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Abstract
In this paper, we study generalized strong vector quasi-equilibrium problems in
topological vector spaces. Using the generalization of Fan-Browder fixed point
theorem, we provide existence theorems for an extension of generalized strong
vector quasi-equilibrium problems with and without monotonicity. The results in this
paper generalize, extend and unify some well-known existence theorems in literature.
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1 Introduction
The minimax inequalities of Fan [] are fundamental in proving many existence theorems
in nonlinear analysis. Their equivalence to the equilibrium problems was introduced by
Takahashi [, Lemma ] Blum and Oettli [] and Noor and Oettli []. The equilibrium
problem theory provides a novel and united treatment of a wide class of problems which
arise in economics, finance, image reconstruction, ecology, transportation, network, elas-
ticity and optimization. This theory has had a great impact and influence in the develop-
ment of several branches of pure and applied sciences. During this period, many results on
existence of solutions for vector variational inequalities and vector equilibrium problems
have been established (see, for example, [–]).
Recently, the equilibrium problem has been extensively generalized to the vector map-

pings (see [–, –]). Let X and Y be real topological vector spaces and K be a
nonempty subset of X. Let C be a closed and convex cone in Y with intC �= ∅, where intC
denotes the topological interior of C. For a vector-value function F : K × K → Y , at least
two different vector equilibrium problems are the following problems:

WVEP: find x ∈ K such that F(x, y) /∈ – intC for all y ∈ K (.)

and

VEP: find x ∈ K such that F(x, y) /∈ –C \ {} for all y ∈ K . (.)

The first problem is called weak vector equilibrium problem (see, for instance, [, ,
]) and the second one is normally called strong vector equilibrium problem (see []).
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However, Kazmi andKhan [] called problem (.) the generalized system (for short, GS).
Recently, many existence results extended and improved WVEP and its particular cases
(see, for instance, [–]), but not VEP.
For a more general form of vector equilibrium problem, we let A : K → K be a multi-

valued map with nonempty values where K denotes the family of subsets of K . Then we
consider the following problem: find x ∈ K such that

x ∈ A(x), F(x, y) /∈ – intC for all y ∈ A(x). (.)

It is known that a vector quasi-equilibriumproblem (for short,VQEP) was introduced by
Ansari et al. []. If themapping F is replaced by amultivaluedmap, saying F : K×K → Y

with Y being a topological vector space,VEP can be generalized in the following way: find
x ∈ K such that

F(x, y)� – intC for all y ∈ K . (.)

It is called generalized vector equilibrium problem (for short, GVEP) and it has been
studied by many authors; see, for example, [, , , , ] and references therein. In
, Ansari and Flores-Bazás [] introduced the generalized vector quasi-equilibrium
problem (for short, GVQEP): find x ∈ K such that

x ∈ A(x), F(x, y)� – intC for all y ∈ A(x), (.)

which is a general form of GVEP; more examples can also be found in [–, ]. In an-
other way, Kum andWong [] considered the multivalued generalized system (for short,
MGS): find x ∈ K such that

F(x, y)� –C \ {} for all y ∈ K . (.)

Throughout this paper, unless otherwise specified, we assume that X and Y are Haus-
dorff topological vector spaces, K is a nonempty convex subset of X and C is a pointed
closed convex cone inY with intC �= ∅. For a givenmultivalued bi-operator F : K×K → Y

such that {} ⊆ F(x,x) for each x ∈ K , where Y denotes the family of subsets of Y , the new
type of generalized strong vector quasi-equilibrium problem (for short, GSVQEP) is the
problem to find x ∈ K such that

x ∈ A(x), F(x, y)� –C \ {} for all y ∈ A(x), (.)

whereA : K → K is a multivaluedmap with nonempty values. If we set F(x, y) = 〈Tx,η(y–
x)〉 for all x, y ∈ K , then theGSVQEP reduces to the following generalized quasi-variational
like inequality problem (for short, GQVLIP): find x ∈ K such that

x ∈ A(x),
〈
Tx,η(y – x)

〉
� –C \ {} for all y ∈ A(x), (.)

where T : K → L(X,Y ) is a multivalued mapping, η : K × K → X is a nonlinear mapping
and L(X,Y ) is denoted by the space of all continuous linear operators for X to Y . This
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above formulation is the generalization of vector variational inequalities, variational-like
inequality problems and vector complementarity problems in infinite dimensional spaces
studied by many authors (see [–] and references therein).
The main motivation of this paper is to establish some existence results for a solution

to the new type of the generalized strong vector quasi-equilibrium problems GSVQEP
with and without monotonicity by using the generalization of Fan-Browder fixed point
theorem.

2 Preliminaries
Let us recall some definitions and lemmas that are needed in themain results of this paper.

Definition . [] Let X and Y be two topological vector spaces, and let T : X → Y be
a set-valued mapping.

(i) T is said to be upper semicontinuous at x ∈ X if for each x ∈ X and each open set V
in Y with T(x)⊂ V , there exists an open neighborhood U of x in X such that
T(y) ⊂ V for each y ∈U .

(ii) T is said to be lower semicontinuous at x ∈ X if for each x ∈ X and each open set V
in Y with T(x)∩V �= ∅, there exits an open neighborhood U of x in X such that
T(y)∩V �= ∅ for each y ∈ U .

(iii) T is said to be continuous on X if it is at the same time upper semicontinuous and
lower semicontinuous on X . It is also known that T : X → Y is lower
semicontinuous if and only if for each closed set V in Y , the set {x ∈ X | T(x)⊂ V }
is closed in X .

(iv) T is said to be closed if the graph of T , i.e., Graph(T) = {(x, y) : x ∈ X and y ∈ T(x)},
is a closed set in X × Y .

Definition . [] Let X, Y be Hausdorff topological vector spaces, K be a nonempty
convex subset of X and C be a pointed closed convex cone in Y with intC �= ∅.

(i) A multivalued bi-operator F : K ×K → Y is said to be C-strongly pseudomonotone
if it satisfies

∀x, y ∈ K , F(x, y)� –C \ {} ⇒ F(y,x)⊆ –C.

(ii) A multivalued mapping G : K → Y is said to be C-convex if for all x, y ∈ K and for
all λ ∈ [, ],

G
(
λx + ( – λ)y

) ⊆ λG(x) + ( – λ)G(y) –C.

And the mapping G is said to be generalized hemicontinuous (in short, g.h.c.) if for
all x, y ∈ K and for all λ ∈ [, ],

λ →G
(
x + λ(y – x)

)
is upper semicontinuous at +.

Definition . [] LetT : K → L(X,Y ) and η : K×K → X be nonlinearmappings. Then:
(i) T is said to be hemicontinuous if, for any given x, y, z ∈ K and for λ ∈ [, ], the

mapping λ → 〈T(x + λ(y – z), z)〉 is continuous at +;
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(ii) T is said to be C-η-strongly pseudomonotone if, for any x, y ∈ K ,

〈
Tx,η(y,x)

〉
� –C \ {} implies

〈
Ty,η(x, y)

〉 ⊆ –C;

(iii) η is said to be affine in the second argument if, for any xi ∈ K and λi ≥  (≤ i≤ n),
with

∑n
i= λi =  and any y ∈ K , η(y,

∑n
i= λixi) =

∑n
i= λiη(y,xi).

The following lemma is useful in what follows and can be found in [].

Lemma . Let X be a topological space and Y be a set. Let T : X → Y be a map with
nonempty values. Then the following are equivalent:

(i) T has the local intersection property;
(ii) There exits a map F : X → Y such that F(x)⊂ T(x) for each x ∈ X , F–(y) is open for

each y ∈ Y and X =
⋃

y∈Y F–(y).

Subsequently, Browder [] obtained in  the following fixed point theorem.

Theorem . (Fan-Browder fixed point theorem) Let X be a nonempty compact convex
subset of a Hausdorff topological vector space and T : X → X be a map with nonempty
convex values and open fibers (i.e., for y ∈ Y , T–(y) is called the fiber of T on y). Then T
has a fixed point.

The generalization of the Fan-Browder fixed point theorem was obtained by Balaj and
Muresan [] in  as follows.

Theorem . Let X be a compact convex subset of a topological vector space and T : X →
X be a map with nonempty convex values having the local intersection property. Then T
has a fixed point.

Lemma . [] Let X be a bounded subset of E. Then the usual pairing 〈·, ·〉 : E∗ ×X → R
is continuous.

3 Main theorem
In this section, we shall investigate the existence results for GSVQEP and GQVLIP with
monotonicity and without monotonicity. First, we present the following lemma which is
of Minty’s type for GSVQEP.

Lemma . Let K be a nonempty and convex subset of X, let A : K → K be a set-valued
mapping such that for any x ∈ K , A(x) is a nonempty convex subset of K and let F : K ×
K → y be g.h.c. in the first argument, C-convex in the second argument and C-strongly
pseudomonotone. Then the following problems are equivalent:

(i) Find x ∈ K such that x ∈ A(x), F(x, y)� –C \ {}, ∀y ∈ A(x).
(ii) Find x ∈ K such that x ∈ A(x), F(y,x)⊆ –C, ∀y ∈ A(x).

Proof (i) → (ii) It is clear by the C-strong pseudomonotonicity.
(ii) → (i) Let x ∈ K . For any y ∈ A(x) and θ ∈ (, ), we set zθ = θy + ( – θ )X. By the

assumption (ii) and the convexity of A(x), we conclude that

x ∈ A(x), F(zθ ,x)⊆ –C.

http://www.fixedpointtheoryandapplications.com/content/2013/1/342
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Since F is C-convex in the second argument, we have

 ∈ F(zθ , zθ )

⊆ θF(zθ , y) + ( – θ )F(zθ ,x) –C

⊆ θF(zθ , y) –C.

Then we have F(zθ , y) ∩ C �= ∅, because C is a convex cone. Since F is g.h.c. in the first
argument, we have x ∈ A(x), F(x, y) ∩ C �= ∅, ∀y ∈ A(x). It implies that x ∈ A(x), F(x, y) �
–C \ {} for all y ∈ A(x). This completes the proof. �

In the following theorem, we present the existence result for GSVQEP by assuming the
monotonicity of the function.

Theorem . Let K be a nonempty compact convex subset of X. Let A : K → K be a set-
valued mapping such that for any x ∈ K , A(x) is a nonempty convex subset of K and for
each y ∈ K , A–(y) is open in K . Let the set P := {x ∈ X | x ∈ A(x)} be closed. Assume that
F : K × K → Y is C-strongly pseudomonotone, g.h.c. in the first argument, C-convex and
l.s.c. in the second argument. Then GSVQEP has a solution.

Proof For any x ∈ K , we define the set-valued mapping S,T : K → K by

S(x) =
{
y ∈ K | F(y,x)� –C

}
,

T(x) =
{
y ∈ K | F(x, y)⊆ –C \ {}},

and for any y ∈ K , we denoted the complement of S–(y) by (S–(y))C = {x ∈ K | F(y,x) ⊆
–C}. For each x ∈ K , we define multivalued maps G,H : K → K by

G(x) =

{
S(x)∩A(x) if x ∈ P,
A(x) if x ∈ K \ P

and

H(x) =

{
T(x)∩A(x) if x ∈ P,
A(x) if x ∈ K \ P.

Clearly, G(x) andH(x) are nonempty sets for all x ∈ K , and by the C-strong pseudomono-
tonicity of F , we have G(x) ⊆ H(x) for all x ∈ K . We claim that H(x) is convex. Let
y, y ∈ T(x) and θ ∈ (, ). Since F is C-convex in the second argument, we have

F
(
x, θy + ( – θ )y

) ⊆ θF(x, y) + ( – θ )F(x, y) –C

⊆ (
–C \ {}) –C

⊆ –C \ {}.

Then we have T(x) is convex and so H(x) is convex by the convexity of A(x). Next, we
will show that G–(y) is open in K for each y ∈ K . Since F is l.s.c. in the second argument

http://www.fixedpointtheoryandapplications.com/content/2013/1/342
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and by the definition of (S–(y))C , we have (S–(y))C closed and so S–(y) is open in K . By
assumption, we obtain that

G–(y) =
(
S–(y)∩A–(y)

) ∪ (
A–(y)∩K \ P)

is open in K . It is easy to see that the mapping H has no fixed point because  ∈ F(x,x),
∀x ∈ K . From the contrapositive of the generalization of the Fan-Browder fixed point the-
orem and Lemma ., we have

K �
⋃
y∈K

G–(y).

Hence, there exists x̄ ∈ K such that G(x̄) = ∅. If x̄ ∈ K \ P, we have A(x̄) = ∅, which con-
tradicts the assumptions. Then x̄ ∈ P and hence S(x̄)∩A(x̄) = ∅. This means that x̄ ∈ A(x̄)
and F(y, x̄) ⊆ –C for all y ∈ A(x̄). This completes the proof by Lemma .. �

The following example shows that GSVQEP has a solution under the condition of The-
orem ..

Example . Let Y = R, C = [,∞) and K = [–, ]. Define the mapping A : K → K and
F : K ×K → Y by

A(x) =

⎧⎪⎨
⎪⎩
[–.,x + .) if – ≤ x < ,
(–., .) if x = ,
(x – ., .] if  < x≤ 

and

F(x, y) =

{
[, y – x] if x < y,
[y – x, ] if x≥ y,

respectively. By the definition of A, see Figure , we have the set P = {x ∈ X | x ∈ A(x)} =
[–., .] which is closed and for each y ∈ K , A–(y) is open in K .
We see that F is C-strongly pseudomonotone. Indeed, if F(x, y)� –C \ {}, then we only

consider the case x < y, so F(x, y) = [, y – x]. That is,

F(y,x) = [x – y, ] ⊆ –C for all x < y.

Figure 1 The image set A(x) for all x in K .
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Let x, y, z ∈ K and λ ∈ [, ]. If x < λy + ( – λ)z, then

F
(
x,λy + ( – λ)z

)
=

[
,λy + ( – λ)z – x

]
=

[
,λ(y – x) + ( – λ)(z – x)

]
⊆ [

,λ(y – x) + ( – λ)(z – x)
]
–C

= λ[, y – x] + ( – λ)[, z – x] –C

= λF(x, y) + ( – λ)F(x, y) –C.

Similarly, in another case, we have F is C-convex in the second argument. Clearly, F is
g.h.c. in the first argument and l.s.c. in the second argument.
Moreover, this example asserts that –. is one of the solutions because if x = –., then

A(x) = [–., ). Note that for all y ∈ A(x), y > x. Therefore F(–., y)–[, y+.]� –C\{}
for all y ∈ [–., ).

Now,we present an existence theorem forGSVQEPwhen F is not necessarilymonotone.

Theorem . Let K be a nonempty compact convex subset of X , let A : K → K be a set-
valuedmapping such that for each x ∈ K ,A(x) is a nonempty convex subset of K , and let the
set P := {x ∈ X | x ∈ A(x)} be closed. Assume that F : K ×K → Y is C-convex in the second
argument and for each y ∈ K , the set {x ∈ K | F(x, y) ⊆ –C \ {}} is open. Then GSVQEP
has a solution.

Proof We proceed with the contrary statements, that is, for each x ∈ X, x /∈ A(x) or there
exists y ∈ A(x) such that

F(x, y)⊆ –C \ {}. (.)

For every y ∈ K , we define the sets Ny andMy as follows:

Ny :=
{
x ∈ K : F(x, y) ⊆ –C \ {}}

and

My :=Ny ∪ PC .

By the assumption, we have the set My is open in K and we see that {My}y∈K is an
open cover of K . Since K is compact, there exists a finite subcover {Myi}ni= such that
K =

⋃n
i=Myi . By a partition of unity, there exists a family {βi}ni= of real-valued continuous

functions subordinate to {Myi}ni= such that for all x ∈ K ,  ≤ βi(x) ≤  and
∑n

i= βi(x) = 
and for each x /∈ Myi , βi(x) = . Let C := co{y, y, . . . , yn} ⊆ K . Then C is a simplex of a
finite dimensional space. Define a mapping S : C → C by

S(x) =
n∑
i=

βi(x)yi, ∀x ∈ C. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/342
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Hence, we have S is continuous since βi is continuous for each i. From Brouwer’s fixed
point theorem, there exists x ∈ C such that x = S(x). We define a set-valued mapping
T : K → Y by

T(x) = F
(
x,S(x)

)
for all x ∈ K . (.)

Now, we note that for any x ∈ K , {yi | x ∈ Myi} �= ∅. Since F is C-convex in the second
argument, it follows from (.), (.) and (.) that we have

T(x) = F

(
x,

n∑
i=

βi(x)yi

)

⊆
n∑
i=

βi(x)F(x, yi) –C

⊆ –C \ {} –C

= –C \ {}

for all x ∈ K . Since x ∈ K and it is a fixed point of S,  = F(x,x) = F(x,S(x)) = T(x) ⊆
–C \ {}, which is a contradiction. This completes the proof. �

If we set A ≡ I , then Theorem . and Theorem . are reduced to Theorem  and
Theorem  in Kum andWong [], respectively. Moreover, Theorem . is a multivalued
version of Theorem . in Kazmi and Khan [].
Let F(x, y) = 〈Tx,η(y,x)〉 for all x, y ∈ K , where η : K × K → X and T : K → L(X,Y ). As

a consequence of Theorem . and using the same argument as in Kum and Wang ([],
Theorem ), we have the following existence result for GQVLIP.

Corollary . Let K be a nonempty compact convex subset of X , let A : K → K be a set-
valuedmapping such that for any x ∈ K ,A(x) is a nonempty convex subset of K and for each
y ∈ K , A–(y) is open in K . Let the set P := {x ∈ X | x ∈ A(x)} be closed, let η : K ×K → X be
affine and continuous in the first argument and hemicontinuous in the second argument,
and let T : K → L(X,Y ) be a C-strongly pseudomonotone and g.h.c.with nonempty compact
values where L(X,Y ) is equipped with topology of bounded convergence. Then GQVLIP has
a solution.

As a consequence of Theorem ., we obtain the following existence result forGQVLIP.

Corollary . Let K be a nonempty compact convex subset of X . Let A : K → K be a set-
valued mapping such that for each x ∈ X, A(x) is a nonempty convex subset of K and let
the set P := {x ∈ X | x ∈ A(x)} be closed. Assume that η : K × K → X is affine in the first
argument and T : K → L(X,Y ) is a nonlinear mapping such that, for every y ∈ K , the set
{x ∈ K | 〈T(x),η(y,x)〉 ⊆ –C \ {}} is open. Then GQVLIP has a solution.
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