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Abstract
In this paper, we introduce an iterative process which converges strongly to a
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1 Introduction
Throughout this paper, E is a real reflexive Banach space with E∗ as its dual and f : E →
(–∞, +∞] is a proper, lower semicontinuous and convex function. We denote by dom f
the domain of f , defined by dom f := {x ∈ E : f (x) < +∞}. For any x ∈ int(dom f ) and y ∈ E,
the right-hand derivative of f at x in the direction of y is defined by

f (x, y) := lim
t→+

f (x + ty) – f (x)
t

. (.)

The function f is said to be Gâteaux differentiable at x if limt→+(f (x + ty) – f (x))/t exists
for any y ∈ E. In this case, f (x, y) coincides with ∇f (x), the value of the gradient ∇f of f
at x. The function f is said to be Gâteaux differentiable if it is Gâteaux differentiable for
any x ∈ int(dom f ). The function f is said to be Fréchet differentiable at x if this limit is
attained uniformly in ‖y‖ = . We say that f is uniformly Fréchet differentiable on a subset
C of E if the limit is attained uniformly for x ∈ C and ‖y‖ = .
Let f : E → (–∞, +∞] be a Gâteaux differentiable function. The function Df : dom f ×

int(dom f ) → [, +∞) defined by

Df (x, y) := f (x) – f (y) –
〈∇f (y),x – y

〉

is called the Bregman distance with respect to f [].
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A Bregman projection with respect to f [] of x ∈ int(dom f ) onto the nonempty, closed
and convex set C ⊂ int(dom f ) is the unique vector Pf

C(x) ∈ C satisfying

Df
(
Pf
C(x),x

)
= inf

{
Df (y,x) : y ∈ C

}
.

Remark . If E is a smooth and strictly convex Banach space and f (x) = ‖x‖ for all x ∈ E,
then we have that∇f (x) = J(x) for all x ∈ E, where J the normalized duality mapping from
E into E∗, and henceDf (x, y) becomesDf (x, y) = ‖x‖ –〈x, Jy〉+‖y‖ for all x, y ∈ E, which
is the Lyapunov function introduced by Alber [] and studied by many authors (see, e.g.,
[–] and the references therein). In addition, under the same condition, the Bregman
projectionPf

C(x) reduces to the generalized projection�C(x) (see, e.g., [])which is defined
by

φ
(
�C(x),x

)
=min

y∈C φ(y,x). (.)

If E = H , a Hilbert space, J is the identity mapping, and hence the Bregman projection
Pf
C(x) reduces to the metric projection of H on to C, PC(x).

A mapping A :D(A)⊂ E → E∗ is said to be γ -inverse strongly monotone if there exists a
positive real number γ such that

〈Ax –Ay,x – y〉 ≥ γ ‖Ax –Ay‖ for all x, y ∈D(A). (.)

A is said to bemonotone if, for each x, y ∈D(A), the following inequality holds:

〈Ax –Ay,x – y〉 ≥ . (.)

Clearly, the class ofmonotonemappings includes the class of γ -inverse stronglymonotone
mappings.
Let C be a nonempty, closed and convex subset of E and A : C → E∗ be a monotone

mapping. The problem of finding

a point u ∈ C such that 〈Au, v – u〉 ≥  for all v ∈ C (.)

is called the variational inequality problem. The set of solutions of the variational inequal-
ity is denoted by VI(C,A).
Variational inequality problems are related with the convex minimization problem, the

zero of monotone mappings and the complementarity problem. Consequently, many re-
searchers (see, e.g., [, , –]) havemade efforts to obtain iterative methods for approx-
imating solutions of variational inequality problems.
If E =H , a Hilbert space, Iiduka et al. [] introduced the following projection algorithm:

x = x ∈ C, xn+ = PC(xn – αnAxn) for any n≥ , (.)

where PC is the metric projection from H onto C and {αn} is a sequence of positive real
numbers. They proved that the sequence {xn} generated by (.) converges weakly to some
element of VI(C,A) provided that A is a γ -inverse strongly monotone mapping.
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If E is a -uniformly convex and uniformly smooth Banach space, and A is γ -inverse
strongly monotone, Iiduka and Takahashi [] introduced the following iteration scheme
for finding a solution of the variational inequality problem:

xn+ =�CJ–(Jxn – αnAxn) for any n≥ , (.)

where�C is the generalized projection from E ontoC, J is the normalized dualitymapping
from E into E∗ and {αn} is a sequence of positive real numbers. They proved that the
sequence {xn} generated by (.) converges weakly to some element of VI(C,A).
It is worth mentioning that the convergence obtained above is weak convergence. Our

concern now is to look for an iteration scheme which converges strongly to a solution of
the variational inequality problem for a monotone mapping A.
In this regard, when E is a -uniformly convex and uniformly smooth Banach space and

A is a γ -inverse strongly monotone mapping satisfying ‖Au‖ ≤ ‖Ay – Au‖ for all y ∈ C
and u ∈ VI(C,A) forVI(C,A) = ∅, Iiduka andTakahashi [] studied the following iterative
scheme for a solution of the variational inequality problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x ∈ K chosen arbitrarily,
yn =�CJ–(Jxn – αnAxn),
Cn = {z ∈ E : φ(z, yn) ≤ φ(z,xn)},
Qn = {z ∈ E : 〈xn – z, Jx – Jxn〉 ≥ },
xn+ =�Cn∩Qn (x), n ≥ ,

(.)

where {αn} is a positive real sequence satisfying certain mild conditions and �Cn∩Qn is the
generalized projection from E onto Cn ∩Qn, J is the duality mapping from E into E∗. Then
they proved that the sequence {xn} converges strongly to an element of VI(C,A).
Recently, Zegeye and Shahzad [] studied the following iterative scheme for a common

point of a solution of two variational inequality problems for continuous monotone map-
pings in a uniformly smooth and strictly convex real Banach space E which also enjoys the
Kadec-Klee property:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x ∈ C = C chosen arbitrarily,
un = T,γnxn; vn = T,γnxn,
wn = J–(βJun + ( – β)Jvn),
Cn+ = {z ∈ Cn : φ(z,wn) ≤ φ(z,xn)},
xn+ =�Cn+ (x), n≥ ,

(.)

where Ti,γ x := {z ∈ C : 〈Aiz, y – z〉 + 
γ
〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C} for all x ∈ E, i = , ,

and β ,γn ∈ (, ) satisfy certain mild conditions. Then they proved that the sequence
{xn} converges strongly to �F (x), where �F is the generalized projection from E onto
F :=

⋂
i=VI(C,Ai) = ∅.

In , Bregman [] discovered an elegant and effective technique for using the so-
called Bregman distance function Df (·, ·) in the process of designing and analyzing feasi-
bility and optimization algorithms. Using Bregman’s distance function and its properties,
authors have opened a growing area of research not only for iterative algorithms of solving
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feasibility and optimization problems but also for algorithms of solving nonlinear, equi-
librium, variational inequality, fixed point problems and others (see, e.g., [–] and the
references therein).
In , Reich and Sabach [] proposed an algorithm for finding a common zero point

of a finite family of maximal monotone mappings Ai : E → E∗ (i = , , . . . ,N ) in a general
reflexive Banach space E as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,
yin = ResλinAi

(xn + ein),
Ci
n = {z ∈ E :Df (z, yin) ≤Df (z,xn + ein)},

Cn =
⋂N

i=Ci
n,

Qi
n = {z ∈ E : 〈∇f (x) –∇f (xn), z – xn〉 ≤ },

xn+ = Pf
Cn∩Qn (x), ∀n≥ ,

(.)

where {λi
n}Ni= ⊂ (,∞), {ein}Ni= are error sequences in E with ein →  and Pf

C is the Bregman
projection with respect to f from E onto a closed and convex subset C of E. Those authors
showed that the sequence {xn} defined by (.) converges strongly to a common element
in

⋂N
i=A–(∗) =

⋂N
i=VI(E,Ai) under somemild conditions. Similar results are also avail-

able in [, ].

Remark . But it is worth mentioning that the iteration processes (.)-(.) seem diffi-
cult in the sense that at each stage of iteration, the set(s) Cn and (or) Qn is (are) computed
and the next iterate is taken as the Bregman projection of x onto the intersection of Cn

and Qn (or Qn). This seems difficult to do in applications.

It is our purpose in this paper to introduce an iterative scheme {xn} which converges
strongly to a common solution of a finite family of variational inequality problems for
monotone mappings in real reflexive Banach spaces. Our scheme does not involve com-
putations of Cn or Qn for each n ≥ . Furthermore, we apply our convergence theorem to
a convex minimization problem. Our theorems extend and unify most of the results that
have been proved for this important class of nonlinear operators.

2 Preliminaries
Let x ∈ int(dom f ). The subdifferential of f at x is the convex set defined by ∂f (x) = {x∗ ∈
E∗ : f (x) + 〈x∗, y – x〉 ≤ f (y),∀y ∈ E}, where the Fenchel conjugate of f is the function f ∗ :
E∗ → (–∞, +∞] defined by f ∗(x∗) = sup{〈x∗,x〉 – f (x) : x ∈ E}.
The function f is said to be:
(i) Essentially smooth if ∂f is both locally bounded and single-valued on its domain.
(ii) Essentially strictly convex if (∂f )– is locally bounded on its domain and f is strictly

convex on every convex subset of dom f .
(iii) Legendre if it is both essentially smooth and essentially strictly convex.

We remark that we have the following:
(i) f is essentially smooth if and only if f ∗ is essentially strictly convex (see [],

Theorem .).
(ii) (∂f )– = ∂f ∗ (see []).
(iii) f is Legendre if and only if f ∗ is Legendre (see [], Corollary .).
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(iv) If f is Legendre, then ∇f is a bijection satisfying ∇f = (∇f ∗)–,
ran∇f = dom∇f ∗ = int(dom f ∗) and ran∇f ∗ = dom∇f = int(dom f ) (see [],
Theorem .).

When the subdifferential of f is single-valued, then ∂f =∇f (see []).
A function f on E is coercive [] if the sublevel set of f is bounded; equivalently,

lim‖x‖→∞ f (x) =∞.
Let f : E → (–∞, +∞] be a convex and Gâteaux differentiable function. Themodulus of

total convexity of f at x ∈ dom f is the function νf (x, ·) : [, +∞)→ [, +∞] defined by

νf (x, t) := inf
{
Df (y,x) : y ∈ dom f ,‖y – x‖ = t

}
.

The function f is called totally convex at x if νf (x, t) > , whenever t > . The function f
is called totally convex if it is totally convex at any point x ∈ int(dom f ) and it is said to be
totally convex on bounded sets if νf (B, t) >  for any nonempty bounded subset B of E and
t > , where the modulus of total convexity of the function f on the set B is the function
νf : int(dom f )× [, +∞)→ [, +∞] defined by

νf (B, t) := inf
{
Vf (x, t) : x ∈ B∩ dom f

}
.

We know that f is totally convex on bounded sets if and only if f is uniformly convex on
bounded sets (see [], Theorem .). The following lemmas will be useful in the proof
of our main result.

Lemma . [] The function f : E → (–∞, +∞] is totally convex on bounded subsets of E
if and only if for any two sequences {xn} and {yn} in int(dom f ) and dom f , respectively, such
that the first one is bounded,

lim
n→∞Df (yn,xn) =  �⇒ lim

n→∞‖yn – xn‖ = .

Lemma. [] Let C be a nonempty, closed and convex subset of E. Let f : E → (–∞, +∞]
be a Gâteaux differentiable and totally convex function, and let x ∈ E. Then:

(i) z = Pf
C(x) if and only if 〈∇f (x) –∇f (z), y – z〉 ≤ , ∀y ∈ C.

(ii) Df (y,P
f
C(x)) +Df (P

f
C(x),x)≤Df (y,x), ∀y ∈ C.

Lemma . [] Let f : E → (–∞, +∞] be a proper, lower semi-continuous and convex
function, then f ∗ : E∗ → (–∞, +∞] is a proper, weak∗ lower semicontinuous and convex
function. Thus, for all z ∈ E, we have

Df

(
z,∇f ∗

( N∑
i=

ti∇f (xi)

))
≤

N∑
i=

tiDf (z,xi). (.)

Lemma . [] Let f : E → R be Gâteaux differentiable on int(dom f ) such that ∇f ∗ is
bounded on bounded subsets of dom f ∗. Let x∗ ∈ X and {xn} ⊂ E. If {Df (x,xn)} is bounded,
so is the sequence {xn}.

Let f : E →R be a Legendre and Gâteaux differentiable function. Following [] and [],
we make use of the function Vf : E × E∗ → [, +∞) associated with f , which is defined by

Vf
(
x,x∗) = f (x) –

〈
x,x∗〉 + f ∗(x∗), ∀x ∈ E,x∗ ∈ E∗. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/343
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Then Vf is nonnegative and

Vf
(
x,x∗) =Df

(
x,∇f ∗(x∗)) for all x ∈ E and x∗ ∈ E∗. (.)

Moreover, by the subdifferential inequality,

Vf
(
x,x∗) + 〈

y∗,∇f ∗(x∗) – x
〉 ≤ Vf

(
x,x∗ + y∗), (.)

∀x ∈ E and x∗, y∗ ∈ E∗ (see []).

Lemma. [] Let {an} be a sequence of nonnegative real numbers satisfying the following
relation:

an+ ≤ ( – αn)an + αnδn, n≥ n,

where {αn} ⊂ (, ) and {δn} ⊂ R satisfy the following conditions: limn→∞ αn = ,
∑∞

n= αn =
∞, and lim supn→∞ δn ≤ . Then limn→∞ an = .

Lemma . [] Let {an} be a sequence of real numbers such that there exists a subsequence
{ni} of {n} such that ani < ani+ for all i ∈N.Then there exists an increasing sequence {mk} ⊂
N such that mk → ∞ and the following properties are satisfied by all (sufficiently large)
numbers k ∈N:

amk ≤ amk+ and ak ≤ amk+.

In fact, mk is the largest number n in the set {, , . . . ,k} such that the condition an ≤ an+
holds.

Following the agreement in [], we have the following lemma.

Lemma . Let f : E → (–∞, +∞] be a coercive Legendre function and C be a nonempty,
closed and convex subset of E. Let A : C → E∗ be a continuous monotonemapping. For r > 
and x ∈ E, define the mapping Fr : E → C as follows:

Frx :=
{
z ∈ C : 〈Az, y – z〉 + 

r
〈∇f (z) –∇f (x), y – z

〉 ≥ ,∀y ∈ C
}

for all x ∈ E. Then the following hold:
() Fr is single-valued;
() F(Fr) = VI(C,A);
() φ(p,Frx) + φ(Frx,x)≤ φ(p,x) for p ∈ F(Fr);
() VI(C,A) is closed and convex.

3 Main result
Let C be a nonempty, closed and convex subset of E. Let Ai : C → E∗, for i = , , . . . ,N , be
continuous monotone mappings. For r > , define Ti,rx := {z ∈ C : 〈Aiz, y – z〉 + 

r 〈∇f (z) –

http://www.fixedpointtheoryandapplications.com/content/2013/1/343
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∇f (x), y – z〉 ≥ ,∀y ∈ C} for all x ∈ E and i ∈ {, , . . . ,N}, where f is a Legendre and con-
vex function from E into (–∞, +∞). Then, in what follows, we shall study the following
iteration process:

⎧⎪⎨
⎪⎩
x = u ∈ C chosen arbitrarily,
wn = TN ,rn ◦ TN–,rn ◦ · · · ◦ T,rnxn,
xn+ = Pf

C∇f ∗(αn∇f (u) + ( – αn)∇f (wn)), ∀n≥ ,
(.)

where {αn} ⊂ (, ) satisfies limn→∞ αn =  and
∑∞

n= = ∞, and {rn} ⊂ [c,∞) for some
c > .

Theorem . Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let C be a
nonempty, closed and convex subset of int(dom f ) and Ai : C → E∗, for i = , , . . . ,N , be a
finite family of continuous monotone mappings withF :=

⋂N
i=VI(C,Ai) = ∅. Let {xn}n≥ be

a sequence defined by (.). Then {xn} converges strongly to x∗ = Pf
F (u).

Proof By Lemma . we have that each VI(C,Ai) for each i ∈ {, , . . . ,N} and hence F
are closed and convex. Thus, we can take x∗ := Pf

Fu. Let un, = T,rnxn,un, = T,rnun,,
. . . ,un,N– = TN–,rnun,N– and un,N = TN ,rnun,N– = wn. Then, from (.), Lemmas ., .
and the property of φ, we get that

Df
(
x∗,xn+

)
= Df

(
x∗,Pf

C∇f ∗(αn∇f (u) + ( – αn)∇f (wn)
))

≤ Df
(
x∗,∇f ∗(αn∇f (u) + ( – αn)∇f (wn)

))
≤ αnDf

(
x∗,u

)
+ ( – αn)Df

(
x∗,wn

)
= αnDf

(
x∗,u

)
+ ( – αn)Df

(
x∗,TN ,rn ◦ TN–,rn ◦ · · · ◦ T,rnxn

)
≤ αnDf

(
x∗,u

)
+ ( – αn)Df

(
x∗,xn

)
. (.)

Thus, by induction,

Df
(
x∗,xn+

) ≤max
{
Df

(
x∗,xn

)
,Df

(
x∗,u

)}
, ∀n≥ ,

which implies by Lemma . that {xn} and hence {wn} are bounded. Now let zn =
∇f ∗(αn∇f (u) + ( – αn)∇f (wn)). Then we have from (.) that xn+ = Pf

Czn. Using Lem-
mas ., ., .(), (.) and (.), we obtain that

Df
(
x∗,xn+

)
= Df

(
x∗,Pf

Czn
) ≤Df

(
x∗, zn

)
= V

(
x∗,∇f (zn)

)
≤ V

(
x∗,∇f (zn) – αn

(∇f (u) –∇f
(
x∗))) + 〈

αn
(∇f (u) –∇f

(
x∗)), zn – x∗〉

= Df
(
x∗,∇f ∗(αn∇f

(
x∗) + ( – αn)∇f (wn)

))
+ αn

〈∇f (u) –∇f
(
x∗), zn – x∗〉

≤ αnφ
(
x∗,x∗) + ( – αn)Df

(
x∗,wn

)
+ αn

〈∇f (u) –∇f
(
x∗), zn – x∗〉

≤ ( – αn)Df
(
x∗,TN ,rnun,N–

)
+ αn

〈∇f (u) –∇f
(
x∗), zn – x∗〉,

http://www.fixedpointtheoryandapplications.com/content/2013/1/343


Shahzad et al. Fixed Point Theory and Applications 2013, 2013:343 Page 8 of 13
http://www.fixedpointtheoryandapplications.com/content/2013/1/343

which implies that

Df
(
x∗,xn+

) ≤ ( – αn)
[
Df

(
x∗,un,N–

)
–Df (wn,un,N–)

]
+ αn

〈∇f (u) –∇f
(
x∗), zn – x∗〉

≤ ( – αn)
[
Df

(
x∗,unN–

)
–Df (unN–,unN–)

]
– ( – αn)Df (wn,un,N–) + αn

〈∇f (u) –∇f
(
x∗), zn – x∗〉

· · ·
≤ ( – αn)Df

(
x∗,xn

)
– ( – αn)

[
Df (un,,xn) +Df (un,,un,)

+ · · · +Df (un,N–,un,N–) +Df (wn,un,N–)
]

+ αn
〈∇f (u) –∇f

(
x∗), zn – x∗〉

≤ ( – αn)Df
(
x∗,xn

)
+ αn

〈∇f (u) –∇f
(
x∗), zn – x∗〉. (.)

Now, we consider two possible cases.
Case . Suppose that there exists n ∈ N such that {Df (x∗,xn)} is decreasing. Thenwe ob-

tain that {Df (x∗,xn)} is convergent. Thus, from (.) we have thatDf (un,,xn),Df (un,,un,),
. . . ,Df (wn,un,N–) →  as n→ ∞, and hence by Lemma . we get that

un, – xn → , un, – un, → , . . . , wn – un,N– →  as n→ ∞. (.)

Furthermore, from the property of Df (·, ·) and the fact that αn →  as n → ∞, we have
that

Df (wn, zn) = Df
(
wn,∇f ∗(αn∇f (u) + ( – αn)∇f (wn)

))
≤ αnDf (wn,u) + ( – αn)Df (wn,wn)

≤ αnDf (wn,u) + ( – αn)Df (wn,wn) →  as n→ ∞,

and hence from Lemma . we have that wn – zn →  and this with (.) implies that

zn – un,N– → , zn – un,N– → , . . . , zn – un, →  as n→ ∞. (.)

Since {zn} is bounded and E is reflexive, we choose a subsequence {znk } of {zn} such that
znk ⇀ z and lim supn→∞〈∇f (u)–∇f (x∗), zn–x∗〉 = limk→∞〈∇f (u)–∇f (x∗), znk –x

∗〉. Then,
from (.) and (.), we get that unk ,i ⇀ z for each i ∈ {, , . . . ,N}.
Now, we show that z ∈ VI(C,Ai) for each i ∈ {, , . . . ,N}. But from the definition of un,i,

we have that

〈Aiun,i, y – un,i〉 +
〈∇f (un,i) –∇f (xn)

rn
, y – un,i

〉
≥ , ∀y ∈ C,

and hence

〈Aiunk ,i, y – unk ,i〉 +
〈∇f (unk ,i) –∇f (xnk )

rnk
, y – unk ,i

〉
≥ , ∀y ∈ C (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/343
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for each i ∈ {, , . . . ,N}. Set vt = ty + ( – t)z for all t ∈ (, ] and y ∈ C. Consequently, we
get that vt ∈ C. Now, from (.) it follows that

〈Aivt , vt – unk ,i〉 ≥ 〈Aivt , vt – unk ,i〉 – 〈Aiunk ,i, vt – unk ,i〉

–
〈∇f (unk ,i) –∇f (xnk )

rnk
, vt – unk ,i

〉

= 〈Aivt –Aiunk ,i, vt – unk ,i〉

–
〈∇f (unk ,i) –∇f (xnk )

rnk
, vt – unk ,i

〉
.

In addition, since f is uniformly Fréchet differentiable and bounded, we have that ∇f is
uniformly continuous (see []). Thus, from (.) and the uniform continuity of ∇f , we
obtain that

∇f (unk ,i) –∇f (xnk )
rnk

→  as k → ∞,

and since A is monotone, we also have that 〈Aivt – Aiunk ,i, vt – unk ,i〉 ≥ . Thus, it follows
that

 ≤ lim
k→∞

〈Aivt , vt – unk ,i〉 = 〈Aivt , vt – z〉,

and hence

〈Aivt , y – z〉 ≥ , ∀y ∈ C, for all i ∈ {, , . . . ,N}.

If t → , the continuity of Ai implies that

〈Aiz, y – z〉 ≥ , ∀y ∈ C.

This implies that z ∈ VI(C,Ai) for all i ∈ {, , . . . ,N}.
Therefore, we obtain that z ∈ ⋂N

i=VI(C,Ai). Thus, by Lemma ., we immediately ob-
tain that lim supn→∞〈∇f (u)–∇f (x∗), zn–x∗〉 = 〈∇f (u)–∇f (x∗), z–x∗〉 ≤ . It follows from
Lemma . and (.) that Df (x∗,xn) →  as n→ ∞. Consequently, xn → x∗.
Case . Suppose that there exists a subsequence {nj} of {n} such that

Df
(
x∗,xnj

)
<Df

(
x∗,xnj+

)
for all j ∈ N. Then, by Lemma ., there exists a nondecreasing sequence {mk} ⊂ N such
thatmk → ∞,Df (x∗,xmk ) ≤Df (x∗,xmk+) andDf (x∗,xk) ≤Df (x∗,xmk+) for all k ∈N. From
(.) and αn → , we have

( – αmk )
(
Df (umk ,,xmk ) + · · · +Df (wmk ,umk ,N–)

)
≤ (

Df
(
x∗,xmk

)
–Df

(
x∗,xmk+

))
+ αmkDf

(
x∗,xmk

)
+ αmk

〈∇f (u) –∇f
(
x∗), zmk – x∗〉 →  as k → ∞,
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which implies that Df (umk ,,xmk ), . . . ,Df (wmk ,umk ,N–) → , and hence umk , – xmk →
, . . . ,wmk – umk ,N– →  as k → ∞. Thus, as in Case , we obtain that

lim sup
k→∞

〈∇f (u) –∇f
(
x∗), zmk – x∗〉 ≤ . (.)

Furthermore, from (.) we have that

Df
(
x∗,xmk+

) ≤ ( – αmk )Df
(
x∗,xmk

)
+ αmk

〈∇f (u) –∇f
(
x∗), zmk – x∗〉. (.)

Thus, since Df (x∗,xmk ) ≤Df (x∗,xmk+), we get that

αmkDf
(
x∗,xmk

) ≤ Df
(
x∗,xmk

)
–Df

(
x∗,xmk+

)
+ αmk

〈∇f (u) –∇f
(
x∗), zmk – x∗〉

≤ αmk

〈∇f (u) –∇f
(
x∗), zmk – x∗〉.

Moreover, since αmk > , we obtain that

Df
(
x∗,xmk

) ≤ 〈∇f (u) –∇f
(
x∗), zmk – x∗〉.

It follows from (.) that Df (x∗,xmk ) →  as k → ∞. This together with (.) implies that
Df (x∗,xmk+) → . Therefore, since Df (x∗,xk) ≤ Df (x∗,xmk+) for all k ∈ N, we conclude
that xk → x∗ as k → ∞. Hence, both cases imply that {xn} converges strongly to x∗ = Pf

Fu
and the proof is complete. �

If in Theorem . N = , then we get the following corollary.

Corollary . Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let C be a
nonempty, closed and convex subset of int(dom f ), and let A : C → E∗ be a continuousmono-
tone mapping with VI(C,A) = ∅. Let {xn}n≥ be a sequence defined by (.),

⎧⎪⎨
⎪⎩
x = u ∈ C chosen arbitrarily,
wn = Trnxn,
xn+ = Pf

C∇f ∗(αn∇f (u) + ( – αn)∇f (wn)),
(.)

where Tγ x := {z ∈ C : 〈Az, y – z〉 + 
γ
〈∇f (z) – ∇f (x), y – z〉 ≥ ,∀y ∈ C} for all x ∈ E; αn ∈

(, ) satisfies limn→∞ αn =  and
∑∞

n= αn =∞ and {rn} ⊂ [c,∞) for some c > . Then the
sequence {xn}n≥ converges strongly to a point x∗ = PVI(C,A)(u).

If C = E, then VI(C,A) = A–() and hence the following corollary holds.

Corollary . Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let Ai :
E → E∗, for i = , , . . . ,N , be a finite family of continuous monotone mappings. Let F :=⋂N

i=VI(C,Ai) =
⋂N

i=A–() = ∅. Let {xn}n≥ be a sequence defined by (.). Then {xn} con-
verges strongly to x∗ = Pf

F (u).
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If in Theorem . we assume u = , then the scheme converges strongly to the common
minimum-norm zero of a finite family of continuousmonotonemappings. In fact, we have
the following corollary.

Corollary . Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let C be a
nonempty, closed and convex subset of int(dom f ), and let Ai : C → E∗, for i = , , . . . ,N , be
a finite family of continuous monotone mappings with F :=

⋂N
i=VI(C,Ai) = ∅. Let {xn}n≥

be a sequence defined by (.) with u = . Then {xn} converges strongly to x∗ = Pf
F (), which

is the common minimum-norm (with respect to the Bregman distance) solution of the vari-
ational inequalities.

4 Application
In this section, we study the problem of finding a minimizer of a continuously Fréchet
differentiable convex functional in Banach spaces.
Let gi, for i = , , . . . ,N , be continuously Fréchet differentiable convex functionals such

that the gradients of gi, (∇gi)|C are continuous andmonotone. For r > , let Ki,rx := {z ∈ C :
〈∇gi(z), y–z〉+ 

r 〈∇f (z)–∇f (x), y–z〉 ≥ ,∀y ∈ C} for all x ∈ E and for each i ∈ {, , . . . ,N}.
Then the following theorem holds.

Theorem . Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let gi, i =
, , . . . ,N , be continuously Fréchet differentiable convex functionals such that the gra-
dients of gi, (∇gi)|C are continuous, monotone and F :=

⋂N
i= argminy∈C gi(y) = ∅, where

argminy∈C gi(y) := {z ∈ C : gi(z) =miny∈C gi(y)}. Let {xn}n≥ be a sequence defined by

⎧⎪⎨
⎪⎩
x = u ∈ C chosen arbitrarily,
wn = KN ,rn ◦KN–,rn ◦ · · · ◦K,rnxn,
xn+ = Pf

C∇f ∗(αn∇f (u) + ( – αn)∇f (wn)), ∀n≥ ,
(.)

where αn ∈ (, ) satisfies limn→∞ αn =  and
∑∞

n= αn = ∞ and {rn} ⊂ [c,∞) for some
c > . Then the sequence {xn} converges strongly to p = Pf

F (u).

Proof We note that from the convexity and Fréchet differentiability of f , we have
VI(C, (∇gi)|C) = argminy∈C gi(y) for each i ∈ {, , . . . ,N}. Thus, by Theorem ., {xn} con-
verges strongly to p = Pf

F (u). �

Remark . Our results are new even if the convex function f is chosen to be f (x) = 
p‖x‖p

( < p < ∞) in uniformly smooth and uniformly convex spaces.

Remark . Our theorems extend and unify most of the results that have been proved
for this important class of nonlinear operators. In particular, Theorem . extends The-
orem . of [], Theorem . of [], Theorem . of [] and Theorem . of [] and
Theorem . of [] either to a more general class of continuous monotone operators
or to a more general Banach space E. Moreover, in all our theorems and corollaries, the
computation of Cn or Qn for each n≥  is not required.
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