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1 Introduction
In this paper, we are concerned with the problem of finding zero points of accretive oper-
ators. Interest in accretive operators stems mainly from their firm connection with equa-
tions of evolution, and this is an important class of nonlinear operators. It is known that
many physically significant problems can be modelled by initial value problems of the
form

x′(t) +Ax(t) = , x() = x, (.)

where A is an accretive operator in an appropriate Banach space. Typical examples where
such evolution equations occur can be found in the heat, wave or Schrödinger equations.
If x(t) is dependent of t, then (.) is reduced to

Au = , (.)

whose solutions correspond to the equilibrium points of (.). An early fundamental result
in the theory of accretive operators, due to Browder [], states that the initial value prob-
lem (.) is solvable if A is locally Lipschitz and accretive on E. One of the most popular
techniques for solving zero points of accretive operators goes back to the work of Browder
[]. One of the basic ideas in the case of a Hilbert space H is reducing the above equation
(.) to a fixed point problem of the operator RA :H → H defined by RA = (I +A)–, which
is called the classical resolvent of A.
The paper is organized in the following way. In Section , we present the preliminaries

that are needed in our work. In Section , a modified Mann iteration with computational
errors is presented. A strong convergence theorem for zero points of an m-accretive op-
erator is established in a Banach space. In Section , applications of the main results are
discussed.
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2 Preliminaries
Let E be a real Banach space E and let E∗ be the dual space of E. Let 〈·, ·〉 denote the pairing
between E and E∗. The normalized duality mapping J : E → E∗ is defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}

for all x ∈ E. Let UE = {x ∈ E : ‖x‖ = }. E is said to be smooth or is said to have a Gâteaux
differentiable norm if the limit limt→

‖x+ty‖–‖x‖
t exists for each x, y ∈ UE . E is said to have

a uniformly Gâteaux differentiable norm if for each y ∈ UE , the limit is attained uniformly
for all x ∈ UE . E is said to be uniformly smooth or is said to have a uniformly Fréchet
differentiable norm if the limit is attained uniformly for x, y ∈ UE . In the sequel, we use
j to denote the single-valued normalized duality mapping. It is known that if the norm
of E is uniformly Gâteaux differentiable, then the duality mapping J is single-valued and
uniformly norm to weak∗ continuous on each bounded subset of E.
Recall that a closed convex subset C of a Banach space E is said to have the normal

structure if for each bounded closed convex subset K of C which contains at least two
points, there exists an element x of K which is not a diametral point of K , i.e., sup{‖x– y‖ :
y ∈ K} < d(K ), where d(K ) is the diameter ofK . It is well known that a closed convex subset
of a uniformly convex Banach space has the normal structure and a compact convex subset
of a Banach space has the normal structure; see [] for more details.
Let T : C → C be a mapping. Recall that T is said to be contractive if there exits a con-

stant α ∈ (, ) such that

‖Tx – Ty‖ ≤ α‖x – y‖, ∀x, y ∈ C.

For such a case, we also call T an α-contraction. T is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

Let D be a nonempty subset of C. Let Q : C → D. Q is said to be contraction if Q = Q;
sunny if for each x ∈ C and t ∈ (, ), we have Q(tx + ( – t)Qx) =Qx; sunny nonexpansive
retraction if Q is sunny, nonexpansive, and contraction. K is said to be a nonexpansive
retract of C if there exists a nonexpansive retraction from C onto D.
The following result, which was established in [], describes a characterization of sunny

nonexpansive retractions on a smooth Banach space.
Let E be a smooth Banach space and C be a nonempty subset of E. Let Q : E → C be a

retraction and j be the normalized duality mapping on E. Then the following are equiva-
lent:
() Q is sunny and nonexpansive;
() ‖Qx –Qy‖ ≤ 〈x – y, j(Qx –Qy)〉, ∀x, y ∈ E;
() 〈x –Qx, j(y –Qx)〉 ≤ , ∀x ∈ E, y ∈ C.
Krasnoselski-Mann iteration generates a sequence {xn} in the following manner:

x ∈ C, xn+ = αnTxn + ( – αn)xn, ∀n≥ . (.)

It is known that the Krasnoselski-Mann iteration only has weak convergence even for
nonexpansive mappings in infinite-dimensional Hilbert spaces; for more details, see []
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and the references therein. In many disciplines, including economics, image recovery,
quantum physics, and control theory, problems arise in infinite dimension spaces. In such
problems, strong convergence (norm convergence) is often much more desirable than
weak convergence, for it translates the physically tangible property that the energy ‖xn–x‖
of the error between the iterate xn and the solution x eventually becomes arbitrarily small.
To improve the weak convergence of Krasnoselski-Mann iterative process, different mod-
ified Mann iterations have been considered; see [–] and the references therein.
Let I denote the identity operator on E. An operator A⊂ E×E with domainD(A) = {z ∈

E : Az 
= ∅} and range R(A) =
⋃{Az : z ∈ D(A)} is said to be accretive if for each xi ∈ D(A)

and yi ∈ Axi, i = , , there exists j(x – x) ∈ J(x – x) such that 〈y – y, j(x – x)〉 ≥ . An
accretive operator A is said to bem-accretive if R(I + rA) = E for all r > . In a real Hilbert
space, an operator A is m-accretive if and only if A is maximal monotone. In this paper,
we use A–() to denote the set of zeros of A.
For an accretive operator A, we can define a nonexpansive single-valued mapping Jr :

R(I + rA) →D(A) by Jr = (I + rA)– for each r > , which is called the resolvent of A.
One of classicalmethods of studying the problem ∈ Ax, whereA⊂ E×E is an accretive

operator, is the following:

x ∈ E, xn+ = Jrnxn, ∀n≥ , (.)

where Jrn = (I + rnA)– and {rn} is a sequence of positive real numbers.
The following iteration also has been extensively investigated:

xn+ = αnu + ( – αn)Jrnxn, ∀n≥ , (.)

where {αn} is a real number sequence in (, ), {rn} is a positive real number sequence,
and Jrn = (I + rnA)–. It is known that the sequence {xn} generated in the above iteration
converges strongly to a zero point ofA in a Banach space under some restrictions imposed
on {αn} and {rn}.
Chen et al. [] investigated the following iteration:

⎧⎨
⎩
yn = βnxn + ( – βn)Jrnxn,

xn+ = αnf (xn) + ( – αn)yn, ∀n≥ ,
(.)

where {αn} and {βn} are real number sequences in (, ), {rn} is a positive real number
sequence, and Jrn = (I + rnA)–. They proved that the sequence {xn} generated in the above
iteration converges strongly to a zero point of A in a Banach space; for more details, see
[] and the references therein.
We also remark that the viscosity approximation method was first introduced by

Moudafi [] in the framework of Hilbert spaces. Moudafi proved that the desired so-
lution is not only a fixed point of nonlinear mappings but a solution to some variational
inequality; for more details, see [] and the references therein.
Recently, Qin et al. [] investigated the iteration (.) with double computational er-

rors and established a strong convergence theorem in a real reflexive Banach space with
the uniformly Gâteaux differentiable norm; for more details, see [] and the references
therein. Different regularizationmethods recently have been investigated for treating zero
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points of accretive operators. In this paper, a modifiedMann iteration with computational
errors is investigated. A strong convergence theorem for zero points of an m-accretive
operator is established in a Banach space. The results mainly improve the corresponding
results in Qin and Su [], Hao [], Qin et al. [] and Chen et al. [].
In order to state our main results, we also need the following lemmas.

Lemma . [] Let E be a real reflexive Banach space with the uniformly Gâteaux differ-
entiable norm and the normal structure, and C be a nonempty closed convex subset of E.
Let S : C → C be a nonexpansive mapping with a fixed point, and f : C → C be a fixed
contraction with the coefficient α ∈ (, ). Let {xt} be a sequence generated by the following
xt = tf (xt)+ (– t)Sxt ,where t ∈ (, ).Then {xt} converges strongly as t →  to a fixed point
x∗ of T , which is the unique solution in F(T) to the following variational inequality

〈
f
(
x∗) – x∗, j

(
x∗ – p

)〉 ≥ , ∀p ∈ F(S).

Lemma . [] Let {xn} and {yn} be bounded sequences in a Banach space E, and {βn}
be a sequence in (, ) with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ =
( – βn)yn + βnxn, ∀n≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Lemma . [] Let {an}, {bn}, and {cn} be three nonnegative real sequences satisfying

an+ ≤ ( – tn)an + bn + cn, ∀n≥ ,

where {tn} is a sequence in (, ). Assume that the following conditions are satisfied:
(a)

∑∞
n= tn =∞ and bn = o(tn);

(b)
∑∞

n= cn < ∞.
Then limn→∞ an = .

Lemma . [] Let E be a Banach space and let A be an m-accretive operator. For λ > ,
μ > , and x ∈ E,we have Jλx = Jμ(μ

λ
x+(– μ

λ
)Jλx),where Jλ = (I +λA)– and Jμ = (I +μA)–.

3 Main results
Theorem . Let E be a real reflexive Banach space with the uniformly Gâteaux differen-
tiable norm. Let A be an m-accretive operator in E such that C := D(A) is convex and has
the normal structure. Let f : C → C be an α-contraction. Let {xn} be a sequence generated
in the following manner: x ∈ C and

⎧⎨
⎩
yn = βnxn + ( – βn)Jrn (xn + en+),

xn+ = αnf (xn) + ( – αn)yn, ∀n≥ ,

where {αn} and {βn} are real number sequences in (, ), {en} is a sequence in E, {rn} is a
positive real number sequence, and Jrn = (I + rnA)–. Assume that A–() is not empty and
the above control sequences satisfy the following restrictions:
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(a) limn→∞ αn =  and
∑∞

n= αn =∞;
(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)

∑∞
n= ‖en‖ < ∞;

(d) rn ≥ r for each n≥  and limn→∞ |rn – rn+| = .
Then the sequence {xn} converges strongly to x̄, which is the unique solution to the following
variational inequality 〈f (x̄) – x̄, j(p – x̄)〉 ≤ , ∀p ∈ A–().

Proof First, we prove that {xn} is bounded. Fixing p ∈ A–(), we see that

‖yn – p‖ ≤ βn‖xn – p‖ + ( – βn)
∥∥Jrn (xn + en+) – p

∥∥
≤ ‖xn – p‖ + ‖en+‖.

It follows that

‖xn+ – p‖ ≤ αn
∥∥f (xn) – p

∥∥ + ( – αn)‖yn – p‖
≤ (

 – αn( – α)
)‖xn – p‖ + αn

∥∥f (p) – p
∥∥ + ‖en+‖

≤ max

{
‖xn – p‖, ‖f (p) – p‖

 – α

}
+ ‖en+‖

≤ max

{
‖xn– – p‖, ‖f (p) – p‖

 – α

}
+ ‖en‖ + ‖en+‖

...

≤ max

{
‖x – p‖, ‖f (p) – p‖

 – α

}
+

∞∑
i=

‖ei‖ < ∞.

This proves that the sequence {xn} is bounded. If rn ≥ rn+, we see from Lemma . that

∥∥Jrn (xn + en+) – Jrn+ (xn+ + en+)
∥∥

≤
∥∥∥∥ rn
rn+

(xn + en+) +
(
 –

rn
rn+

)
Jrn+ (xn + en+) – (xn+ + en+)

∥∥∥∥
=

∥∥∥∥ rn
rn+

(
(xn + en+) – (xn+ + en+)

)
+
rn+ – rn
rn+

(
Jrn+ (xn + en+) – (xn+ + en+)

)∥∥∥∥
≤ ‖xn – xn+‖ + ‖en+‖ + ‖en+‖ + M

r
(rn – rn+), (.)

where M is an appropriate constant such that M ≥ supn≥{‖Jrn+ (xn + en+) – (xn+ +
en+)‖}. Put zn = xn+–βnxn

–βn
; that is,

xn+ = ( – βn)zn + βnxn, n≥ . (.)

Note that

zn+ – zn =
αn+f (xn+) + ( – αn+)yn+ – βn+xn+

 – βn+

–
αnf (xn) + ( – αn)yn – βnxn

 – βn

http://www.fixedpointtheoryandapplications.com/content/2013/1/347


Song and Chen Fixed Point Theory and Applications 2013, 2013:347 Page 6 of 11
http://www.fixedpointtheoryandapplications.com/content/2013/1/347

=
αn+

 – βn+

(
f (xn+) – yn+

)
+ Jrn+ (xn+ + en+) –

αn

 – βn

(
f (xn) – yn

)

– Jrn (xn + en+).

It follows that

‖zn+ – zn‖ ≤ αn+

 – βn+

∥∥f (xn+) – yn+
∥∥ +

αn

 – βn

∥∥f (xn) – yn
∥∥

+
∥∥Jrn+ (xn+ + en+) – Jrn (xn + en+)

∥∥. (.)

Substituting (.) into (.), we arrive at

‖zn+ – zn‖ – ‖xn – xn+‖ ≤ αn+

 – βn+

∥∥f (xn+) – yn+
∥∥ +

αn

 – βn

∥∥f (xn) – yn
∥∥

+ ‖en+‖ + ‖en+‖ + M

r
(rn – rn+).

In view of restrictions (a), (b) and (c), we find that

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn – xn+‖
) ≤ .

By virtue of Lemma ., one obtains that

lim
n→∞‖zn – xn‖ = . (.)

It follows from (.) that xn+ –xn = (–βn)(zn –xn). In view of restriction (c), we find from
(.) that

lim
n→∞‖xn+ – xn‖ = . (.)

If rn ≤ rn+, we can prove that (.) still holds. On the other hand, we have

∥∥xn – Jrn (xn + en+)
∥∥

≤ ‖xn – xn+‖ + ‖xn+ – yn‖ +
∥∥yn – Jrn (xn + en+)

∥∥
≤ ‖xn – xn+‖ + αn

∥∥f (xn) – yn
∥∥ + βn

∥∥xn – Jrn (xn + en+)
∥∥.

It follows that

( – βn)
∥∥xn – Jrn (xn + en+)

∥∥ ≤ ‖xn – xn+‖ + αn
∥∥f (xn) – yn

∥∥.
In view of restriction (b), one finds that

lim
n→∞

∥∥xn – Jrn (xn + en+)
∥∥ = . (.)

Notice that

‖xn – Jrnxn‖ ≤ ∥∥xn – Jrn (xn + en+)
∥∥ +

∥∥Jrn (xn + en+) – Jrnxn
∥∥

≤ ∥∥xn – Jrn (xn + en+)
∥∥ + ‖en+‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/347
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Since
∑∞

n= ‖en‖ < ∞, from (.) we obtain that limn→∞ ‖xn – Jrnxn‖ = . Taking a fixed
number k such that r > k > , we arrive at

‖Jrnxn – Jkxn‖ =
∥∥∥∥Jk

(
k
rn
xn +

(
 –

k
rn

)
Jrnxn

)
– Jkxn

∥∥∥∥
≤

∣∣∣∣ – k
rn

∣∣∣∣∥∥(Jrnxn – xn)
∥∥

≤ ‖Jrnxn – xn‖. (.)

Since

‖xn – Jkxn‖ ≤ ‖xn – Jrnxn‖ + ‖Jrnxn – Jkxn‖ ≤ ‖xn – Jrnxn‖,

we therefore find that

lim
n→∞‖xn – Jkxn‖ = . (.)

Now, we are in a position to prove that lim supn→∞〈x̄ – f (x̄), j(xn – x̄)〉 ≤ , where x̄ =
limt→ zt , and zt solves the fixed point equation

zt = tf (zt) + ( – t)Jkzt , ∀t ∈ (, ).

Therefore, we see that

‖zt – xn‖ = ( – t)
〈
Jkzt – xn, j(zt – xn)

〉
+ t

〈
f (zt) – xn, j(zt – xn)

〉
= ( – t)

(〈
Jkzt – Jkxn, j(zt – xn)

〉
+

〈
Jkxn – xn, j(zt – xn)

〉)
+ t

〈
f (zt) – zt , j(zt – xn)

〉
+ t

〈
zt – xn, j(zt – xn)

〉
≤ ( – t)

(‖zt – xn‖ + ‖Jkxn – xn‖‖zt – xn‖
)

+ t
〈
f (zt) – zt , j(zt – xn)

〉
+ t‖zt – xn‖

≤ ‖zt – xn‖ + ‖Jkxn – xn‖‖zt – xn‖ + t
〈
f (zt) – zt , j(zt – xn)

〉
, ∀t ∈ (, ).

This implies that

〈
zt – f (zt), j(zt – xn)

〉 ≤ 
t
‖Jkxn – xn‖‖zt – xn‖, ∀t ∈ (, ).

It follows from (.) that

lim sup
n→∞

〈
zt – f (zt), j(zt – xn)

〉 ≤ . (.)

Since zt → x̄ as t →  and from the fact that j is strong to weak∗ uniformly continuous on
bounded subsets of E, we find that

∣∣〈zt – f (zt), j(zt – xn)
〉
–

〈
f (x̄) – x̄, j(xn – x̄)

〉∣∣
≤ ∣∣〈f (x̄) – x̄, j(xn – x̄)

〉
–

〈
f (x̄) – x̄, j(xn – zt)

〉∣∣

http://www.fixedpointtheoryandapplications.com/content/2013/1/347
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+
∣∣〈f (x̄) – x̄, j(xn – zt)

〉
–

〈
zt – f (zt), j(zt – xn)

〉∣∣
≤ ∣∣〈f (x̄) – x̄, j(xn – x̄) – j(xn – zt)

〉∣∣ + ∣∣〈f (x̄) – x̄ + zt – f (zt), J(xn – zt)
〉∣∣

≤ ∥∥f (x̄) – x̄
∥∥∥∥j(xn – x̄) – j(xn – zt)

∥∥ +
∥∥f (x̄) – x̄ + zt – f (zt)

∥∥‖xn – zt‖.

It follows that

lim
t→

∣∣〈zt – f (zt), j(zt – xn)
〉
–

〈
f (x̄) – x̄, j(xn – x̄)

〉∣∣ = .

For any ε > , there exists κ >  such that ∀t ∈ (,κ) the following inequality holds

〈
f (x̄) – x̄, j(xn – x̄)

〉 ≤ 〈
zt – f (zt), j(zt – xn)

〉
+ ε.

This implies that

lim sup
n→∞

〈
f (x̄) – x̄, j(xn – x̄)

〉 ≤ lim sup
n→∞

〈
zt – f (zt), j(zt – xn)

〉
+ ε.

Note that ε is arbitrary. In view of (.), we see that lim supn→∞〈f (x̄) – x̄, j(xn – x̄)〉 ≤ .
This implies that

lim sup
n→∞

〈
f (x̄) – x̄, j(xn+ – x̄)

〉 ≤ . (.)

Finally, we show that xn → x̄ as n→ ∞. Notice that

‖xn+ – x̄‖ ≤ αn
〈
f (xn) – x̄, j(xn+ – x̄)

〉
+ ( – αn)‖yn – x̄‖‖xn+ – x̄‖

≤ αn
〈
f (xn) – x̄, j(xn+ – x̄)

〉
+
 – αn


(‖yn – x̄‖ + ‖xn+ – x̄‖).

It follows that

‖xn+ – x̄‖ ≤ ( – αn)‖xn – x̄‖ + αn
〈
f (xn) – x̄, j(xn+ – x̄)

〉
+ dn,

where dn = ‖en+‖(‖xn – x̄‖ + ‖en+‖). In view of restrictions (a) and (c), we know that∑∞
n= dn < ∞. Put an = ‖xn – x̄‖, tn = αn, and cn = dn. In view of Lemma ., we find the

desired conclusion. �

If f (x) = u, where u is a fixed element in C, for any x ∈ C, we find the following result.

Corollary . Let E be a real reflexive Banach space with the uniformly Gâteaux differen-
tiable norm. Let A be an m-accretive operator in E such that C := D(A) is convex and has
the normal structure. Let {xn} be a sequence generated in the following manner: x ∈ C and

⎧⎨
⎩
yn = βnxn + ( – βn)Jrnxn,

xn+ = αnu + ( – αn)yn, ∀n≥ ,

where {αn} and {βn} are real number sequences in (, ), {rn} is a positive real number
sequence, and Jrn = (I + rnA)–. Assume that A–() is not empty and the above control
sequences satisfy the following restrictions:
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(a) limn→∞ αn =  and
∑∞

n= αn =∞;
(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c) rn ≥ r for each n≥  and limn→∞ |rn – rn+| = .

Then the sequence {xn} converges strongly to x̄ =QA–()u.

4 Applications
In this section, we consider solutions of variational inequalities. Let C be a nonempty,
closed, and convex subset of a Banach space E. Let A : C → E∗ be a single-valued mono-
tone operator which is hemicontinuous; that is, continuous along each line segment in C
with respect to the weak∗ topology of E∗. Consider the following variational inequality
problem of finding a point x ∈ C such that

〈y – x,Ax〉 ≥ , ∀y ∈ C.

In this section, we use VI(C,A) to denote the solution set of the variational inequality
involving A. The symbol NC(x) stands for the normal cone for C at a point x ∈ C; that is,

NC(x) =
{
x∗ ∈ E∗ :

〈
y – x,x∗〉 ≤ ,∀y ∈ C

}
.

Theorem . Let E be a real reflexive Banach space with the uniformly Gâteaux differ-
entiable norm. Let C be a nonempty, closed, and convex subset of E. Let A : C → E∗ be a
single-valued,monotone, and hemicontinuous operator.Assume that VI(C,A) is not empty
and C has the normal structure. Let f : C → C be an α-contraction. Let {xn} be a sequence
generated in the following manner: x ∈ C and

⎧⎨
⎩
yn = βnxn + ( – βn)VI(C,A + 

rn (I – xn)),

xn+ = αnf (xn) + ( – αn)yn, ∀n≥ ,

where {αn} and {βn} are real number sequences in (, ), {en} is a sequence in E, {rn} is a
positive real number sequence, and Jrn = (I + rnA)–. Assume that A–() is not empty and
the above control sequences satisfy the following restrictions:
(a) limn→∞ αn =  and

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c) rn ≥ r for each n≥  and limn→∞ |rn – rn+| = .

Then the sequence {xn} converges strongly to x̄, which is the unique solution to the following
variational inequality 〈f (x̄) – x̄, j(p – x̄)〉 ≤ , ∀p ∈ A–().

Proof Define a mapping T ⊂ E × E∗ by

Tx =

⎧⎨
⎩
Ax +NCx, x ∈ C,

∅, x /∈ C.

By Rockafellar [], we know thatT ismaximalmonotone, andT–() = VI(C,A). For each
rn >  and xn ∈ E, we see that there exists a unique xrn ∈D(T) such that xn ∈ xr + rnT(xrn ),
where xrn = (I + rnT)–xn. Notice that

yn = VI
(
C,A +


rn
(I – xn)

)
,
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which is equivalent to

〈
y – yn,Ayn +


rn
(yn – xn)

〉
≥ , ∀y ∈ C,

that is, –Ayn+ 
rn (xn–yn) ∈NC(yn). This implies that yn = (I+rnT)–xn. Following the proof

of Theorem ., we can immediately conclude the desired conclusion. �

If f (x) = u, where u is a fixed element in C, for any x ∈ C, we find the following result.

Corollary . Let E be a real reflexive Banach space with the uniformly Gâteaux differ-
entiable norm. Let C be a nonempty, closed, and convex subset of E. Let A : C → E∗ be a
single-valued,monotone, and hemicontinuous operator.Assume that VI(C,A) is not empty
and C has the normal structure. Let {xn} be a sequence generated in the following manner:
x ∈ C and

⎧⎨
⎩
yn = βnxn + ( – βn)VI(C,A + 

rn (I – xn)),

xn+ = αnu + ( – αn)yn, ∀n≥ ,

where {αn} and {βn} are real number sequences in (, ), {en} is a sequence in E, {rn} is a
positive real number sequence, and Jrn = (I + rnA)–. Assume that A–() is not empty and
the above control sequences satisfy the following restrictions:
(a) limn→∞ αn =  and

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c) rn ≥ r for each n≥  and limn→∞ |rn – rn+| = .

Then the sequence {xn} converges strongly to x̄ =QA–()u.
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