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Abstract
In this paper, the Opial modulus and the weakly convergent sequence coefficient of
Orlicz space lφ ,p endowed with the p-Amemiya norm are calculated, the criteria for
the uniform Opial property as well as for weakly uniform normal structure of lφ ,p are
presented. It is shown that the Orlicz sequence space equipped with the p-Amemiya
norm has the fixed point property if and only if it is reflexive.
MSC: Primary 47H10; secondary 46E30; 46B20

Keywords: Orlicz sequence space; Opial property; weakly convergent sequence
coefficient; weakly uniform normal structure; p-Amemiya norm

1 Introduction and preliminaries
The aimof this paper is to present criteria for some important geometric properties related
to the metric fixed point theory in Orlicz sequence spaces.
The Opial property originates from the fixed point theorem proved by Opial in []. The

uniform Opial property with respect to the weak topology was defined in [] and Opial
modulus was introduced in []. It is well known that the Opial property and normal struc-
ture of a Banach space X play an important role in metric fixed point theory for nonex-
pansive mappings, as well as in the theory of differential and integral equations (see [,
–]). The Opial property also plays an important role in the study of weak convergence
of iterates, random products of nonexpansive mappings and the asymptotic behavior of
nonlinear semigroups [, –]. Moreover, it can be introduced to the open unit ball of a
complex Hilbert space, equipped with the hyperbolic metric, where it is useful in proving
the existence of fixed points of holomorphic self-mappings of X [].
The coefficientWCS(X) was introduced by Bynum [], who established their relations

with normal structure and calculated the value of WCS(lp). A reflexive Banach space X
with WCS(X) >  has normal structure and consequently it has the weakly fixed point
property. This is probably one of the Banach space constants which has been most widely
studied, although with considerable confusion because there exist many equivalent defi-
nitions. Several different formulae for WCS(X) were found (see []), also see the work by
Sims and Smyth [].
The notion of p-Amemiya norm was introduced by Cui and Hudzik in [], where they

showed that the p-Amemiya norm ‖ · ‖�,p is equivalent to the Orlicz norm ‖ · ‖◦
� as

well as to the Luxemburg norm ‖ · ‖�. They also illustrated the description of extreme
points and strongly extreme points in Orlicz spaces equipped with the p-Amemiya norm
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[, ]. In , they presented the criteria for non-squareness, uniform non-squareness,
and locally uniform non-squareness of these spaces []. Chen and Cui (see [, ]) gave
the criteria for complex extreme points and complex strict convexity in Orlicz function
spaces equipped with the p-Amemiya norm, and for complex mid-point locally uniform
rotundity and complex rotundity ofOrlicz sequence spaces equippedwith the p-Amemiya
norm.
The rest of the paper is organized as follows. In the first section, some basic notions,

terminology and original results are reviewed, which will be used throughout the paper.
In Section , the Opial modulus of Orlicz space lφ,p endowed with the p-Amemiya norm
is calculated, and the criteria for the uniform Opial property of lφ,p are presented. The
weakly convergent sequence coefficient is calculated in Section . Finally, the necessary
and sufficient condition for fixed point properties to exist in lφ,p are given.
Let X be a Banach space. We denote by B(X) the unit ball of X, by S(X) the unit sphere

of X. Now we recall some notions from fixed point theory.
A mapping T : C → X defined on a subset C of a Banach space X is said to be non-

expansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C.
We say that a Banach space X has the fixed point property if for every weakly compact

convex subset C ⊂ X and for every nonexpansive T : C → C, T has a fixed point of C.
It is known that L[, ] does not have the fixed point property.
For any map � :R → [,∞], define

a� =max
{
u≥  : �(u) = 

}
, b� =max

{
u≥  : �(u) < ∞}

.

A map � is said to be an Orlicz function if �() = , � is not identically equal to zero, it
is even and convex on the interval (–b�,b�) and left-continuous at b�.
For every Orlicz function �, we define its complementary function � : R → [,∞] by

the formula

�(v) = sup
{
u|v| –�(u) : u≥ 

}
.

And the convex modular by I�(x) =
∑∞

i= �(x(i)) for any x = (x(i)).

Definition . [–] The Orlicz sequence space is defined as the set

l� =
{
x =

(
x(i)

)
: I�(λx) < ∞ for some λ > 

}
.

The Luxemburg norm and the Orlicz norm are expressed as

‖x‖� = inf

{
λ >  : I�

(
x
λ

)
≤ 

}

and

‖x‖◦
� = inf

k>


k
(
 + I�(kx)

)
,

respectively. The Orlicz space equipped with the Luxemburg norm and the Orlicz norm
is denoted by l� and l◦�, respectively.
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For any ≤ p ≤ ∞ and u≥ , define

sp(u) =

{
( + up)


p for ≤ p < ∞,

max{,u} for p =∞

and define s�,p(x) = sp ◦ I�(x) for all  ≤ p ≤ ∞. Note that the functions sp and s�,p are
convex. Moreover, the function sp is increasing on R+ for  ≤ p < ∞, but the function s∞
is increasing on the interval [,∞) only.

Definition . [, ] Let  ≤ p ≤ ∞. For any x = (x(i)), define the p-Amemiya norm by
the formula

‖x‖�,p = inf
k>


k
s�,p(kx).

The Orlicz space equipped with the p-Amemiya norm will be denoted by l�,p.

It is known that ‖x‖�, = ‖x‖◦
� and ‖x‖�,∞ = ‖x‖�. If  < p < ∞ and x 
= ,



‖x‖◦

� ≤ ‖x‖� ≤ ‖x‖�,p ≤ 

p ‖x‖� < 


p ‖x‖◦

�

(see []).
Let p+ be the right-hand side derivative of � on [,b�) and put p+(b�) = limu→b–� p+(u).

Define the function αp : l�,p → [–,∞] by

αp(x) =

⎧⎪⎨
⎪⎩
Ip–� (x)I� (p+(|x|)) – , ≤ p < ∞,
–, p =∞, I�(x) ≤ ,
I� (p+(|x|)), p =∞, I�(x) > 

and the functions k∗
p : l�,p → [,∞), k∗∗

p : l�,p → [,∞) by

k∗
p(x) = inf

{
k ≥  : αp(kx)≥ 

}
(with infφ =∞),

k∗∗
p (x) = inf

{
k ≥  : αp(kx)≤ 

}
.

It is obvious that k∗
p(x)≤ k∗∗

p (x) for every ≤ p≤ ∞ and x ∈ l�,p.
Set Kp(x) = { < k <∞ : k∗

p(x) ≤ k ≤ k∗∗
p (x)}.

Definition . [] We say that an Orlicz function � satisfies the �()-condition (� ∈
�(), for short) if there exist constants K ≥  and u >  such that

�(u)≤ K�(u) for every |u| ≤ u.

For more details about Orlicz spaces, we refer to [, , , ].

Lemma . [] Let ≤ p≤ ∞. Then I�(x)≤ ‖x‖�,p for all x ∈ L�,p with ‖x‖�,p ≤ .

Lemma . [] If the Orlicz function � vanishes only at zero and � ∈ �(), then the
norm convergence and the modular convergence are equivalent.
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Lemma . [] For every ≤ p≤ ∞ and each x ∈ l�,p\{}, the following conditions hold.
. If k∗

p(x) = k∗∗
p (x) = ∞, Kp(x) = φ, then

‖x‖�,p = lim
k→∞


k
(
 + Ip�(kx)

) 
p .

. If k∗
p(x) < k∗∗

p (x) =∞, then the p-Amemiya norm ‖x‖�,p is attained at every
k ∈ [k∗

p(x),∞).
. If k∗∗

P (x) < ∞, then the p-Amemiya norm ‖x‖�,p is attained at every
k ∈ [k∗

p(x),k∗∗
p (x)].

Lemma . If the Orlicz function � vanishes only at zero, then l�,p is order continuous if
and only if � ∈ �().

Lemma . Assume � ∈ �(),  ≤ p < ∞. Then, for any L >  and ε > , there exists δ > 
such that

I�(x)≤ L, I�(y) ≤ δ ⇒ ∣∣Ip�(x + y) – Ip�(x)
∣∣ < ε (x, y ∈ l�,p).

Proof Let

h = sup
{
I�(x + y) : I�(x)≤ L, I�(y) ≤ 

}
.

Then L < h < ∞, since � ∈ �(). Without loss of generality, we assume L >  and ε < .
Set β = ε

hp . Since the modular convergence implies the norm convergence, so we can find

δ >  such that I�(y) ≤ δ implies ‖y‖�,p ≤min{ β

 ,
ε

p β

– 
p

 }. Thus, applying the convexity of
� and Lemma ., we have

Ip�(x + y) = Ip�
(
( – β)x + β

(
x + β–y

))
≤ ( – β)Ip�(x) + βIp�

(
x + β–y

)
≤ ( – β)Ip�(x) +

β


Ip�(x) +

β


Ip�

(
β–y

)
≤ ( – β)Ip�(x) +

β


Ip�(x) +

β


∥∥β–y

∥∥p
�,p

≤ Ip�(x) +
βhp


+
p–

βp– ‖y‖
p
�,p

≤ Ip�(x) + ε.

Replacing x, y by x + y, –y, respectively, in the above inequalities, we have

Ip�(x)≤ Ip�(x + y) + ε. �

Lemma . [] l�,p is reflexive if and only if � ∈ �() and � ∈ �().

Lemma . Let  ≤ p < ∞. l�,p has a subspace isomorphic to l if and only if A > , where
A = limu→

�(u)
u .
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Proof Since the function �(u)
u is nondecreasing, limu→

�(u)
u exists.

If A > , by the continuity of �(u)
u , there exists A >  such that

A|u| ≤ �(u)≤ A|u| (|u| ∈ [
,�–()

])
.

Then � ∈ �().
For any x ∈ l�,p, we have I�( x

‖x‖�
) = , then |x(i)|

‖x‖�
∈ [,�–()] (i = , , . . .), therefore,

A
|x(i)|
‖x‖�

≤ �

( |x(i)|
‖x‖�

)
≤ A

|x(i)|
‖x‖�

,

we have

A
∞∑
i=

|x(i)|
‖x‖�

≤
∞∑
i=

�

( |x(i)|
‖x‖�

)
≤ A

∞∑
i=

|x(i)|
‖x‖�

,

then A‖x‖l ≤ ‖x‖� ≤ A‖x‖l . This yields that the l norm and the Luxemburg norm are
equivalent. Since the p-Amemiya norm and the Luxemburg norm are equivalent, l�,p has
a subspace isomorphic to l. �

Therefore, if A > , the space l�,p has the Schur property, and it has the Opial property
trivially because there is no weakly null sequence (xn) in S(l�). The case when A >  is not
interesting if we consider the Opial modulus and weakly convergent sequence coefficient.
For this reason we will assume that A =  in the following whenever the Opial modulus
and the weakly convergent sequence coefficient are considered.

2 Opial modulus for Orlicz sequence spaces
In this section we present some results on theOpial modulus. The obtained results extend
the existing ones, which were presented by a number of papers studying the geometry of
Orlicz spaces endowedwith the Luxemburg normand theOrlicz norm, respectively. A for-
mula for calculating the Opial modulus in Orlicz and Musielak-Orlicz spaces equipped
with the Luxemburg or the Orlicz norm is found in [–].

Definition . [] We say that a Banach space X has the Opial property if for any weakly
null sequence (xn) in X and any x ∈ X\{} there holds

lim inf
n→∞ ‖xn‖ < lim inf

n→∞ ‖x + xn‖.

Opial proved in [] that lp ( < p < ∞) has this property, but Lp[, π ] does not have it if
p ∈ (,∞), p 
= .

Definition . [] We say that X has the uniform Opial property if for any ε >  there
exists r >  such that for any x ∈ X with ‖x‖ ≥ ε and any weakly null sequence (xn) in the
unit sphere S(X) of X there holds

 + r ≤ lim inf
n→∞ ‖xn + x‖.
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It is obvious that the uniform Opial property implies the Opial property.

Definition . [] The Opial modulus of X is denoted by δo and it is defined for ε ∈ (; ]
by the formula

δo(ε) = inf
{
lim inf
n→∞ ‖xn + x‖ : (xn) ⊂ S(X),xn →  weakly,‖x‖ = ε

}
.

It is easy to see that X has the uniform Opial property if and only if δo(ε) >  for any
ε ∈ (, ].

Theorem . If � is an Orlicz function,  ≤ p < ∞, a� > , then l�,p does not have the
Opial property.

Proof Divide N into a sequence (Nn) of pairwise disjoint and infinite subsets of N such
that infn Nn → ∞ as n→ ∞ and define

xn =
∑

i∈Nn+

a�ei, x =
∑
i∈N

a�ei.

Then the sequence (xn) is weakly convergent to zero. For any k > , we have

I�(kxn) = I�(kx) = I�
(
k(xn + x)

)
=∞

and for any k ∈ (, ],


k
(
 + Ip�(kxn)

) 
p =


k
(
 + Ip�(kx)

) 
p =


k
(
 + Ip�

(
k(xn + x)

)) 
p =


k
.

So ‖xn‖�,p = ‖x‖�,p = ‖xn + x‖�,p = . Therefore, l�,p does not have the Opial property. �

In the following we may assume that a� = .

Theorem . Let � be an Orlicz function satisfying �(),  ≤ p < ∞. Then for any ε ∈
(, ], we have

δo(ε) = inf

{
cxyk >  : Ip�

(
kx
cxyk

)
+ Ip�

(
ky
cxyk

)
= kp – ,

k > ,‖x‖�,p = ,‖y‖�,p = ε,x, y ∈ l�,p

}
.

Proof Set d(ε) = inf{cxyk >  : Ip�(
kx
cxyk

) + Ip�(
ky
cxyk

) = kp – ,k > ,‖x‖�,p = ,‖y‖�,p = ε,x, y ∈
l�,p}.
() For fixed k > , consider the function

F(c) = Ip�

(
kx
c

)
+ Ip�

(
ky
c

)
.

We have F is continuous on R+. Since

 = ‖x‖�,p ≤ 
k
(
 + Ip�(kx)

) 
p ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/340
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we have Ip�(kx)≥ kp –  for any k > , thus

F() = Ip�(kx) + Ip�(ky) > kp – .

Moreover, limc→+∞ F(c) = , then there exists unique cxyk ∈ (, +∞) such that

F(cxyk) = Ip�

(
kx
cxyk

)
+ Ip�

(
ky
cxyk

)
= kp – ,

which shows that the function d(ε) is well defined.
() Now, wewill show that δo(ε) ≤ d(ε) for any ε ∈ (, ]. For any θ > , there exist x, y ∈

X with ‖x‖ = , ‖y‖ = ε and k >  such that d(ε) + θ > cxyk . Put

x =
(
y(), , y(), , y(), , y(), , . . .

)
,

xn =
∞∑
i=

x(i + )en+ni (n = , , . . .).

Then ‖xn‖�,p = ‖x‖�,p = , ‖x‖�,p = ‖y‖�,p = ε, and xn(i) →  as n→ ∞ for any i ∈N.
Since

∑∞
i= �(x(i)) < ∞, there exists i ∈N such that

∑∞
i=i+ �(x(i)) < θ .

For fixed i, due to limu→
�(u)
u = , we have

lim
l→


l

i∑
i=

�
(
lx(i)

)
= lim

l→

i∑
i=

�(lx(i))
l|x(i)|

∣∣x(i)∣∣

=
i∑
i=

lim
l→

�(lx(i))
l|x(i)|

∣∣x(i)∣∣ = .

So, for any n ∈N and l ∈ (, ) which is small enough, we get

I�(lxn)
l

=
I�(lx)

l
=

l

( i∑
i=

�
(
lx(i)

)
+

∞∑
i=i+

�
(
lx(i)

))

≤ 
l

i∑
i=

�
(
lx(i)

)
+

∞∑
i=i+

�
(
x(i)

)
< θ .

Then liml→
I�(lxn)

l = .
Take any f ∈ l� ,q, there exists λ >  satisfying I� (λf ) <∞. Since

inf(suppxn) → ∞ as n→ ∞,

as well as the Young inequality, we have

∣∣f (xn)∣∣ =
∣∣∣∣∣

∞∑
i=

xn(i)f (i)

∣∣∣∣∣ ≤ 
lλ

(
I�(lxn) + I� (λf χsuppxn )

) → 

(as n→ ∞). Then we have proved that xn →  weakly.

http://www.fixedpointtheoryandapplications.com/content/2013/1/340
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Since x and xn have disjoint supports, we get

‖xn + x‖�,p

d(ε) + θ
≤ 

k

(
 + Ip�

(
k(xn + x)
d(ε) + θ

)) 
p

=

k

(
 + Ip�

(
kxn

d(ε) + θ

)
+ Ip�

(
kx

d(ε) + θ

)) 
p

≤ 
k

(
 + Ip�

(
kxn
cxyk

)
+ Ip�

(
kx

cxyk

)) 
p
= ,

hence ‖xn + x‖�,p ≤ d(ε) + θ . By the arbitrariness of θ > , we have δo(ε) ≤ d(ε).
() Assume that δo(ε) < d(ε) for some ε ∈ (, ]. Then there exists ε >  such that δo(ε) ≤

d(ε)–ε, so there exist x ∈ l�,p and (xn) in S(l�,p) such that ‖x‖�,p = ε, xn →  weakly and

lim
n→∞‖xn + x‖�,p < d(ε) – ε.

For fixed ε
 , there exists i such that

∥∥∥∥∥
∞∑

i=i+

x(i)ei

∥∥∥∥∥
�,p

<
ε


,

∥∥∥∥∥
i∑
i=

xn(i)ei

∥∥∥∥∥
�,p

<
ε



for n ∈N large enough. Set

∥∥∥∥∥
i∑
i=

x(i)ei

∥∥∥∥∥
�,p

= a,

∥∥∥∥∥
∞∑

i=i+

xn(i)ei

∥∥∥∥∥
�,p

= bn.

And define

y =
(

εx()
a

,
εx()
a

, . . . ,
εx(i)
a

, , , . . .
)
,

yn =
(
,, . . . ,

xn(i + )
bn

,
xn(i + )

bn
, . . . ,

xn(i +m)
bn

, . . .
)
,

then ‖yn‖�,p =  (for all n ∈N), ‖y‖�,p = ε, yn
w→ . For n large enough, we have

‖yn + y‖�,p ≤
∥∥∥∥∥

∞∑
i=i+

xn(i)
bn

ei – xn

∥∥∥∥∥
�,p

+

∥∥∥∥∥
i∑
i=

ε

a
x(i)ei – x

∥∥∥∥∥
�,p

+ ‖xn + x‖�,p

≤
∥∥∥∥∥

i∑
i=

xn(i)ei

∥∥∥∥∥
�,p

+ | – bn| +
∥∥∥∥∥

∞∑
i=i+

x(i)ei

∥∥∥∥∥
�,p

+ |ε – a| + d(ε) – ε

≤ 

∥∥∥∥∥
i∑
i=

xn(i)ei

∥∥∥∥∥
�,p

+ 

∥∥∥∥∥
∞∑

i=i+

x(i)ei

∥∥∥∥∥
�,p

+ d(ε) – ε

< d(ε) – ε.
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Case . A = {n ∈ N : K�( yn+yd(ε) ) 
= φ} is infinite. For any n ∈ A, we take kn ∈ K�( yn+yd(ε) ). Then

 –
ε

d(ε)
≥ ‖yn + y‖�,p

d(ε)

=

kn

(
 + Ip�

(
kn(yn + y)

d(ε)

)) 
p

=

kn

(
 + Ip�

(
knyn
d(ε)

)
+ Ip�

(
kny
d(ε)

)) 
p

≥ 
kn

(
 + Ip�

(
knyn
cynykn

)
+ Ip�

(
kny
cynykn

)) 
p
= .

This is a contradiction.
Case . B = {n ∈N : K�( yn+yd(ε) ) = φ} is infinite. For any n ∈ B,

 –
ε

d(ε)
≥ ‖yn + y‖�,p

d(ε)

= lim
l→∞


l

(
 + Ip�

(
l(yn + y)
d(ε)

)) 
p

= lim
l→∞


l

(
 + Ip�

(
lyn
d(ε)

)
+ Ip�

(
ly
d(ε)

)) 
p

≥ lim
l→∞


l

(
 + Ip�

(
lyn
cynyl

)
+ Ip�

(
ly
cynyl

)) 
p
= ,

this is also a contradiction. The two cases have shown that δo(ε) = d(ε). �

Remark The main result presented in this paper generalizes the existing result to the
p-Amemiya norm. In the case that p = , the situation degrades to the case of the classical
Orlicz norm.
If � ∈ �(), then

δo(ε) = inf

{
cxyk >  : I�

(
kx
cxyk

)
+ I�

(
ky
cxyk

)
= k – ,

k > ,‖x‖◦
� = ,‖y‖◦

� = ε,x, y ∈ l◦�

}
.

In the following we will consider the uniform Opial property for the Orlicz sequence
equipped with the p-Amemiya norm.

Lemma . [] Let X be a Köthe sequence space with the semi-Fatou property and with-
out order continuity of the norm. Then X does not have the uniform Opial property. In fact,
we even have that for any ε ∈ (, ), δo(ε) = .

Theorem . Let ≤ p <∞, l�,p has the uniform Opial property if and only if � ∈ �().

Proof If � ∈ �() and l�,p does not have the uniform Opial property, then there exists
some ε ∈ (, ] such that δo(ε) = . Therefore, for any sequence (cn) such that cn ↘ ,
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there are two sequences (xn) and (yn) in l�,p with ‖xn‖ = , ‖yn‖ = ε and kn >  such that

Ip�

(
knxn
cn

)
+ Ip�

(
knyn
cn

)
= kpn – .

Since


cn

=
‖xn‖�,p

cn
≤ 

kn

(
 + Ip�

(
knxn
cn

)) 
p
,

ε

cn
=

‖yn‖�,p

cn
≤ 

kn

(
 + Ip�

(
knyn
cn

)) 
p
,

then

Ip�

(
knxn
cn

)
≥

(
kn
cn

)p

– , Ip�

(
knyn
cn

)
≥

(
εkn
cn

)p

– .

Thus we obtain ( kncn )
p –  + ( εkn

cn )p –  ≤ kpn – , then kn ≤ cpn
+ε

p

, which means that the se-

quence (kn) is bounded. Then

I�
(
knyn
cn

)
= kpn –  – Ip�

(
knxn
cn

)
≤ kpn –  –

(
kn
cn

)p

+  → .

But ‖ knyn
cn ‖�,p = εkn

cn > ε
cn → ε, according to Lemma . and � ∈ �(), this is a contra-

diction.
If � /∈ �(), then l�,p does not have the order continuity property, by Lemma ., the

proof is finished. �

3 Weakly convergent sequence coefficient for Orlicz sequence spaces
In this section, our main aim is to calculate the weakly convergent sequence coefficient
for an Orlicz sequence space and further discuss the fixed point property of this space.
Let X denote a reflexive infinite dimensional Banach space, without Schur property au-

tomatically. For each sequence (xn) in X, we define the asymptotic diameter and asymp-
totic radius respectively by

diana(xn) = lim sup
k→∞

{‖xn – xm‖ : n,m ≥ k
}
,

ra(xn) = inf
{
lim sup
n→∞

‖xn – y‖ : y ∈ conv(xn)
}
.

The weakly convergent sequence coefficient concerned with normal structure is an im-
portant geometric parameter. It was introduced by Bynum [] as follows.
WCS(X) is the supremum of the set of all numbers M with the property that for each

weakly convergent sequence (xn) with asymptotic diameterA, there is some y in the closed
convex hull of the sequence such that

M lim sup
n

‖xn – y‖ ≤ A.

A sequence (xn) in X is said to be asymptotic equidistant if

diana(xn) = lim inf
n→∞

{‖xi – xj‖ : i 
= j, i, j ≥ n
}
.
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In this paper, we use the following equivalent definition ofWCS(X). This definition was
introduced in [], where it was proved that

WCS(X) = inf
{
diana(xn) : (xn) is an asymptotic equidistant sequence in

(X) and xn →  weakly
}
.

It is obvious that  ≤ WCS(X) ≤  (see []). A Banach space X is said to have weakly
uniform normal structure provided WCS(X) > . See [] for further information about
this coefficient.
For p ≥ , WSC(lp) = 


p and WCS(Lp(�)) = min{ 

p , –

p }. A formula for calculating

the weakly convergent sequences of reflexive Orlicz andMusielak-Orlicz sequence spaces
equipped with the Luxemburg or Amemiya norm is found in [, ], respectively.

Theorem . If � ∈ �(), ≤ p < ∞, then

WCS(l�,p) = inf

{
inf
k>

{
cxk : I

p
�

(
kx
cxk

)
=
kp – 


}
: x ∈ S(l�,p)

}
.

Proof Let d = inf{infk>{cxk : Ip�( kx
cxk

) = kp–
 } : x ∈ S(l�,p)}. For any ε > , there exists x ∈

S(l�,p) such that

inf

{
inf
k>

{
cxk : I

p
�

(
kx
cxk

)
=
kp – 


}
: x ∈ S(l�,p)

}
< d + ε.

Then there exist k >  and cxk < d + ε such that Ip�(
kx
cxk

) = kp–
 . Define

x =
(
x(), ,x(), ,x(), ,x(), ,x(), ,x(), , . . .

)
,

x =
(
,x(), , , ,x(), , , , , , , ,x(), , , , . . .

)
,

x =
(
,, ,x(), , , , , , , ,x(), , , , , , , , . . .

)
,

. . . ,

where (xn) have pairwise disjoint supports. Then ‖xn‖�,p = ‖x‖�,p =  (n ∈ N) for all n 
=m
and all k > . According to the same method as in the proof of Theorem ., we have
xn →  weakly,

∥∥∥∥xn – xm
d + ε

∥∥∥∥
�,p

≤ 
k

(
 + Ip�

(
k
xn – xm
d – ε

)) 
p

=

k

(
 + Ip�

(
kx

d + ε

)) 
p

<

k

(
 + Ip�

(
kx
cxk

)) 
p

=

k
(
 + kp – 

) 
p = .

Then ‖xn–xm‖�,p ≤ d+ε, so diana(xn)≤ d+ε, since ε is arbitrary, we haveWCS(l�,p) ≤ d.
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On the other hand, let {xn} in S(l�,p) be an arbitrary asymptotic equidistant sequence
such that xn →  weakly.
Since � ∈ �(), then by Lemma . for ε > , there exists  < δ < ε such that

I�(x)≤ , k ≤ 
ε

and I�(y) ≤ δ ⇒
∣∣∣∣Ip�

(
k(x + y)

d

)
– Ip�

(
kx
d

)∣∣∣∣ < ε.

Let n =  and pick m such that
∑

j>m
�( xn (j)

εd ) < δ and choose n > n such that∑
j≤m

�( xn (j)
εd ) < δ. By xn(i) →  as n → ∞ for i = , , . . . , we can find m with m >m

such that
∑

j>m
�( xn (j)

εd ) < δ. And so on, by induction, we find the sequence {ni} and {mi}
of natural numbers with n < n < · · · ,m <m < · · · satisfying

∑
j>mi

�

(
xni (j)
εd

)
< δ,

∑
j≤mi

�

(
xni (j)
εd

)
< δ.

Take kij ∈ K�(
xni–xnj

d ).
() If kij ≤ , then ‖ xni–xnj

d ‖�,p ≥ 
kij

≥ , so ‖xni – xnj‖ ≥ d.
() If  < kij ≤ 

ε
, set n <m, then

∥∥∥∥xni – xnj
d

∥∥∥∥p

�,p

≥ 
kpij

(
 +

(∑
l≤mi

�

(
kijxni (l)

d

))p

– ε +
(∑
l>mi

�

(
kijxni (l)

d

))p

– ε

)

≥ 
kpij

(
 + Ip�

(
kijxni (l)

d

)
– δ – ε + Ip�

(
kijxni (l)

d

)
– δ – ε

)

≥ 
kpij

(
 + Ip�

(
kijxni (l)
cxni kij

)
+ Ip�

(
kijxni (l)
cxni kij

)
– ε

)

=

kpij

(
 +  · k

p
ij – 


– ε

)
>  – ε.

Therefore ‖xni – xnj‖�,p ≥ d.
() If kij ≥ 

ε
, then

∥∥∥∥xni – xnj
d

∥∥∥∥p

�,p
>


kpij

Ip�

(
kij

xni – xnj
d

)

≥ εpIp�

(xni – xnj
εd

)

≥ εp
(
Ip�

(
xni
εd

)
+ Ip�

(xnj
εd

)
– ε

)

≥ εp
(
Ip�

(
xni

εcxni ε

)
+ Ip�

( xnj
εcxnj ε

)
– ε

)

= εp
(
ε–p –  – ε

)
=  – εp – εp+,
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hence we get ‖xni – xnj‖�,p ≥ d again. Consequently diana(xn) ≥ d. By the arbitrariness of
{xn} in S(l�,p), it follows thatWCS(l�,p) ≥ d. �

Theorem . Let  ≤ p < ∞ and a� = . l�,p has weakly uniform normal structure if and
only if � ∈ �().

Proof Necessity. If � ∈ �(), by Theorem .,

WCS(l�,p) = inf

{
inf
k>

{
cxk : I

p
�

(
kx
cxk

)
=
kp – 


}
: x ∈ S(l�,p)

}
.

Assume WCS(l�,p) = , then for any  < ε <  there exist x ∈ S(l�,p) and k >  satisfying
cxk <  + ε. By ‖x‖�,p =  and � ∈ �(), there exists δ >  such that I�( x ) ≥ δ. Hence,

 =

kp

(
Ip�

(
kx
cxk

)
+ 

)

≥ 
kp

(
 + Ip�

(
kx
 + ε

))
+


kp

Ip�

(
kx
 + ε

)

≥
∥∥∥∥ x
 + ε

∥∥∥∥p

�,p
+ Ip�

(
x

 + ε

)

≥
(


 + ε

)p

+ Ip�

(
x


)

≥
(


 + ε

)p

+ δp →  + δp as ε → .

This is a contradiction.
Sufficiency. If not, � /∈ �(), then for any ε >  there exists  < u < ε such that

�
(
( + ε)u

)
>

ε
�(u).

We can findm ∈N such that

 –�(ε) <m�
(
( + ε)u

) ≤ .

Take c >  satisfying m�(( + ε)u) +�(c) = . Then �(c) < �(ε). Set

x =
(
c,

m︷ ︸︸ ︷
( + ε)u, . . . , ( + ε)u, , , . . .

)
,

x =
( m+︷ ︸︸ ︷
, . . . , , c,

m︷ ︸︸ ︷
( + ε)u, . . . , ( + ε)u, , , . . .

)
,

x =
( m+︷ ︸︸ ︷
, . . . , , c,

m︷ ︸︸ ︷
( + ε)u, . . . , ( + ε)u, , , . . .

)
,

. . . .
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Then xn
‖xn‖�,p

∈ S(l�,p) and { xn
‖xn‖�,p

} is an asymptotic equidistant sequence. And because

lim supl→
I�(lxn)

l = ,we have xn → weakly. Finally, ‖xn‖�,p = ‖x‖�,p ≥ ‖x‖�,∞ = , then

∥∥∥∥ 
 + ε

(
xn

‖xn‖ –
xm

‖xm‖
)∥∥∥∥p

�,p

≤
∥∥∥∥xn – xm

 + ε

∥∥∥∥p

�,p
≤  + Ip�

(
xn – xm
 + ε

)

=  +
(
m�(u) + �

(
c

 + ε

))p

≤  +
(
mε�

(
( + ε)u

)
+ �(c)

)p
≤  +

(
ε + �(ε)

)p,
which implies that

diana(xn) ≤ ( + ε)
(
 +

(
ε + �(ε)

)p),
soWCS(l�,p) = . �

According to the above proof, we have the following.

Corollary . Let ≤ p <∞, a� =  and � /∈ �(), thenWCS(l�,p) = .

Remark In the case that p = , the situation degrades to the case of classical Orlicz norm.
. If � /∈ �(), thenWCS(l◦�) = .
. If � ∈ �(), then

WCS
(
l◦�

)
= inf

{
inf
k>

{
cxk : I�

(
kx
cxk

)
=
k – 


}
: x ∈ S

(
l◦�

)}
.

Corollary .

WCS
(
lp

)
=

{

p ,  ≤ p < ∞,
, p =∞.

Next, we discuss the fixed point property of l�,p.

Theorem . � /∈ �() and a� = ,  ≤ p ≤ ∞, then l�,p contains an asymptotically
isometric copy of c.

Proof If � /∈ �(), then there exist the sequence {uk} ↓  and {nk} ⊂N such that

�(uk) ≤ 

k+

p+

,


k+

p+

≤ nk�(uk) ≤ 

k+

p
,

�

((
 +


k

)
uk

)
> k+


p+�(uk) for all k ∈N.
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Set

x =
( n︷ ︸︸ ︷
u, . . . ,u, , , . . . , , . . .

)
,

x =
( n︷ ︸︸ ︷
, . . . , ,

n︷ ︸︸ ︷
u, . . . ,u, , , . . . , , . . .

)
,

x =
( n+n︷ ︸︸ ︷
, . . . , ,

n︷ ︸︸ ︷
u, . . . ,u, , , . . . , , . . .

)
,

. . . .

Define P : c → l�,p by

Pt =
∞∑
n=

tnxn

for t = (t, t, . . .) ∈ c. It is obvious that P is linear.
For any λ > , since tn → , then there exists j ∈N such that λ|ti| <  for all i≥ j, hence

I�(λPt) =
∞∑
i=

ni�(λtiui)

=
j∑
i=

ni�(λtiui) +
∞∑

i=j+

ni�(λtiui)

≤
j∑
i=

ni�(λtiui) +
∞∑

i=j+





p+i

<
j∑
i=

ni�(λtiui) +  <∞,

which implies Pt ∈ l�,p. Moreover, for any t = (t, t, . . .) ∈ c, we have

I�
(

Pt
‖t‖∞

)
=

∞∑
i=

ni�
(

ti
‖t‖∞

ui
)

≤
∞∑
i=





p+i

= –

p ,

then ‖Pt‖�,p ≤ 

p ‖Pt‖�,∞ ≤ ‖t‖∞.

On the other hand, for any λ ∈ (, ), there exists j ∈ N such that

( – εj )|tj |
λ sup{( – εi)|ti| : i ∈N} > ,

where εi = 
i+ (i ∈N), then

|tj |
λ sup{( – εi)|ti| : i ∈N} >


 – εj

=  +

j

and

I�
(

Pt
λ sup{( – εi)|ti| : i ∈N}

)
> nj�

((
 +


j

)
uj

)
> j+


p+nj�(uj ) > .
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Therefore,

‖Pt‖�,p ≥ ‖Pt‖�,∞ ≥ sup
{
( – εi)|ti| : i ∈N

}
,

which implies that l�,p contains an asymptotically isometric copy of c. �

Theorem . Let ≤ p≤ ∞, a� = , then l�,p has the fixed point property if and only if it
is reflexive.

Proof Since a reflexive Banach space X withWCS(X) >  has the fixed point property, we
only need to prove the necessity.
Suppose� /∈ �(), then byTheorem., l�,p contains an asymptotically isometric copy

of c. Hence l�,p does not have the fixed point property.
Suppose � /∈ �(), then there exists y ∈ S(l� ,q) such that I� (ly) = ∞ for any l > , and

for every sequence {εn} decreasing to , there exist  = i < i < i < · · · such that∥∥∥∥∥
in+∑

i=in+

y(i)ei

∥∥∥∥∥
� ,q

>  – εn for all n ∈N.

Set yn =
∑in+

i=in+ y(i)ei, then there exists xn ∈ S(l�,p) such that 〈yn,xn〉 = ‖yn‖� ,q. Hence,
for any α = (α(n)) ∈ l, we have

∞∑
n=

∣∣α(n)∣∣ = ∞∑
n=

∣∣α(n)∣∣‖xn‖�,p ≥
∥∥∥∥∥

∞∑
n=

α(n)xn

∥∥∥∥∥
�,p

≥
〈 ∞∑

n=

α(n)xn,
∞∑
n=

sign
(
α(n)

)
yn

〉

=
∞∑
n=

∣∣α(n)∣∣〈xn, yn〉 ≥ ( – εn)
∞∑
n=

∣∣α(n)∣∣.
Hence l�,p contains an asymptotically isometric copy of l. By Theorem  of [], l�,p does
not have the fixed point property. �

Theorem . If a� > ,  ≤ p < ∞, then l�,p does not have the fixed point property.

Proof If a� > , for any n ∈N, define xn = (
(n–)︷ ︸︸ ︷

, . . . , ,a�, , . . .), then

 + I�(xn) = ,


k
(
 + Ip�(kxn)

) 
p =


k
> 

(∀k ∈ (, )
)
,


k
(
 + Ip�(kxn)

) 
p >  (∀k > ).

Therefore, ‖xn‖�,p =  for any n ∈N.
Moreover, we can prove that ‖∑∞

n= xn‖�,p = . Hence, define P : l∞ → l�,p by

Py =
∞∑
n=

ynxn
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for all y = (y, . . . , yn, . . .) ∈ l∞. Then the operator P is obviously linear, since

‖y‖∞ = sup
n

|yn| = sup
n

|yn|‖xn‖�,p ≤
∥∥∥∥∥

∞∑
n=

ynxn

∥∥∥∥∥
�,p

= ‖Py‖�,p ≤ sup
n

|yn|
∥∥∥∥∥

∞∑
n=

xn

∥∥∥∥∥
�,p

= sup
n

|yn| = ‖y‖∞,

so we have ‖Py‖�,p = ‖y‖∞, then P is an order isometry of l∞ onto a closed subspace P(l∞)
of l�,p. �
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Acknowledgements
This work was supported by the Provincial Education Department Fund (12531185) and partly supported by the National
Natural Science Foundation of China (61203191).

Received: 12 August 2013 Accepted: 20 November 2013 Published: 13 Dec 2013

References
1. Opial, Z: Weak convergence of the sequence of successive approximations of nonexpansive mappings. Bull. Am.

Math. Soc. 73, 591-597 (1967)
2. Prus, S: Banach spaces with the uniform Opial property. Nonlinear Anal. 18, 697-704 (1992)
3. Lin, PK, Tan, KK, Xu, HK: Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive

mappings. Nonlinear Anal. 24, 929-946 (1995)
4. Ayerbe, JM, Benavides, TD, Acedo, GL: Measures of Noncompactness in Metric Fixed Point Theory. Birkhäuser, Basel

(1997)
5. Kirk, WA, Sims, B (eds.): Handbook of Metric Fixed Point Theory. Kluwer Academic, Dordrecht (2001)
6. Krasnoselskii, MA, Rutickii, YB: Convex Functions and Orlicz Spaces. Noordhoff, Groningen (1961)
7. Goebel, K, Kirk, WA: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)
8. Goebel, K, Reich, S: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Dekker, New York (1984)
9. Gornicki, J: Some remarks on almost convergence of the Picard iterates for nonexpansive mappings in Banach spaces

which satisfy the Opial condition. Comment. Math. 29, 59-68 (1988)
10. Bynum, WL: Normal structure coefficients for Banach spaces. Pac. J. Math. 86, 427-436 (1980)
11. Sims, B, Smyth, A: On some Banach space properties sufficient for weak normal structure and their permanence

properties. Trans. Am. Math. Soc. 351(2), 497-513 (1999)
12. Cui, YA, Duan, LF, Hudzik, H, Wisla, M: Basic theory of p-Amemiya norm in Orlicz spaces (1≤ p ≤ ∞): extreme points

and rotundity in Orlicz spaces endowed with these norms. Nonlinear Anal. 69, 1797-1816 (2008)
13. Cui, YA, Hudzik, H, Li, JJ, Wisla, M: Strongly extreme points in Orlicz spaces equipped with the p-Amemiya norm.

Nonlinear Anal. 71, 6343-6364 (2009)
14. Cui, YA, Hudzik, H, Wisla, M, Wlazlak, K: Non-squareness properties of Orlicz spaces equipped with the p-Amemiya

norm. Nonlinear Anal. 75, 3973-3993 (2012)
15. Chen, LL, Cui, YA: Complex extreme points and complex rotundity in Orlicz function spaces equipped with the

p-Amemiya norm. Nonlinear Anal. 73, 1389-1393 (2010)
16. Chen, LL, Cui, YA: Complex rotundity of Orlicz sequence spaces equipped with the p-Amemiya norm. J. Math. Anal.

Appl. 378, 151-158 (2011)
17. Chen, ST: Geometry of Orlicz Spaces. Dissertationes Mathematicae, vol. 356. Istitute of Mathematics, Warszawa (1996)
18. Maligranda, L: Orlicz Spaces and Interpolation. Seminars in Math., vol. 5. Universidade Estadual de Campinas,

Campinas (1989)
19. Musielak, J: Orlicz Spaces and Modular Spaces. Lecture Notes in Math., vol. 1034. Springer, Berlin (1983)
20. Li, XY, Cui, YA: The dual space of Orlicz space equipped with p-Amemiya norm. J. Harbin Univ. Sci. Technol. 16(1),

110-112 (2011)
21. Cui, YA: Weakly convergent sequence coefficient in Köthe sequence spaces. Proc. Am. Math. Soc. 126, 195-201 (1998)
22. Cui, YA, Hudzik, H: On the uniform Opial property in some modular sequence spaces. Funct. Approx. Comment.

Math. 26, 93-102 (1998)

http://www.fixedpointtheoryandapplications.com/content/2013/1/340


He et al. Fixed Point Theory and Applications 2013, 2013:340 Page 18 of 18
http://www.fixedpointtheoryandapplications.com/content/2013/1/340

23. Cui, YA, Hudzik, H, Zhu, HW: Maluta’s coefficient of Musielak-Orlicz sequence spaces equipped with Orlicz norm. Proc.
Am. Math. Soc. 126, 115-121 (1998)

24. Cui, YA, Hudzik, H: Maluta’s coefficient and Opial’s properties in Musielak-Orlicz sequence spaces equipped with the
Luxemburg norm. Nonlinear Anal. 35, 475-485 (1999)

25. Cui, YA, Hudzik, H, Yu, FF: On Opial properties and Opial modulus for Orlicz sequence spaces. Nonlinear Anal. 55,
335-350 (2003)

26. Yao, H, Wang, T: Maluta’s coefficient of Musielak-Orlicz sequence spaces. Acta Math. Sin. Engl. Ser. 21, 699-704 (2005)
27. Zhang, GL: Weakly convergent sequence coefficient of product space. Proc. Am. Math. Soc. 117(3), 637-643 (1992)
28. Dowling, PN, Lennai, CJ, Turett, B: Reflexivity and fixed-point property for nonexpansive maps. J. Math. Anal. Appl.

200, 653-662 (1996)

10.1186/1687-1812-2013-340
Cite this article as: He et al.: The fixed point property of Orlicz sequence spaces equipped with the p-Amemiya
norm. Fixed Point Theory and Applications 2013, 2013:340

http://www.fixedpointtheoryandapplications.com/content/2013/1/340

	The ﬁxed point property of Orlicz sequence spaces equipped with the p-Amemiya norm
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Opial modulus for Orlicz sequence spaces
	Weakly convergent sequence coefﬁcient for Orlicz sequence spaces
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


