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Abstract
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74:983-992, 2011).
MSC: Primary 54H25; secondary 47H10

Keywords: coupled fixed point; mappings having a mixed monotone property;
partially ordered metric space

1 Introduction and preliminaries
Fixed point theory plays a major role in mathematics. The Banach contraction principle
[] is the simplest one corresponding to fixed point theory. So a large number of mathe-
maticians have extended it and have been interested in fixed point theory in some met-
ric spaces. One of these spaces is a partially ordered metric space, that is, metric spaces
endowed with a partial ordering. The first result in this direction was given by Ran and
Reurings [] who presented their applications to a matrix equation. Subsequently, the ex-
istence of solutions for matrix equations or ordinary differential equations by applying
fixed point theorems were presented in [–].
The existence of a fixed point for contraction type mappings in partially ordered met-

ric spaces has been considered by Ran and Reurings [], Bhaskar and Lakshmikantham
[], Nieto and Rodriquez-Lopez [, ], Lakshmikantham and Ćirić [], Agarwal et al. []
and Samet []. Bhaskar and Lakshmikantham [] introduced the notion of coupled fixed
point and proved some coupled fixed point theorems for mappings satisfying the mixed
monotone property and discussed the existence and uniqueness of a solution for a peri-
odic boundary value problem. Lakshmikantham and Ćirić [] introduced the concept of
a mixed g-monotone mapping and proved coupled coincidence and common fixed point
theorems that extend theorems from []. Subsequently, many authors obtained several
coupled coincidence and coupled fixed point theorems in some ordered metric spaces
[–].

Definition  ([]) Let (X,≤) be a partially ordered set and F : X × X → X. The mapping
F is said to have the mixed monotone property if F(x, y) is monotone non-decreasing in x
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and is monotone non-decreasing in y, that is, for any x, y ∈ X,

x,x ∈ X, x ≤ x �⇒ F(x, y) ≤ F(x, y)

and

y, y ∈ X, y ≤ y �⇒ F(x, y) ≥ F(x, y).

Definition  ([]) An element (x, y) ∈ X×X is called a coupled fixed point of themapping
F : X ×X → X if F(x, y) = x, F(y,x) = y.

Definition  ([]) An element (x, y) ∈ X×X is called a coupled coincidence point of map-
pings F : X ×X → X and g : X → X if F(x, y) = gx, F(y,x) = gy.

Definition  ([]) Let X be non-empty set and F : X × X → X and g : X → X. We say F
and g are commutative if gF(x, y) = F(gx, gy) for all x, y ∈ X.

Definition  ([]) Let (X,≤) be a partially ordered set and F : X × X → X, g : X → X be
mappings. Themapping F is said to have themixed g-monotone property if F ismonotone
g-non-decreasing in its first argument and is monotone g-non-increasing in the second
argument, that is, for any x, y ∈ X,

x,x ∈ X, gx ≤ gx �⇒ F(x, y) ≤ F(x, y)

and

y, y ∈ X, gy ≤ gy �⇒ F(x, y) ≥ F(x, y).

Lemma  ([]) Let X be a non-empty set and F : X×X → X and g : X → X be mappings.
Then there exists a subset E ⊆ X such that g(E) = g(X) and g : E → X is one-to-one.

Theorem ([]) Let (X,≤) be a partially ordered set and suppose that there exists ametric
d on X such that (X,d) is a complete metric space. Let F : X × X → X be a continuous
mapping having themixedmonotone property on X .Assume that there exists k ∈ [, )with

d
(
F(x, y),F(u, v)

) ≤ k

[
d(x,u) + d(y, v)

]
for all x ≥ u and y ≤ v.

If there exist two elements x, y ∈ X with

x ≤ F(x, y) and y ≥ F(y,x),

then there exist x, y ∈ X such that

x = F(x, y) and y = F(y,x).

Theorem  ([]) Let (X,≤) be a partially ordered set and suppose that there exists a met-
ric d on X such that (X,d) is a complete metric space. Assume that X has the following
property:
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() if a non-decreasing sequence {xn} → x, then xn ≤ x for all n ∈N,
() if a non-increasing sequence {yn} → y, then y ≤ yn for all n ∈ N.

Let F : X × X → X be a mapping having the mixed monotone property on X . Assume that
there exists k ∈ [, ) with

d
(
F(x, y),F(u, v)

) ≤ k

[
d(x,u) + d(y, v)

]
for all x ≥ u and y ≤ v.

If there exist two elements x, y ∈ X with

x ≤ F(x, y) and y ≥ F(y,x),

then there exist x, y ∈ X such that

x = F(x, y) and y = F(y,x).

Theorem  ([]) Let (X,≤) be a partially ordered set and suppose that there exists a
metric d on X such that (X,d) is a complete metric space. Let (X,≤) be a partially ordered
set and suppose that there exists ametric d on X such that (X,d) is a complete metric space.
Let F : X×X → X be amapping having the mixed monotone property on X and there exist
two elements x, y ∈ X with x ≤ F(x, y) and y ≥ F(y,x). Suppose that F , g satisfy

ϕ
(
d
(
F(x, y),F(u, v)

)) ≤ 

ϕ
(
d(x,u) + d(y, v)

)
–ψ

(
d(x,u) + d(y, v)



)

for all x, y,u, v ∈ X with x≥ u and y ≤ v. Suppose that either
() F is continuous or
() X has the following property:

(a) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n ∈N,
(b) if a non-increasing sequence {yn} → y, then y ≤ yn for all n ∈N.

Then there exist x, y ∈ X such that

x = F(x, y) and y = F(y,x),

that is, F has a coupled fixed point in X.

2 Themain results
In this paper, we prove coupled coincidence and common fixed point theorems for mixed
g-monotone mappings satisfying more general contractive conditions in partially ordered
metric spaces. We also present results on existence and uniqueness of coupled common
fixed points. Our results improve those of Luong and Thuan []. Our work generalizes,
extends and unifies several well known comparable results in the literature.
Let � denote all functions ϕ : [,∞) → [,∞) which satisfy
() ϕ is continuous and non-decreasing,
() ϕ(t) =  and only if t = ,
() ϕ(t + s) ≤ ϕ(t) + ϕ(s), ∀t, s ∈ [,∞)

and � denote all functions ψ : [,∞) → [,∞) which satisfy limt→r ψ(t) >  for all r > 
and limt→+ ψ(t) = .
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Theorem  Let (X,≤) be a partially ordered set and suppose that there exists a metric d
on X such that (X,d) is a complete metric space. Let (X,≤) be a partially ordered set and
suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let
F : X × X → X be a mapping having the mixed monotone property on X and there exist
two elements x, y ∈ X with x ≤ F(x, y) and y ≥ F(y,x). Suppose that F , g satisfy

ϕ
(
d
(
F(x, y),F(u, v)

)) ≤ 

ϕ
(
d(gx, gu) + d(gy, gv)

)
–ψ

(
d(gx, gu) + d(gy, gv)



)
(.)

for all x, y,u, v ∈ X with gx ≤ gu and gy ≥ gv, F(X × X) ⊆ g(X), g(X) is complete and g is
continuous.
Suppose that either
() F is continuous or
() X has the following property:

(a) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n ∈N,
(b) if a non-increasing sequence {yn} → y, then y ≤ yn for all n ∈N.

Then there exist x, y ∈ X such that

gx = F(x, y) and gy = F(y,x),

that is, F and g have a coupled coincidence point in X ×X.

Proof Using Lemma , there exists E ⊆ X such that g(E) = g(X) and g : E → X is one-to-
one. We define a mapping A : g(E)× g(E)→ X by

A(gx, gy) = F(x, y), ∀gx, gy ∈ g(E). (.)

As g is one-to-one on g(E), so A is well defined. Thus, it follows from (.) and (.) that

ϕ
(
A(x, y),A(u, v)

) ≤ 

ϕ
(
d(gx, gu) + d(gy, gv)

)
–ψ

(
d(gx, gu) + d(gy, gv)



)
(.)

for all gx, gy, gu, gv ∈ g(E) with gx ≤ gu and gy ≥ gv. Since F has the mixed g-monotone
property, for all x, y ∈ X, we have

x,x ∈ X, gx ≤ gx �⇒ F(x, y) ≤ F(x, y) (.)

and

y, y ∈ X, gy ≥ gy �⇒ F(x, y) ≤ F(x, y). (.)

Thus, it follows from (.), (.) and (.) that, for all gx, gy ∈ g(E),

gx, gx ∈ g(X), gx ≤ gx �⇒ A(gx, gy) ≤ A(gx, gy)

and

gy, gy ∈ g(X), gy ≥ gy �⇒ A(gx, gy)≤ A(gx, gy),

which implies that A has the mixed monotone property.
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Suppose that assumption () holds. Since F is continuous, A is also continuous. Using
Theorem  with the mapping A, it follows that A has a coupled fixed point (u, v) ∈ g(E)×
g(E).
Suppose that assumption () holds.We can conclude similarly in the proof of Theorem 

that the mapping A has a coupled fixed point (u, v) ∈ g(X)× g(X).
Finally, we prove that F and g have a coupled fixed point in X. Since (u, v) is a coupled

fixed point of A, we get

u = A(u, v), v = A(v,u). (.)

Since (u, v) ∈ g(X)× g(X), there exists a point (u′, v′) ∈ X ×X such that

u = gu′, v = gv′. (.)

Thus, it follows from (.) and (.) that

gu′ = A
(
gu′, gv′), gv′ = A

(
gv′, gu′). (.)

Also, from (.) and (.), we get

gu′ = F
(
u′, v′), gv′ = F

(
v′,u′).

Therefore, (u′, v′) is a coupled coincidence point of F and g . This completes the proof.
�

Corollary  Let (X,≤) be a partially ordered set and suppose that there exists a metric d
on X such that (X,d) is a complete metric space. Let (X,≤) be a partially ordered set and
suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let
F : X × X → X be a mapping having the mixed monotone property on X and there exist
two elements x, y ∈ X with x ≤ F(x, y) and y ≥ F(y,x). Suppose that F , g satisfy

ϕ
(
d
(
F(x, y),F(u, v)

)) ≤ k

d(gx, gu) + d(gy, gv)

for all x, y,u, v ∈ X with gx ≤ gu and gy ≥ gv, F(X × X) ⊆ g(X), g(X) is complete and g is
continuous.
Suppose that either
() F is continuous or
() X has the following property:

(a) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n ∈N,
(b) if a non-increasing sequence {yn} → y, then y ≤ yn for all n ∈N.

Then there exist x, y ∈ X such that

gx = F(x, y) and gy = F(y,x),

that is, F and g have a coupled coincidence point in X ×X.

Proof In Theorem , taking ϕ(t) = t, we get Corollary . �
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Corollary  Let (X,≤) be a partially ordered set and suppose that there exists a metric d
on X such that (X,d) is a complete metric space. Let (X,≤) be a partially ordered set and
suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let
F : X × X → X be a mapping having the mixed monotone property on X , and there exist
two elements x, y ∈ X with x ≤ F(x, y) and y ≥ F(y,x). Suppose that F , g satisfy

d
(
F(x, y),F(u, v)

) ≤ 

(
d(gx, gu) + d(gy, gv)

)
–ψ

(
d(gx, gu) + d(gy, gv)



)

for all x, y,u, v ∈ X with gx ≤ gu and gy ≥ gv, F(X × X) ⊆ g(X), g(X) is complete and g is
continuous.
Suppose that either
() F is continuous or
() X has the following property:

(a) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n ∈N,
(b) if a non-increasing sequence {yn} → y, then y ≤ yn for all n ∈N.

Then there exist x, y ∈ X such that

gx = F(x, y) and gy = F(y,x),

that is, F and g have a coupled coincidence point in X ×X.

Proof In Corollary , taking ψ(t) = –k
 t, we get Corollary . �

Theorem  Let (X,≤) be a partially ordered set and suppose that there exists a metric d
on X such that (X,d) is a complete metric space. Let (X,≤) be a partially ordered set and
suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let
F : X × X → X be a mapping having the mixed monotone property on X and there exist
two elements x, y ∈ X with x ≤ F(x, y) and y ≥ F(y,x). Suppose that F , g satisfy

ϕ
(
d
(
F(x, y),F(u, v)

)) ≤ 

ϕ
(
d(gx, gu) + d(gy, gv)

)
–ψ

(
d(gx, gu) + d(gy, gv)



)

for all x, y,u, v ∈ X with gx ≤ gu and gy ≥ gv, F(X × X) ⊆ g(X), g(X) is complete and g is
continuous.
Suppose that either
() F is continuous or
() X has the following property:

(a) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n ∈N,
(b) if a non-increasing sequence {yn} → y, then y ≤ yn for all n ∈N.

Then there exist x, y ∈ X such that

gx = F(x, y), gy = F(y,x)

and

x = gx = F(x, y), y = gy = F(y,x),

that is, F and g have a coupled common fixed point (x, y) ∈ X ×X.
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Proof Following the proof of Theorem , F and g have a coupled coincidence point. We
only have to show that x = gx and y = gy.
Now, x and y are two points in the statement of Theorem . Since F(X × X) ⊆ g(X),

we can choose x, y ∈ X such that gx = F(x, y) and gy = F(y,x). In the same way, we
construct gx = F(x, y) and gy = F(y,x). Continuing in this way, we can construct two
sequences {xn} and {yn} in X such that

gxn+ = F(xn, yn) and gyn+ = F(yn,xn), ∀n≥ . (.)

Since gx≥ gxn+ and gy≤ gyn+, from (.) and (.), we have

ϕ
(
d(gxn+, gx)

)
= ϕ

(
d
(
F(xn, yn),F(x, y)

))
≤ 


ϕ
(
d(gxn, gx) + d(gyn, gy)

)
–ψ

(
d(gxn, gx) + d(gyn, gy)



)
. (.)

Similarly, since gyn+ ≥ gy and gxn+ ≤ gx, from (.) and (.), we have

ϕ
(
d(gy, gyn+)

)
= ϕ

(
d
(
F(y,x),F(yn,xn)

))
≤ 


ϕ
(
d(gy, gyn) + d(gx, gxn)

)
–ψ

(
d(gy, gyn) + d(gx, gxn)



)
. (.)

From (.) and (.), we have

ϕ
(
d(gxn+, gx)

)
+ ϕ

(
d(gy, gyn+)

)
≤ ϕ

(
d(gxn, gx) + d(gyn, gy)

)
– ψ

(
d(gxn, gx) + d(gyn, gy)



)
. (.)

By property () of ϕ, we have

ϕ
(
d(gxn+, gx) + d(gy, gyn+)

) ≤ ϕ
(
d(gxn+, gx)

)
+ ϕ

(
d(gy, gyn+)

)
. (.)

From (.) and (.), we have

ϕ
(
d(gxn+, gx)+d(gy, gyn+)

) ≤ ϕ
(
d(gxn, gx)+d(gyn, gy)

)
–ψ

(
d(gxn, gx) + d(gyn, gy)



)
,

which implies

ϕ
(
d(gxn+, gx) + d(gy, gyn+)

) ≤ ϕ
(
d(gxn, gx) + d(gyn, gy)

)
.

Using the fact that ϕ is non-decreasing, we get

d(gxn+, gx) + d(gy, gyn+)≤ d(gxn, gx) + d(gyn, gy). (.)

Set δn = d(gxn+, gx) + d(gyn+, gy), then sequence {δn} is decreasing. Therefore, there is
some δ ≥  such that

lim
n→∞ δn = lim

n→∞
[
d(gxn+, gx) + d(gyn+, gy)

]
= δ.

http://www.fixedpointtheoryandapplications.com/content/2013/1/348
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We shall show that δ = . Suppose, to the contrary, that δ > . Then taking the limit as
n → ∞ (equivalently, δn → δ) of both sides of (.) and having in mind that we suppose
that limt→r ψ(t) >  for all r >  and ϕ is continuous, we have

ϕ(δ) = lim
n→∞ϕ(δn) ≤ lim

n→∞

[
ϕ(δn–) – ψ

(
δn–



)]
= ϕ(δ) –  lim

δn–→δ
ψ

(
δn–



)
< ϕ(δ),

a contradiction. Thus δ = , that is,

lim
n→∞ δn = lim

n→∞
[
d(gxn+, gx) + d(gyn+, gy)

]
= . (.)

Hence d(gxn+, gx) =  and d(gyn+, gy) = , that is, x = gx and y = gy. �

Theorem  In addition to the hypotheses of Theorem , suppose that for every (x, y), (z, t)
in X × X, there exists (u, v) in X × X that is comparable to (x, y) and (z, t), then F and g
have a unique coupled fixed point.

Proof From Theorem , the set of coupled fixed points of F is non-empty. Suppose that
(x, y) and (z, t) are coupled coincidence points of F , that is, gx = F(x, y), gy = F(y,x), gz =
F(z, t) and gt = F(t, z). We will prove that

gx = gz and gy = gt.

By assumption, there exists (u, v) in X × X such that (F(u, v),F(v,u)) is comparable with
(F(x, y),F(y,x)) and (F(z, t),F(t, z)). Put u = u and v = v and choose u, v ∈ X so that
gu = F(u, v) and gv = F(v,u). Then, similarly as in the proof of Theorem , we can
inductively define sequences {gun}, {gvn} with

gun+ = F(un, vn) and gvn+ = F(vn,un) for all n.

Further set x = x, y = y, z = z and t = t, in a similar way, define the sequences {gxn},
{gyn} and {gzn}, {gtn}. Then it is easy to show that

gxn → F(x, y), gyn → F(y,x) and gzn → F(z, t), gtn → F(t, z)

as n→ ∞. Since

(
F(x, y),F(y,x)

)
= (gx, gy) = (gx, gy) and

(
F(u, v),F(v,u)

)
= (gu, gv)

are comparable, then gx≤ gu and gy ≥ gv, or vice versa. It is easy to show that, similarly,
(gx, gy) and (gun, gvn) are comparable for all n ≥ , that is, gx ≤ gun and gy ≥ gvn, or vice
versa. Thus from (.), we have

ϕ
(
d(gx, gun+)

)
= ϕ

(
F(x, y),F(un, vn)

)
≤ 


ϕ
(
d(gx, gun) + d(gy, gvn)

)
–ψ

(
d(gx, gun) + d(gy, gvn)



)
. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/348
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Similarly,

ϕ
(
d(gvn+, gy)

)
= ϕ

(
F(vn,un),F(y,x)

)
≤ 


ϕ
(
d(gvn, gy) + d(gun, gx)

)
–ψ

(
d(gvn, gy) + d(gun, gx)



)
. (.)

From (.), (.) and the property of ϕ, we have

ϕ
(
d(gx, gun+) + d(gvn+, gy)

)
≤ ϕ

(
d(gx, gun+)

)
+ ϕ

(
d(gvn+, gy)

)
≤ ϕ

(
d(gx, gun) + d(gy, gvn)

)
– ψ

(
d(gx, gun) + d(gy, gvn)



)
, (.)

which implies

ϕ
(
d(gx, gun+) + d(gvn+, gy)

) ≤ ϕ
(
d(gx, gun) + d(gy, gvn)

)
.

Thus,

d(gx, gun+) + d(gvn+, gy) ≤ d(gx, gun) + d(gy, gvn).

That is, the sequence {d(gx, gun) + d(gy, gvn)} is decreasing. Therefore, there exists α ≥ 
such that

lim
n→∞

[
d(gx, gun) + d(gy, gvn)

]
= α.

We shall show that α = . Suppose, to the contrary, that α > . Taking the limit as n→ ∞
in (.), we have

ϕ(α)≤ ϕ(α) –  lim
n→∞ψ

(
d(gx, gun) + d(gy, gvn)



)
< ϕ(α),

a contradiction. Thus, α = , that is,

lim
n→∞

[
d(gx, gun) + d(gy, gvn)

]
= .

It implies

lim
n→∞d(gx, gun) = lim

n→∞d(gy, gvn) = . (.)

Similarly, we show that

lim
n→∞d(gz, gun) = lim

n→∞d(gt, gvn) = . (.)

From (.), (.) and by the uniqueness of the limit, it follows that we have gx = gz and
gy = gt. Hence (gx, gy) is the unique coupled point of coincidence of F and g . �

http://www.fixedpointtheoryandapplications.com/content/2013/1/348
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Example  Let X = [,+∞) endowed with the standard metric d(x, y) = |x – y| for all
x, y ∈ X. Then (X,d) is a complete metric space. Define the mapping F : X ×X → X by

F(x, y) =

{
y if x≥ y,
x if x < y.

Suppose that g : X → X is such that gx = x for all x ∈ X and ϕ(t) : [, +∞) → [, +∞) is
such that ϕ(t) = t. Assume that ψ(t) = t

+t .
It is easy to show that for all x, y,u, v ∈ X with gx ≤ gu and gy≥ gv, we have

ϕ
(
d
(
F(x, y),F(u, v)

)) ≤ 

ϕ
(
d(gx, gu) + d(gy, gv)

)
–ψ

(
d(gx, gu) + d(gy, gv)



)
.

Thus, it satisfies all the conditions of Theorem. Sowe deduce that F and g have a coupled
coincidence point (x, y) ∈ X ×X. Here, (, ) is a coupled coincidence point of F and g .
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