞). Let {vn} be a bounded sequence in H . Let u ∈ H be fixed. Let
{ρn} ⊆ (, 

‖A‖+ ). Let 
 be the solution set of (SFVIP) and suppose that 
 �= ∅. Let {xn}
be defined by

xn+ := anu + bnxn + cnJBβn

[
xn – ρnA∗(I – JBβn

)
Axn

]
+ dnvn

for each n ∈ N. Assume that:
(i) limn→∞ an = limn→∞ dn

an = ;
∑∞

n= an =∞;
∑∞

n= dn < ∞;
(ii) lim infn→∞ cnρn > , lim infn→∞ bncn > , lim infn→∞ βn > .

Then limn→∞ xn = x̄, where x̄ = P
u.

Proof Let x̄ = P
u, where P
 is the metric projection from H onto 
. Then, for each
n ∈N, it follows from Lemma . that

‖xn+ – x̄‖
≤ an‖u – x̄‖ + bn‖xn – x̄‖ + dn‖vn – x̄‖

+ cn
∥∥JBβn

[
xn – ρnA∗(I – JBβn

)
Axn

]
– x̄

∥∥
≤ an‖u – x̄‖ + bn‖xn – x̄‖ + dn‖vn – x̄‖ + cn

∥∥[
xn – ρnA∗(I – JBβn

)
Axn

]
–

[
x̄ – ρnA∗(I – JBβn

)
Ax̄

]∥∥
≤ an‖u – x̄‖ + (bn + cn)‖xn – x̄‖ + dn‖vn – x̄‖.

This implies that {xn} is a bounded sequence. Besides, by Lemmas . and ., we have

∥∥JBβn

[
xn – ρnA∗(I – JBβn

)
Axn

]
– x̄

∥∥

≤ ∥∥[
xn – ρnA∗(I – JBβn

)
Axn

]
–

[
x̄ – ρnA∗(I – JBβn

)
Ax̄

]∥∥
≤ ‖xn – x̄‖ – (

ρn – ρ
n‖A‖)∥∥(

I – JBβn

)
Axn –

(
I – JBβn

)
Ax̄

∥∥

= ‖xn – x̄‖ – (
ρn – ρ

n‖A‖)∥∥(
I – JBβn

)
Axn

∥∥. (.)

Hence, it follows from Lemma . that

‖xn+ – x̄‖

=
∥∥anu + bnxn + cnJBβn

[
xn – ρnA∗(I – JBβn

)
Axn

]
+ dnvn – x̄

∥∥

≤ ∥∥bn(xn – x̄) + cn
(
JBβn

[
xn – ρnA∗(I – JBβn

)
Axn

]
– x̄

)
+ dn(vn – x̄)

∥∥

+ an〈u – x̄,xn+ – x̄〉
= ( – an)

∥∥b′
n(xn – x̄) + c′n

(
JBβn

[
xn – ρnA∗(I – JBβn

)
Axn

]
– x̄

)
+ d′

n(vn – x̄)
∥∥

+ an〈u – x̄,xn+ – x̄〉, (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/350
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where b′
n :=

bn
bn+cn+dn , c

′
n :=

cn
bn+cn+dn , d

′
n :=

dn
bn+cn+dn . Further, by (.) and (.), we have

‖xn+ – x̄‖

≤ bn‖xn – x̄‖ + cn
∥∥JBβn

[
xn – ρnA∗(I – JBβn

)
Ax

]
– x̄

∥∥ + dn‖vn – x̄‖

+ an〈u – x̄,xn+ – v〉 – bncn
∥∥xn – JBβn

[
xn – ρnA∗(I – JBβn

)
Ax

]∥∥

≤ bn‖xn – x̄‖ + cn
(‖xn – x̄‖ – (

ρn – ρ
n‖A‖)∥∥Axn – JBβn Axn

∥∥)
+ dn‖vn – x̄‖ + an〈u – x̄,xn+ – v〉 – bncn

∥∥xn – JBβn

[
xn – ρnA∗(I – JBβn

)
Ax

]∥∥

= (bn + cn)‖xn – x̄‖ + dn‖vn – x̄‖ + an〈u – x̄,xn+ – x̄〉
– cn

(
ρn – ρ

n‖A‖)∥∥Axn – JBβn Axn
∥∥

– bncn
∥∥xn – JBβn

[
xn – ρnA∗(I – JBβn

)
Ax

]∥∥. (.)

Since lim infn→∞ βn > , we may assume that βn > β >  for each n ∈N. Next, we consider
two cases.
Case : There exists a natural number N such that ‖xn+ – x̄‖ ≤ ‖xn – x̄‖ for each n≥N .

So, limn→∞ ‖xn – x̄‖ exists. Hence, it follows from (.) and (i) that

lim
n→∞ cn

(
ρn – ρ

n‖A‖)∥∥Axn – JBβn Axn
∥∥ = .

Clearly, cn(ρn – ρ
n‖A‖)≥ cnρn

‖A‖+ . Since lim infn→∞ cnρn > , we have

lim
n→∞

∥∥Axn – JBβn Axn
∥∥ = . (.)

By (.) and Lemma .,

lim
n→∞

∥∥Axn – JBβ Axn
∥∥ = . (.)

Similarly, we know that

lim
n→∞

∥∥xn – JBβn

[
xn – ρnA∗(I – JBβn

)
Axn

]∥∥ = . (.)

Further, there exists a subsequence {xnk } of {xn} such that xnk ⇀ z for some z ∈ C and

lim sup
n→∞

〈u – x̄,xn+ – x̄〉 = lim
k→∞

〈u – x̄,xnk – x̄〉 = 〈u – x̄, z – x̄〉. (.)

Clearly, Axnk ⇀ Az. By (.), Lemmas . and ., we know that Az ∈ B–
 (). Besides, it

follows from Lemma . that

∥∥JBβn

[
xn – ρnA∗(I – JBβn

)
Axn

]
– JBβn xn

∥∥ ≤ ρn‖A‖ · ∥∥Axn – JBβn Axn
∥∥. (.)

By (.) and (.),

lim
n→∞

∥∥JBβn

[
xn – ρnA∗(I – JBβn

)
Axn

]
– JBβn xn

∥∥ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/350


Chuang Fixed Point Theory and Applications 2013, 2013:350 Page 9 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/350

By (.) and (.),

lim
n→∞

∥∥xn – JBβn xn
∥∥ = . (.)

By (.) and Lemma .,

lim
n→∞

∥∥xn – JBβ xn
∥∥ = . (.)

Then it follows from (.) and Lemma . that z ∈ B–
 (). So, z is a solution of (SFVIP).

By (.) and Lemma .,

lim sup
n→∞

〈u – x̄,xn+ – x̄〉 ≤ . (.)

By assumptions, (.), (.), and Lemma ., we know that limn→∞ xn = x̄.
Case : Suppose that there exists {ni} of {n} such that ‖xni – x̄‖ ≤ ‖xni+ – x̄‖ for all i ∈N.

By Lemma ., there exists a nondecreasing sequence {mk} in N such that mk → ∞,

‖xmk – x̄‖ ≤ ‖xmk+ – x̄‖ and ‖xk – x̄‖ ≤ ‖xmk+ – x̄‖ (.)

for all k ∈N. By (.) and (.), we have

‖xmk – x̄‖
≤ ‖xmk+ – x̄‖

≤ (bmk + cmk )‖xmk – x̄‖ + dmk‖vmk – x̄‖ + amk 〈u – x̄,xmk+ – x̄〉
– cmk

(
ρmk – ρ

mk
‖A‖)∥∥Axmk – JBβmk

Axmk

∥∥

– bmk cmk

∥∥xmk – JBβmk

[
xmk – ρmkA

∗(I – JBβmk

)
Axmk

]∥∥. (.)

Following a similar argument as the proof of Case , we have

lim
k→∞

∥∥xmk – JBβmk

[
xmk – ρmkA

∗(I – JBβmk

)
Axmk

]∥∥ = , (.)

lim
k→∞

∥∥Axmk – JBβ Axmk

∥∥ = lim
k→∞

∥∥xmk – JBβ xmk

∥∥ =  (.)

and

lim sup
k→∞

〈u – x̄,xmk+ – x̄〉 ≤ . (.)

By (.),

‖xmk – x̄‖ ≤ dmk

amk

‖vmk – x̄‖ + 〈u – x̄,xmk+ – x̄〉. (.)

By assumption, (.), and (.),

lim
k→∞

‖xmk – x̄‖ = . (.)
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Besides, we have

‖xmk+ – xmk‖
≤ amk‖u – xmk‖ + cmk

∥∥xmk – JBβmk

[
xmk – ρmkA

∗(I – JBβmk

)
Axmk

]∥∥
+ dmk‖vmk – xmk‖. (.)

By assumptions, (.), and (.),

lim
k→∞

‖xmk+ – xmk‖ = . (.)

By (.) and (.),

lim
k→∞

‖xmk+ – x̄‖ = . (.)

By (.) and (.),

lim
k→∞

‖xk – x̄‖ = .

Therefore, the proof is completed. �

In Theorem ., if we set vn =  and dn =  for each n ∈ N, then we get the following
result.

Corollary . Let H and H be two real Hilbert spaces, A : H → H be a linear and
bounded operator, and let A∗ denote the adjoint of A. Let B :H �H and B :H �H

be two set-valued maximal monotone mappings. Let {an}, {bn}, and {cn} be sequences of
real numbers in [, ] with an + bn + cn =  and  < an <  for each n ∈ N. Let {βn} be a
sequence in (,∞). Let u ∈ H be fixed. Let {ρn} ⊆ (, 

‖A‖+ ). Let 
 be the solution set of
(SFVIP) and suppose that 
 �= ∅. Let {xn} be defined by

xn+ := anu + bnxn + cnJBβn

[
xn – ρnA∗(I – JBβn

)
Axn

]
for each n ∈ N. Assume that limn→∞ an = ,

∑∞
n= an = ∞, lim infn→∞ cnρn > ,

lim infn→∞ bncn > , and lim infn→∞ βn > . Then limn→∞ xn = x̄, where x̄ = P
u.

Further, we can get the following result by Corollary . and Lemma .. In fact, Corol-
lary . and Theorem . are equivalent.

Theorem . Let H and H be two real Hilbert spaces, A : H → H be a linear and
bounded operator, and let A∗ denote the adjoint of A. Let B :H �H and B :H �H

be two set-valuedmaximalmonotonemappings.Let {an}, {bn}, and {cn} be sequences of real
numbers in [, ] with an + bn + cn =  and  < an <  for each n ∈N. Let {βn} be a sequence
in (,∞). Let {vn} be a bounded sequence in H . Let u ∈H be fixed. Let {ρn} ⊆ (, 

‖A‖+ ). Let

 be the solution set of (SFVIP) and suppose that 
 �= ∅. Let {vn} be a bounded sequence.
Let {xn} be defined by

xn+ := anu + bnxn + cnJBβn

[
xn – ρnA∗(I – JBβn

)
Axn

]
+ vn
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for each n ∈ N. Assume that limn→∞ an = ,
∑∞

n= an =∞,
∑∞

n= ‖vn‖ <∞, lim infn→∞ cn ×
ρn > , lim infn→∞ bncn > , and lim infn→∞ βn > . Then limn→∞ xn = x̄, where x̄ = P
u.

Proof Let {yn} be defined by

yn+ := anu + bnyn + cnJBβn

[
yn – ρnA∗(I – JBβn

)
Ayn

]
.

By Corollary ., limn→∞ yn = x̄, where x̄ = P
u. Besides, we know that

‖xn+ – yn+‖
≤ cn

∥∥JBβn

[
xn – ρnA∗(I – JBβn

)
Axn

]
– JBβn

[
yn – ρnA∗(I – JBβn

)
Ayn

]∥∥
+ bn‖xn – yn‖ + ‖vn‖

≤ (bn + cn)‖xn – yn‖ + ‖vn‖
= ( – an)‖xn – yn‖ + ‖vn‖. (.)

By (.) and Lemma ., limn→∞ ‖xn – yn‖ = . So, limn→∞ xn = x̄, where x̄ = P
u. There-
fore, the proof is completed. �

4 Regularizedmethod for (SFVIP)
Lemma. LetH andH be two realHilbert spaces,A :H →H be a linear and bounded
operator, and let A∗ denote the adjoint of A. Let B :H �H and B :H �H be two set-
valued maximal monotone mappings. Let β > , a ∈ (, ), and ρ ∈ (, /(‖A‖ + )). Then

∥∥JBβ

[
( – aρ)x– ρA∗(I – JBβ

)
Ax

]
– JBβ

[
( – aρ)y– ρA∗(I – JBβ

)
Ay

]∥∥ ≤ ( – aρ)‖x– y‖

for all x, y ∈H.

Proof For each x, y ∈H, it follows from Lemma . and Lemma . that

∥∥JBβ

(
( – aρ)x – ρA∗(I – JBβ

)
Ax

)
– JBβ

(
( – aρ)y – ρA∗(I – JBβ

)
Ay

)∥∥

≤ ∥∥( – aρ)(x – y) – ρ
(
A∗(I – JBβ

)
Ax –A∗(I – JBβ

)
Ay

)∥∥

= ( – aρ)‖x – y‖ – ( – aρ)ρ
〈
x – y,A∗(I – JBβ

)
Ax –A∗(I – JBβ

)
Ay

〉
+ ρ∥∥A∗(I – JBβ

)
Ax –A∗(I – JBβ

)
Ay

∥∥

≤ ( – aρ)‖x – y‖ – ( – αnρ)ρ


‖A‖
∥∥A∗(I – JBβ

)
Ax –A∗(I – JBβ

)
Ay

∥∥

+ ρ∥∥A∗(I – JBβ

)
Ax –A∗(I – JBβ

)
Ay)

∥∥.

If ρ ∈ (, /‖A‖ + ), then ( – aρ)ρ(/‖A‖) ≥ ρ. This implies that the conclusion of
Lemma . holds. �

Theorem . Let H and H be two real Hilbert spaces, A : H → H be a linear and
bounded operator, and let A∗ denote the adjoint of A. Let B :H �H and B :H �H be
two set-valuedmaximalmonotonemappings.Let {βn} be a sequence in (,∞), {an} ⊆ (, ),
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and {ρn} ⊆ (, /(‖A‖ + )). Let 
 be the solution set of (SFVIP) and suppose that 
 �= ∅.
Let {xn} be defined by

xn+ := JBβn

[
( – anρn)xn – ρnA∗(I – JBβn

)
Axn

]
for each n ∈ N. Assume that:

lim
n→∞an = ,

∞∑
n=

anρn =∞, lim inf
n→∞ ρn >  and lim inf

n→∞ βn > .

Then limn→∞ xn = x̄, where x̄ = P
, i.e., x̄ is the minimal norm solution of (SFVIP).

Proof Let x̄ = P
. Take any w ∈ 
 and let w be fixed. Then we know that

‖xn+ –w‖
=

∥∥JBβn

[
( – anρn)xn – ρnA∗(I – JBβn

)
Axn

]
–w

∥∥
=

∥∥JBβn

[
( – anρn)xn – ρnA∗(I – JBβn

)
Axn

]
– JBβn

[
w – ρnA∗(I – JBβn

)
Aw

]∥∥
≤ ∥∥JBβn

[
( – anρn)xn – ρnA∗(I – JBβn

)
Axn

]
– JBβn

[
( – anρn)w – ρnA∗(I – JBβn

)
Aw

]∥∥
+

∥∥JBβn

[
( – anρn)w – ρnA∗(I – JBβn

)
Aw

]
– JBβn

[
w – ρnA∗(I – JBβn

)
Aw

]∥∥
≤ ( – anρn)‖xn –w‖ + anρn‖w‖

for each n ∈ N. Then {xn} is a bounded sequence. Further, we have

‖xn+ –w‖

=
∥∥JBβn

[
( – anρn)xn – ρnA∗(I – JBβn

)
Axn

]
– JBβn

[
w – ρnA∗(I – JBβn

)
Aw

]∥∥

≤ ∥∥[
( – anρn)xn – ρnA∗(I – JBβn

)
Axn

]
–

[
w – ρnA∗(I – JBβn

)
Aw

]∥∥

=
∥∥[
xn – ρnA∗(I – JBβn

)
Axn

]
–

[
w – ρnA∗(I – JBβn

)
Aw

]
– anρnxn

∥∥

=
∥∥[
xn – ρnA∗(I – JBβn

)
Axn

]
–

[
w – ρnA∗(I – JBβn

)
Aw

]∥∥

– anρn
〈[
xn – ρnA∗(I – JBβn

)
Axn

]
–

[
w – ρnA∗(I – JBβn

)
Aw

]
,xn

〉
+ anρn‖xn‖ (.)

for each n ∈ N. By (.) and Lemma .,

‖xn+ –w‖

≤ ‖xn –w‖ – (
ρn – ρ

n‖A‖)∥∥(
I – JBβn

)
Axn –

(
I – JBβn

)
Aw

∥∥

– anρn
〈[
xn – ρnA∗(I – JBβn

)
Axn

]
–

[
w – ρnA∗(I – JBβn

)
Aw

]
,xn

〉
+ anρn‖xn‖

≤ ‖xn –w‖ – (
ρn – ρ

n‖A‖)∥∥Axn – JBβn Axn
∥∥ + anρn‖xn‖

+ anρn
∥∥[
xn – ρnA∗(I – JBβn

)
Axn

]
–

[
w – ρnA∗(I – JBβn

)
Aw

]∥∥ · ‖xn‖
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≤ ‖xn –w‖ – (
ρn – ρ

n‖A‖)∥∥Axn – JBβn Axn
∥∥ + anρn‖xn‖

+ anρn‖xn –w‖ · ‖xn‖ (.)

for each n ∈ N. By (.)-(.), Lemma ., we know that

∥∥( – anρn)xn – ρnA∗(I – JBβn

)
Axn – xn+

∥∥ +
∥∥xn+ –w

∥∥

≤ ∥∥( – anρn)xn – ρnA∗(I – JBβn

)
Axn –w

∥∥

=
∥∥( – anρn)xn – ρnA∗(I – JBβn

)
Axn –w + ρnA∗(I – JBβn

)
Aw

∥∥

≤ ‖xn –w‖ + anρn‖xn –w‖ · ‖xn‖ + anρn‖xn‖ (.)

for each n ∈ N. Next, we know that

∥∥( – anρn)xn – ρnA∗(I – JBβn

)
Axn – xn+

∥∥

= ‖xn – xn+‖ +
∥∥anρnxn + ρnA∗(I – JBβn

)
Axn

∥∥

– 
〈
xn – xn+,anρnxn + ρnA∗(I – JBβn

)
Axn

〉
(.)

for each n ∈ N, and

∥∥xn+ – JBβn xn
∥∥

=
∥∥JBβn

[
( – anρn)xn – ρnA∗(I – JBβn

)
Axn

]
– JBβn xn

∥∥
≤ ∥∥[

( – anρn)xn – ρnA∗(I – JBβn

)
Axn

]
– xn

∥∥
≤ anρn‖xn‖ + ρn

∥∥A∗(I – JBβn

)
Axn

∥∥
≤ anρn‖xn‖ + ρn‖A‖ · ∥∥Axn – JBβn Axn

∥∥ (.)

for each n ∈ N. Further, we have

‖xn+ – x̄‖

=
∥∥JBβn

[
( – anρn)xn – ρnA∗(I – JBβn

)
Axn

]
– x̄

∥∥

≤ 〈
( – anρn)xn – ρnA∗(I – JBβn

)
Axn – x̄ + ρnA∗(I – JBβn

)
Ax̄,xn+ – x̄

〉
=

〈
( – anρn)xn – ρnA∗(I – JBβn

)
Axn – ( – anρn)x̄ + ρnA∗(I – JBβn

)
Ax̄,xn+ – x̄

〉
– anρn〈x̄,xn+ – x̄〉 (.)

for each n ∈ N. Hence,

‖xn+ – x̄‖

≤ ∥∥( – anρn)xn – ρnA∗(I – JBβn

)
Axn – ( – anρn)x̄ + ρnA∗(I – JBβn

)
Ax̄

∥∥ · ‖xn+ – x̄‖
+ anρn〈–x̄,xn+ – x̄〉

≤ ( – anρn)‖xn – x̄‖ · ‖xn+ – x̄‖ + anρn〈–x̄,xn+ – x̄〉
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≤ ( – anρn)


‖xn – x̄‖ + 


‖xn+ – x̄‖ + anρn〈–x̄,xn+ – x̄〉

≤
(
 – anρn



)
‖xn – x̄‖ + 


‖xn+ – x̄‖ + anρn〈–x̄,xn+ – x̄〉

for each n ∈ N. This implies that

‖xn+ – x̄‖ ≤ ( – anρn)‖xn – x̄‖ + anρn〈–x̄,xn+ – x̄〉 (.)

for each n ∈ N.
Case : There exists a natural number N such that ‖xn+ – x̄‖ ≤ ‖xn – x̄‖ for each n≥N .

So, limn→∞ ‖xn – x̄‖ exists.
Hence, it follows from limn→∞ ‖xn – x̄‖ exists and (.) that

lim
n→∞

(
ρn – ρ

n‖A‖)∥∥Axn – JBβn Axn
∥∥ = . (.)

Clearly,

ρn – ρ
n‖A‖ = ρn

(
 – ρn‖A‖) ≥ ρn

(
 –

‖A‖
‖A‖ + 

)
=

ρn

‖A‖ + 
. (.)

By assumption, (.), and (.),

lim
n→∞

∥∥Axn – JBβn Axn
∥∥ = . (.)

Without loss of generality, we may assume that βn ≥ β >  for each n ∈ N. By (.) and
Lemma .,

lim
n→∞

∥∥Axn – JBβ Axn
∥∥ = . (.)

By assumption, (.), and (.),

lim
n→∞

∥∥xn+ – JBβn xn
∥∥ = . (.)

By assumption, limn→∞ ‖xn – x̄‖ exists, {xn} is a bounded sequence, and (.), we know
that

lim
n→∞

∥∥( – anρn)xn – ρnA∗(I – JBβn

)
Axn – xn+

∥∥ = . (.)

Clearly,

∥∥anρnxn + ρnA∗(I – JBβn

)
Axn

∥∥ ≤ anρn‖xn‖ + ρn‖A‖ · ∥∥Axn – JBβn Axn
∥∥ (.)

for each n ∈ N. By assumption, (.), and (.),

lim
n→∞

∥∥anρnxn + ρnA∗(I – JBβn

)
Axn

∥∥ = . (.)
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By (.),

lim
n→∞

〈
xn – xn+,anρnxn + ρnA∗(I – JBβn

)
Axn

〉
= . (.)

By (.), (.), (.), and (.), we know that

lim
n→∞‖xn+ – xn‖ = . (.)

By (.) and (.),

lim
n→∞

∥∥xn – JBβn xn
∥∥ = . (.)

Since {xn} is a bounded sequence, there exists a subsequence {xnj} of {xn} such that xnj ⇀ z
for some z ∈ H and

lim sup
n→∞

〈–x̄,xn+ – x̄〉 = lim
n→∞〈–x̄,xnj – x̄〉 = 〈–x̄, z – x̄〉.

Then Axnj ⇀ Az ∈ H. By (.), (.), Lemma ., and Lemma ., we know that z ∈
B–
 () and Az ∈ B–

 (). That is, z ∈ 
. By Lemma .,

lim sup
n→∞

〈–x̄,xn+ – x̄〉 = 〈–x̄, z – x̄〉 ≤ . (.)

By (.), (.), and Lemma ., we know that limn→∞ xn = x̄, where x̄ = P
.
Case : Suppose that there exists {ni} of {n} such that ‖xni – x̄‖ ≤ ‖xni+ – x̄‖ for all i ∈N.

By Lemma ., there exists a nondecreasing sequence {mk} in N such that mk → ∞,

‖xmk – x̄‖ ≤ ‖xmk+ – x̄‖ and ‖xk – x̄‖ ≤ ‖xmk+ – x̄‖ (.)

for each k ∈N. By (.), we have

‖xmk+ – x̄‖

≤ ‖xmk – x̄‖ – (
ρmk – ρ

mk
‖A‖)∥∥Axmk – JBβmk

Axmk

∥∥

+ amkρmk‖xmk‖ + amkρmk‖xmk – x̄‖ · ‖xmk‖ (.)

for each k ∈N. By (.) and (.),

(
ρmk – ρ

mk
‖A‖)∥∥Axmk – JBβmk

Axmk

∥∥

≤ ‖xmk – x̄‖ – ‖xmk+ – x̄‖ + amkρmk‖xmk‖ + amkρmk‖xmk – x̄‖ · ‖xmk‖
≤ amkρmk‖xmk‖ + amkρmk‖xmk – x̄‖ · ‖xmk‖ (.)

for each k ∈N. Then following the same argument as the above, we know that

lim
k→∞

∥∥Axmk – JBβmk
Axmk

∥∥ = , (.)
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lim
k→∞

∥∥Axmk – JBβ Axmk

∥∥ = , (.)

lim
k→∞

∥∥xmk+ – JBβmk
Axmk

∥∥ = . (.)

By (.),

∥∥( – amkρmk )xmk – ρmkA
∗(I – JBβmk

)
Axmk – xmk+

∥∥

≤ ‖xmk – x̄‖ – ‖xmk+ – x̄‖ + amkρmk‖xmk – x̄‖ · ‖xmk‖ + amkρmk‖xmk‖

≤ amkρmk‖xmk – x̄‖ · ‖xmk‖ + amkρmk‖xmk‖ (.)

for each k ∈N. This implies that

lim
k→∞

∥∥( – amkρmk )xmk – ρmkA
∗(I – JBβmk

)
Axmk – xmk+

∥∥ = . (.)

Following the same argument as the above, we know that

lim
k→∞

‖xmk+ – xmk‖ = lim
k→∞

∥∥xmk – JBβmk
xmk

∥∥ =  (.)

and

lim sup
k→∞

〈–x̄,xmk+ – x̄〉 = 〈–x̄, z – x̄〉 ≤ . (.)

By (.) and (.),

amkρmk‖xmk – x̄‖ ≤ ‖xmk – x̄‖ – ‖xmk+ – x̄‖ + amkρmk 〈–x̄,xmk+ – x̄〉
≤ amkρmk 〈–x̄,xmk+ – x̄〉

for each k ∈N. This implies that

‖xmk – x̄‖ ≤ 〈–x̄,xmk+ – x̄〉 (.)

for each k ∈N. By (.) and (.),

lim
k→∞

‖xmk – x̄‖ = . (.)

By (.) and (.),

lim
k→∞

‖xmk+ – x̄‖ ≤ lim
k→∞

‖xmk – xmk+‖ + lim
k→∞

‖xmk – x̄‖ = . (.)

By (.) and (.),

lim
k→∞

‖xk – x̄‖ = . (.)

Therefore, the proof is completed. �
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5 Applications: (SFOP) and (SFP)
We get the following results by Theorems . and ., respectively.

Theorem . Let H and H be two real Hilbert spaces, A : H → H be a linear and
bounded operator, and let A∗ denote the adjoint of A. Let f : H → R and g : H → R be
two proper lower semicontinuous and convex functions. Let {an}, {bn}, {cn}, and {dn} be
sequences of real numbers in [, ] with an + bn + cn + dn =  and  < an <  for each n ∈ N.
Let {βn} be a sequence in (,∞). Let {vn} be a bounded sequence in H . Let u ∈ H be fixed.
Let {ρn} ⊆ (, 

‖A‖+ ). Let 
 be the solution set of (SFOP) and suppose that 
 �= ∅. Let {xn}
be defined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yn = argminz∈H{g(z) + 
βn ‖z –Axn‖},

zn = xn – ρnA∗(Axn – yn),
wn = argminy∈H{f (y) + 

βn ‖y – zn‖},
xn+ := anu + bnxn + cnwn + dnvn, n ∈N.

Assume that:
(i) limn→∞ an = limn→∞ dn

an = ;
∑∞

n= an =∞;
∑∞

n= dn < ∞;
(ii) lim infn→∞ cnρn > ; lim infn→∞ bncn > ; lim infn→∞ βn > .

Then limn→∞ xn = x̄, where x̄ = P
u.

Theorem . Let H and H be two real Hilbert spaces, A : H → H be a linear and
bounded operator, and let A∗ denote the adjoint of A. Let f : H → R and g : H → R be
two proper lower semicontinuous and convex functions.Let {an}, {bn}, and {cn} be sequences
of real numbers in [, ] with an + bn + cn =  and  < an <  for each n ∈ N. Let {βn} be a
sequence in (,∞). Let {vn} be a bounded sequence in H . Let u ∈ H be fixed. Let {ρn} ⊆
(, 

‖A‖+ ). Let 
 be the solution set of (SFOP) and suppose that 
 �= ∅. Let {xn} be defined
by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yn = argminz∈H{g(z) + 
βn ‖z –Axn‖},

zn = xn – ρnA∗(Axn – yn),
wn = argminy∈H{f (y) + 

βn ‖y – zn‖},
xn+ := anu + bnxn + cnwn + vn, n ∈N.

Assume that limn→∞ an = ,
∑∞

n= an = ∞,
∑∞

n= ‖vn‖ < ∞, lim infn→∞ cnρn > ,
lim infn→∞ bncn > , lim infn→∞ βn > . Then limn→∞ xn = x̄, where x̄ = P
u.

By Theorem ., we get the following result.

Theorem . Let H and H be two real Hilbert spaces, A : H → H be a linear and
bounded operator, and let A∗ denote the adjoint of A. Let f : H → R and g : H → R be
two proper lower semicontinuous and convex functions. Let {βn} be a sequence in (,∞),
{an} ⊆ (, ), and {ρn} ⊆ (, /(‖A‖ + )). Let 
 be the solution set of (SFOP) and suppose
that 
 �= ∅. Let {xn} be defined by

⎧⎪⎨
⎪⎩
yn = argminz∈H{g(z) + 

βn ‖z –Axn‖},
zn = ( – anρn)xn – ρnA∗(Axn – yn),
xn+ = argminy∈H{g(y) + 

βn ‖y – zn‖}, n ∈N.
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Assume that limn→∞ an = ,
∑∞

n= anρn = ∞, lim infn→∞ ρn > , and lim infn→∞ βn > .
Then limn→∞ xn = x̄, where x̄ = P
, i.e., x̄ is the minimal norm solution of (SFOP).

Let H be a Hilbert space and let g be a proper lower semicontinuous convex function of
H into (–∞,∞). Then the subdifferential ∂g of g is defined as follows:

∂g(x) =
{
z ∈H : g(x) + 〈z, y – x〉 ≤ g(y),∀y ∈H

}
for all x ∈ H . Let C be a nonempty closed convex subset of a real Hilbert space H , and iC
be the indicator function of C, i.e.,

iCx =

{
 if x ∈ C,
∞ if x /∈ C.

Further, we also define the normal cone NCu of C at u as follows:

NCu =
{
z ∈H : 〈z, v – u〉 ≤ ,∀v ∈ C

}
.

Then iC is a proper lower semicontinuous convex function on H , and the subdifferential
∂iC of iC is a maximal monotone operator. So, we can define the resolvent J∂iCλ of ∂iC for
λ > , i.e.,

J∂iCλ x = (I + λ∂iC)–x

for all x ∈H . By definitions, we know that

∂iCx =
{
z ∈H : iCx + 〈z, y – x〉 ≤ iCy,∀y ∈H

}
=

{
z ∈H : 〈z, y – x〉 ≤ ,∀y ∈ C

}
= NCx

for all x ∈ C. Hence, for each β > , we have that

u = J∂iCβ x ⇔ x ∈ u + β∂iCu ⇔ x – u ∈ βNCu

⇔ 〈x – u, y – u〉 ≤ , ∀y ∈ C

⇔ u = PCx.

Hence, we have the following result by Theorem ..

Theorem . Let C and Q be two nonempty closed convex subsets of H and H, respec-
tively. Let A : H → H be a linear and bounded operator, and let A∗ denote the adjoint
of A. Let {an}, {bn}, and {cn} be sequences of real numbers in [, ] with an + bn + cn =  and
 < an <  for each n ∈ N. Let {βn} be a sequence in (,∞). Let {vn} be a bounded sequence
in H . Let u ∈H be fixed. Let {ρn} ⊆ (, 

‖A‖+ ). Let
 be the solution set of (SFP) and suppose
that 
 �= ∅. Let {xn} be defined by

xn+ := anu + bnxn + cnPC
[
xn – ρnA∗(I – PQ)Axn

]
+ vn
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for each n ∈ N. Assume that limn→∞ an = ,
∑∞

n= an = ∞, lim infn→∞ cnρn > , and
lim infn→∞ bncn > . Then limn→∞ xn = x̄, where x̄ = P
u.

By Theorem ., we get the following result.

Theorem . Let C and Q be two nonempty closed convex subsets of H and H, respec-
tively. Let A : H → H be a linear and bounded operator, and let A∗ denote the adjoint
of A. Let {βn} be a sequence in (,∞), {an} ⊆ (, ), and {ρn} ⊆ (, /(‖A‖ + )). Let 
 be
the solution set of (SFP) and suppose that 
 �= ∅. Let {xn} be defined by

xn+ := PC
[
( – anρn)xn – ρnA∗(I – PQ)Axn

]
for each n ∈ N. Assume that limn→∞ an = ,

∑∞
n= anρn = ∞, lim infn→∞ ρn > , and

lim infn→∞ βn > . Then limn→∞ xn = x̄, where x̄ = P
, i.e., x̄ is the minimal norm solu-
tion of (SFP).

Remark . Theorem . improves some conditions of [, Theorem .].

Competing interests
The author declares that they have no competing interests.

Acknowledgements
The author was supported by the National Science Council of Republic of China. Also, the author is grateful to an
anonymous referee for his fruitful comments.

Received: 30 August 2013 Accepted: 1 December 2013 Published: 20 Dec 2013

References
1. Censor, Y, Elfving, T: A multiprojection algorithm using Bregman projection in a product space. Numer. Algorithms 8,

221-239 (1994)
2. Byrne, C: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441-453

(2002)
3. Censor, Y, Bortfeld, T, Martin, B, Trofimov, A: A unified approach for inversion problems in intensity modulated

radiation therapy. Phys. Med. Biol. 51, 2353-2365 (2003)
4. López, G, Martín-Márquez, V, Xu, HK: Iterative algorithms for the multiple-sets split feasibility problem. In: Censor, Y,

Jiang, M, Wang, G (eds.) Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse
Problems, pp. 243-279. Medical Physics Publishing, Madison (2010)

5. Stark, H: Image Recovery: Theory and Applications. Academic Press, San Diego (1987)
6. Eicke, B: Iteration methods for convexly constrained ill-posed problems in Hilbert space. Numer. Funct. Anal. Optim.

13, 413-429 (1992)
7. Byrne, C: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse

Probl. 20, 103-120 (2004)
8. Dang, Y, Gao, Y: The strong convergence of a KM-CQ-like algorithm for a split feasibility problem. Inverse Probl. 27,

015007 (2011)
9. Masad, E, Reich, S: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex

Anal. 8, 367-371 (2008)
10. Qu, B, Xiu, N: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 21, 1655-1665 (2005)
11. Wang, F, Xu, HK: Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem.

J. Inequal. Appl. 2010, 102085 (2010)
12. Xu, HK: A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22,

2021-2034 (2006)
13. Xu, HK: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26,

Article ID 105018 (2010)
14. Yang, Q: The relaxed CQ algorithm for solving the split feasibility problem. Inverse Probl. 20, 1261-1266 (2004)
15. Yang, Q: On variable-step relaxed projection algorithm for variational inequalities. J. Math. Anal. Appl. 302, 166-179

(2005)
16. Zhao, J, Yang, Q: Self-adaptive projection methods for the multiple-sets split feasibility problem. Inverse Probl. 27,

035009 (2011)
17. Martinet, B: Régularisation d’inéquations variationnelles par approximations successives. Rev. Fr. Autom. Inform. Rech.

Opér. 4, 154-158 (1970)
18. Rockafellar, RT: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877-898 (1976)

http://www.fixedpointtheoryandapplications.com/content/2013/1/350


Chuang Fixed Point Theory and Applications 2013, 2013:350 Page 20 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/350

19. Brézis, H, Lions, PL: Produits infinis de résolvantes. Isr. J. Math. 29, 329-345 (1978)
20. Güler, O: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29,

403-419 (1991)
21. Kamimura, S, Takahashi, W: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx.

Theory 106, 226-240 (2000)
22. Kamimura, S, Takahashi, W: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13,

938-945 (2002)
23. Nakajo, K, Takahashi, W: Strong convergence theorems for nonexpansive mapping and nonexpansive semigroups.

J. Math. Anal. Appl. 279, 372-379 (2003)
24. Solodov, MV, Svaiter, BF: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program.

87, 189-202 (2000)
25. Moudafi, A: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275-283 (2011)
26. Takahashi, W: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009)
27. Osilike, MO, Igbokwe, DI: Weak and strong convergence theorems for fixed points of pseudocontractions and

solutions of monotone type operator equations. Comput. Math. Appl. 40, 559-567 (2000)
28. Xu, HK: Iterative algorithm for nonlinear operators. J. Lond. Math. Soc. 2, 240-256 (2002)
29. Browder, FE: Fixed point theorems for noncompact mappings in Hilbert spaces. Proc. Natl. Acad. Sci. USA 53,

1272-1276 (1965)
30. Takahashi, W: Nonlinear Functional Analysis-Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama

(2000)
31. He, Z, Du, W-S: Nonlinear algorithms approach to split common solution problems. Fixed Point Theory Appl. 2012,

130 (2012)
32. Chuang, CS, Lin, LJ, Takahashi, W: Halpern’s type iterations with perturbations in a Hilbert space: equilibrium solutions

and fixed points. J. Glob. Optim. 56, 1591-1601 (2013)
33. Yu, ZT, Lin, LJ, Chuang, CS: A unified study of the split feasible problems with applications. J. Nonlinear Convex Anal.

(accepted)
34. Maingé, PE: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex

minimization. Set-Valued Anal. 16, 899-912 (2008)
35. Aoyama, K, Kimura, Y, Takahashi, W, Toyoda, M: Approximation of common fixed points of a countable family of

nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350-2360 (2007)

10.1186/1687-1812-2013-350
Cite this article as: Chuang: Strong convergence theorems for the split variational inclusion problem in Hilbert
spaces. Fixed Point Theory and Applications 2013, 2013:350

http://www.fixedpointtheoryandapplications.com/content/2013/1/350

	Strong convergence theorems for the split variational inclusion problem in Hilbert spaces
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Halpern-Mann type algorithm with perturbations
	Regularized method for (SFVIP)
	Applications: (SFOP) and (SFP)
	Competing interests
	Acknowledgements
	References


