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Abstract
The purpose of this paper is to prove two�-convergence theorems of the Mann
algorithm to a common fixed point for a countable family of mappings in the case of
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first one for nonexpansive mappings improves the recent result of He et al. (Nonlinear
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applied to the problem of finding a common fixed point of a countable family of
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1 Introduction
For a real number κ , a CAT(κ) space is defined by a geodesic metric space whose geodesic
triangle is sufficiently thinner than the corresponding comparison triangle in a model
space with curvature κ . The concept of these spaces has been studied by a large num-
ber of researchers. We know that any CAT(κ) space is a CAT(κ ′) space for κ ′ > κ (see []),
thus all results for CAT() spaces can immediately be applied to any CAT(κ) with κ ≤ .
Moreover, CAT(κ) spaces with positive κ can be treated as CAT() spaces by changing the
scale of the space. So we are interested in CAT() spaces.
One of the most important analytical problems is the existence of fixed points for non-

linear mappings. In the case for nonexpansive mappings in a CAT(κ) space was proved by
Kirk [, ] for κ ≤ , and by Espánola and Fernández-León [] for κ > . In the cases when
at least one fixed point exists, it is natural to wonder whether such a fixed point can be
approximated by iterations. There are many methods for approximating fixed points of a
nonexpansive mapping T . One of the most successful methods is the Mann algorithm []
which is defined in a geodesic space X by x ∈ X and

xn+ = tnxn ⊕ ( – tn)Txn for all n ∈N, (.)

where {tn} is a sequence in [, ]. By using this algorithm, He et al. [] proved the following
result.

Theorem . Let X be a complete CAT() space and T : X → X be a mapping. Let {xn} be
the Mann algorithm (.) in X. Suppose that
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(C′) T is nonexpansive with F(T) �=∅;
(C′) d(x, F(T)) < π/;
(C)

∑∞
n= tn( – tn) = ∞.

Then the sequence {xn} �-converges to a fixed point of T .

Motivated by these results, we prove two �-convergence theorems of the Mann algo-
rithm to a common fixed point for a countable family of mappings in complete CAT()
spaces. The first one for nonexpansive mappings improves Theorem .. The last one is
proved for quasi-nonexpansivemappings and applied to the problem of finding a common
fixed point of a countable family of quasi-nonexpansive mappings.

2 Preliminaries
Let X be a metric space with a metric d and let x, y ∈ X with d(x, y) = l. A geodesic path
from x to y is an isometry c : [, l] → X such that c() = x and c(l) = y. The image of a
geodesic path from x to y is called a geodesic segment joining x and y. Let r ∈ (,∞].
If for every x, y ∈ X with d(x, y) < r, a geodesic from x to y exists, then we say that X is
r-geodesic. Moreover, if such a geodesic is unique for each pair of points, then X is said to
be r-uniquely geodesic.
A geodesic segment joining x and y is not necessarily unique in general. When it is

unique, this geodesic segment is denoted by [x, y].Wewrite z ∈ [x, y] if and only if there ex-
ists t ∈ [, ] such that d(z,x) = ( – t)d(x, y) and d(z, y) = td(x, y). In this case, we will write
z = tx⊕(–t)y for simplicity. A geodesic triangle	(x, y, z) consists of three points x, y, z ∈ X
and geodesic segments [y, z], [z,x] and [x, z] joining two of them.We write w ∈ 	(x, y, z) if
w ∈ [y, z]∪ [z,x]∪ [x, y].
To define a CAT(κ) space, we use the following notation called model space. For κ = ,

the two-dimensional model space M
κ = M

 is the Euclidean space R with the metric
induced from the Euclidean norm. For κ > ,M

κ is the two-dimensional sphere (/
√

κ)S

whose metric is a length of a minimal great arc joining each two points. For κ < , M
κ

is the two-dimensional hyperbolic space (/
√
–κ)H with the metric defined by a usual

hyperbolic distance.
The diameter of M

κ is denoted by Dκ , that is, Dκ = π/
√

κ if κ >  and Dκ = ∞ if κ ≤ .
We know thatM

κ is a Dκ -uniquely geodesic space for each κ ∈R.
Let κ ∈R. For	(x, y, z) in a geodesic spaceX satisfying that d(x, y)+d(y, z)+d(x, z) < Dκ ,

there exist points x, y, z ∈ M
κ such that d(x, y) = dM

κ
(x, y), d(y, z) = dM

κ
(y, z) and d(x, z) =

dM
κ
(x, z). We call the triangle having vertices x, y and z in M

κ a comparison triangle of
	(x, y, z). Notice that it is unique up to an isometry of M

κ . For a specific choice of com-
parison triangles, we denote it by 	(x, y, z). A point p ∈ [x, y] is called a comparison point
for p ∈ [x, y] if d(x,p) = dM

κ
(x,p).

Let κ ∈R andX be aDκ -geodesic space. If for any x, y, z ∈ X with d(x, y)+d(y, z)+d(x, z) <
Dκ , for any p,q ∈ 	(x, y, z), and for their comparison points p,q ∈ 	(x, y, z), the inequality

d(p,q) ≤ dM
κ
(p,q)

holds, thenwe callX aCAT(κ) space. It is easy to see that allCAT(κ) spaces areDκ -uniquely
geodesic; consider the triangle such that two of its vertices are identical.
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Let {xn} be a bounded sequence in a metric space X. For x ∈ X, let r(x, {xn}) :=
lim supn→∞ d(x,xn) and define the asymptotic radius r({xn}) of {xn} by

r
({xn}) := inf

x∈X r
(
x, {xn}

)
.

An element z of X is said to be an asymptotic center of {xn} if r(z, {xn}) = r({xn}). We say
that {xn} is �-convergent to x ∈ X if x is the unique asymptotic center of any subsequence
of {xn}. The concept of �-convergence introduced by Lim in  was shown by Kirk and
Panyanak [] in CAT() spaces to be very similar to the weak convergence in Banach space
setting.

Remark .
() If {xn} is a sequence in a complete CAT(κ) space such that r({xn}) <Dκ/, then its

asymptotic center consists of exactly one point.
() Every sequence {xn} whose asymptotic radius is less than Dκ/ has a �-convergent

subsequence (see [, , ]), that is, ω�({xn}) := {x ∈ X : there exists {xnk } ⊂ {xn}
such that {xnk } �-converges to x} �=∅.

We note that Remark .() was proved by Dhompongsa et al. [] for the case κ ≤ , and
by Espánola and Fernández-León [] for the case κ > .
Let X be a metric space with a metric d. A mapping T : X → X is called nonexpansive if

d(Tx,Ty) ≤ d(x, y) for all x, y ∈ X.

A point x ∈ X is called a fixed point of T if x = Tx.We denote by F(T) the set of fixed points
of T . The mapping T is called quasi-nonexpansive if F(T) �=∅ and

d(Tx,p) ≤ d(x,p) for all x ∈ X and p ∈ F(T).

The following lemmas are essentially needed for our main results.

Lemma . ([, Lemma ]) Let {an} and {bn} be two sequences of nonnegative real num-
bers such that

an+ ≤ an + bn for all n ∈N.

If
∑∞

n= bn < ∞, then limn→∞ an exists.

Lemma . ([, Lemma .]) Let 	(x, y, z) be a geodesic triangle in a CAT() space such
that d(x, y)+d(x, z)+d(y, z) < π . Let u = tz⊕ (– t)x and v = tz⊕ (– t)y for some t ∈ [, ].
If d(x, z) ≤M, d(y, z) ≤M, and sin(( – t)M) ≤ sinM for some M ∈ (,π ), then

d(u, v) ≤ sin( – t)M
sinM

d(x, y).

Lemma . ([, Corollary .]) Let	(x, y, z) be a geodesic triangle in a CAT() space such
that d(x, y) + d(x, z) + d(y, z) < π . Let u = tx⊕ ( – t)y for some t ∈ [, ]. Then

cosd(u, z) sind(x, y) ≥ cosd(x, z) sin
(
td(x, y)

)
+ cosd(y, z) sin

(
( – t)d(x, y)

)
.
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Lemma . ([, Lemma .]) Let 	(x, y, z) be a geodesic triangle in a CAT() space such
that d(x, y) + d(x, z) + d(y, z) < π , and let t ∈ [, ]. Then

cosd
(
tx⊕ ( – t)y, z

) ≥ t cosd(x, z) + ( – t) cosd(y, z).

3 Main results
We start with some propositions which are common tools for proving the main results in
the next two subsections.

Proposition . Let {xn} be a sequence of a complete CAT() space X such that r({xn}) <
π/. Suppose that limn→∞ d(xn, z) exists for all z ∈ ω�({xn}). Then {xn} �-converges to an
element of ω�({xn}).Moreover, ω�({xn}) consists of exactly one point.

Proof Let x be the asymptotic center of {xn} and let {xnk } be any subsequence of {xn} with
the asymptotic center y. We show that y = x and hence {xn} �-converges to x as desired.
Since r({xnk }) ≤ r({xn}) < π/, there exists a subsequence {xnkl } of {xnk } such that {xnkl }
�-converges to z for some z ∈ X. Clearly, z ∈ ω�({xn}) and it follows from the assumption
that limn→∞ d(xn, z) exists. Let u ∈ X. Then

lim
n→∞d(xn, z) = lim

k→∞
d(xnk , z)

= lim
l→∞

d(xnkl , z)

≤ lim sup
l→∞

d(xnkl ,u)

≤ lim sup
k→∞

d(xnk ,u)

≤ lim sup
n→∞

d(xn,u).

Since

lim
n→∞d(xn, z) ≤ lim sup

n→∞
d(xn,u) for all u ∈ X,

we have z = x. Since

lim
k→∞

d(xnk , z) ≤ lim sup
k→∞

d(xnk ,u) for all u ∈ X,

we have z = y. This implies that y = x. �

Proposition. Let X be a completeCAT() space and {Tn} : X → X be a countable family
of quasi-nonexpansive mappings with F :=

⋂∞
n= F(Tn) �=∅. Let {xn} be a sequence in X such

that d(x, F) < π/ and

xn+ = tnxn ⊕ ( – tn)Tnxn for all n ∈N,

where {tn} is a sequence in [, ]. Then
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(i) {xn} is well defined and r({xn}) < π/. In particular, ω�({xn}) �=∅ and
d(xn+,p) ≤ d(xn,p) for all n ∈N whenever d(x,p) < π/ and p ∈ F.

(ii) If ω�({xn}) ⊂ F, then {xn} �-converges to an element of F.

Proof (i) Let p ∈ F be such that d(x,p) < π/. Since d(Tx,p) ≤ d(x,p) < π/, we have
that d(x,Tx) < π . This implies that x is well defined. It follows from Lemma . that

cosd(x,p) = cosd
(
tx ⊕ ( – t)Tx,p

)
≥ t cosd(x,p) + ( – t) cosd(Tx,p)

≥ t cosd(x,p) + ( – t) cosd(x,p)

= cosd(x,p),

and we have

d(x,p) ≤min
{
d(x,x) + d(x,p),d(Tx,x) + d(Tx,p)

}
=min

{
( – t)d(x,Tx) + d(x,p), td(x,Tx) + d(Tx,p)

}
≤min{ – t, t}d(x,Tx) + d(x,p)

≤ 

d(x,Tx) + d(x,p)

<
π


+

π


= π .

Therefore, d(x,p) ≤ d(x,p) < π/. Using mathematical induction, we can conclude that
the sequence {xn} is well defined and

d(xn+,p) ≤ d(xn,p) ≤ d(x,p) < π/ for all n ∈N.

Then limn→∞ d(xn,p) exists which is less than π/, and so r({xn}) < π/. This implies that
ω�({xn}) �=∅.
(ii) Let u ∈ ω�({xn}) ⊂ F. Then there exists a subsequence {xnk } of {xn} such that {xnk }

�-converges to u. Notice that r(u, {xnk }) = r({xnk }) ≤ r({xn}) < π/. Thus there is N ∈ N

such that d(xN ,u) < π/. Similar to the first step, we have that d(xn+,u) ≤ d(xn,u) for
all n ≥ N . This implies that limn→∞ d(xn,u) exists. It follows immediately from Proposi-
tion . that {xn} �-converges to an element of F and the proof is finished. �

3.1 Countable nonexpansive mappings
The following concept is introduced by Aoyama et al. []. Let X be a complete metric
space and {Tn} be a countable family of mappings from X into itself with F :=

⋂∞
n= F(Tn) �=

∅. We say that ({Tn},T) satisfies AKTT-condition if
•

∑∞
n= sup{d(Tn+y,Tny) : y ∈ Y } < ∞ for each bounded subset Y of X ;

• Tx := limn→∞ Tnx for all x ∈ X and F(T) = F.

Remark . Assume that ({Tn},T) satisfies AKTT-condition.
() For each x ∈ X , we have {Tnx} is a Cauchy sequence and hence the mapping T

above is well defined.
() If {xn} is bounded, then ∑∞

n= d(Tn+xn,Tnxn) <∞.

http://www.fixedpointtheoryandapplications.com/content/2013/1/336
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Theorem . Let X be a complete CAT() space and {Tn} be a countable family of map-
pings from X into itself. Let {xn} be a sequence in X defined by x ∈ X and

xn+ = tnxn ⊕ ( – tn)Tnxn for all n ∈N,

where {tn} is a sequence in [, ]. Suppose that

(Cn′) Tn is nonexpansive for all n ∈N and F :=
⋂∞

n= F(Tn) �=∅;
(C) d(x, F) < π/;
(C)

∑∞
n= tn( – tn) = ∞;

(C′) ({Tn},T) satisfies AKTT-condition.
Then the sequence {xn} �-converges to a common fixed point of {Tn}.

Proof Wefirst show that limn→∞ d(xn,Tnxn) exists. Using the nonexpansiveness of Tn and
the definition of {xn}, we obtain that

d(xn+,Tn+xn+)

≤ d(xn+,Tnxn) + d(Tnxn,Tnxn+) + d(Tnxn+,Tn+xn+)

≤ d(xn+,Tnxn) + d(xn,xn+) + d(Tnxn+,Tn+xn+)

= d(xn,Tnxn) + d(Tnxn+,Tn+xn+)

for all n ∈N. It follows from Lemma . and
∑∞

n= d(Tnxn+,Tn+xn+) < ∞ that

lim
n→∞d(xn,Tnxn)

exists.
Next, we show that limn→∞ d(xn,Tnxn) = . Assume that limn→∞ d(xn,Tnxn) > . Thus,

without loss of generality, there is a positive real number A such that

A≤ d(xn,Tnxn) < π for all n ∈N.

To get the right inequality of the preceding expression, let p ∈ F be such that d(x,p) < π/.
By Proposition .(i), we have

d(xn,Tnxn) ≤ d(xn,p) + d(Tnxn,p) ≤ d(xn,p) < d(x,p) < π .

Put An := d(xn,Tnxn) for all n ∈ N. By elementary trigonometry and Lemma ., we get
that

cosd(xn+,p) sinAn

= cosd
(
tnxn ⊕ ( – tn)Tnxn,p

)
sinAn

≥ cosd(xn,p) sin(tnAn) + cosd(Tnxn,p) sin
(
( – tn)An

)
≥ cosd(xn,p)

(
sin(tnAn) + sin

(
( – tn)An

))
,

http://www.fixedpointtheoryandapplications.com/content/2013/1/336
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and it follows that

cosd(xn+,p) – cosd(xn,p)

≥ cosd(xn,p)
(
sin(tnAn) + sin(( – tn)An)

sinAn
– 

)

=
 cosd(xn,p) sin(tnAn/) sin(( – tn)An/)

cos(An/)

≥  cosd(x,p) sin(tnA/) sin(( – tn)A/)
cos(A/)

≥ tn( – tn) cosd(x,p) sin(A/)
cos(A/)

for all n ∈N. Notice that cosd(x,p), cos(A/), and sin(A/) are positive. Consequently,

∞∑
n=

tn( – tn) ≤ cos(A/)
 cosd(x,p) sin(A/)

∞∑
n=

(
cosd(xn+,p) – cosd(xn,p)

)
<∞,

which is a contradiction. Then we get that limn→∞ d(xn,Tnxn) =  and hence

d(xn,Txn) ≤ d(xn,Tnxn) + d(Tnxn,Txn)

≤ d(xn,Tnxn) + sup
{
d(Tny,Ty) : y ∈ Y

} → ,

where Y := {xn}.
Finally, we show that {xn} �-converges to an element of F(T). To apply Proposi-

tion .(ii), we show that ω�({xn}) ⊂ F(T). Let u ∈ ω�({xn}). Then there exists a subse-
quence {xnk } of {xn} such that {xnk } �-converges to u. Clearly, u is the unique asymptotic
center of {xnk }. Using the nonexpansiveness of T and d(xn,Txn) → , we get that

lim sup
k→∞

d(xnk ,Tu) ≤ lim sup
k→∞

d(xnk ,Txnk ) + lim sup
k→∞

d(Txnk ,Tu)

≤ lim sup
k→∞

d(xnk ,u).

This implies that Tu = u, that is, ω�({xn})⊂ F(T). This completes the proof. �

As an immediate consequence of Theorem ., we obtain the following result.

Corollary . Let X be a complete CAT() space and T : X → X be a mapping. Let {xn} be
the Mann algorithm (.) in X. Suppose that

(C′) T is nonexpansive with F(T) �=∅;
(C) d(x, F(T)) < π/;
(C)

∑∞
n= tn( – tn) = ∞.

Then the sequence {xn} �-converges to a fixed point of T .

Remark . Our Corollary . improves Theorem . of He et al. [] (see Theorem .)
because (C′) of Theorem . implies (C) of Corollary .. Moreover, (C) is sharp in the

http://www.fixedpointtheoryandapplications.com/content/2013/1/336
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sense that if d(x, F(T)) = π/, then we may construct the Mann algorithm for a nonex-
pansive mapping which is not �-convergent.

Example . Let S be the unit sphere of the Euclidean spaceR with the geodesicmetric.
Let T : S → S

 be defined by

T(x, y, z) = (–y,x, z) for all (x, y, z) ∈ S
.

Then T is nonexpansive and F(T) = {(, , ), (, ,–)}. Let {xn} be a sequence in S
 de-

fined by x = (, , ) and

xn+ =


xn ⊕ 


Txn for all n ∈N.

Then d(x, F(T)) = π/ and

xn+ =
(
cos

nπ


, sin

nπ


,

)
for all n ∈N.

It is easy to see that {xn+} has the unique asymptotic center which is {(, , )} and {xn+}
has the unique asymptotic center which is {(, , )}. Hence, {xn} is not �-convergent.

3.2 Countable quasi-nonexpansive mappings
In this subsection, we give a supplement result to Theorem .. Obviously, every nonex-
pansivemappingwith a fixed point is quasi-nonexpansive.Moreover, ifT is nonexpansive,
then T is�-demiclosed [], that is, if for any�-convergent sequence {xn} inX, its�-limit
belongs to F(T) whenever limn→∞ d(xn,Txn) = .
In the following theorem, we deal with quasi-nonexpansive mappings satisfying �-

demiclosedness. This interesting class of mappings includes the metric projections [].
However, there are many metric projections such that they are not nonexpansive.

Theorem . Let X be a complete CAT() space and {Tn} be a countable family of map-
pings from X into itself. Let {xn} be a sequence in X defined by x ∈ X and

xn+ = tnxn ⊕ ( – tn)Tnxn for all n ∈N,

where {tn} is a sequence in (, ). Suppose that

(Cn) Tn is quasi-nonexpansive for all n ∈N and F =
⋂∞

n= F(Tn) �=∅;
(C) d(x, F) < π/;
(C′) lim infn→∞ tn( – tn) > ;
(C) there exists a mapping T : X → X such that

• {Tn} converges uniformly to T on each bounded subset of X ;
• F(T) = F;

(C) T is �-demiclosed.

Then the sequence {xn} �-converges to a common fixed point of {Tn}.

Remark . Let us compare Theorems . and .:

http://www.fixedpointtheoryandapplications.com/content/2013/1/336


Kimura et al. Fixed Point Theory and Applications 2013, 2013:336 Page 9 of 13
http://www.fixedpointtheoryandapplications.com/content/2013/1/336

() (Cn′) ⇒ (Cn);
() (C′) ⇒ (C);
() (C′) and (C′) ⇒ (C);
() (C′) ⇒ (C).

Proof of Theorem . We first show that limn→∞ d(xn,Tnxn) = . Let p ∈ F(T) be such that
d(x,p) < π/.We have thatA := limn→∞ d(xn,p) exists which is less than π/ and r({xn}) <
π/ by Proposition .(i). Put B := lim supn→∞ d(xn,Tnxn). Notice that B < π . Since
lim infn→∞ tn( – tn) > , we may assume that there exists a subsequence {nk} of N such
that limk→∞ d(xnk ,Tnkxnk ) = B and tnk → t ∈ (, ). Using the quasi-nonexpansiveness of
Tn and Lemma ., we get that

cosd(xnk+,p) sind(xnk ,Tnkxnk )

= cosd
(
tnk xnk ⊕ ( – tnk )Tnkxnk ,p

)
sind(xnk ,Tnkxnk )

≥ cosd(xnk ,p) sin
(
tnkd(xnk ,Tnkxnk )

)
+ cosd(Tnkxnk ,p) sin

(
( – tnk )d(xnk ,Tnkxnk )

)
≥ cosd(xnk ,p)

(
sin

(
tnkd(xnk ,Tnkxnk )

)
+ sin

(
( – tnk )d(xnk ,Tnkxnk )

))
.

Letting k → ∞ yields

cosA sinB ≥ cosA
(
sin tB + sin( – t)B

)
.

Using elementary trigonometry, we get that B = . Hence it follows that

lim
n→∞d(xn,Tnxn) = .

By condition (C), we get that

d(xn,Txn) ≤ d(xn,Tnxn) + d(Tnxn,Txn)

≤ d(xn,Tnxn) + sup
{
d(Tny,Ty) : y ∈ Y

} → ,

where Y := {xn}.
Finally, we show thatω�({xn}) ⊂ F(T). Let u ∈ ω�({xn}). Then there exists a subsequence

{xnk } of {xn} such that {xnk } �-converges to u. It follows from the �-demiclosedness of T
and d(xn,Txn) →  that Tu = u, that is, ω�({xn}) ⊂ F(T). Hence the result follows from
Proposition .(ii). The proof is now finished. �

As an immediate consequence of Theorem ., we obtain the following result.

Corollary . Let X be a complete CAT() space and T : X → X be a mapping with
F(T) �=∅. Let {xn} be the Mann algorithm (.) in X. Suppose that

(C) T is quasi-nonexpansive and �-demiclosed;
(C) d(x, F(T)) < π/;
(C′) lim infn→∞ tn( – tn) > .

Then the sequence {xn} �-converges to a fixed point of T .

Question . We do not know whether the conclusion of Corollary . holds if (C′) is
replaced by the more general condition (C).
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Let {Tn} : X → X be a countable family of quasi-nonexpansive mappings with F :=⋂∞
n= F(Tn) �= ∅. We next show how to generate a family {Wn} and a mapping W satis-

fying (C′) and (C), and hence Theorem . is applicable.

Theorem . Let X be a complete CAT() space such that d(u, v) < π/ for all u, v ∈ X,
and let {Tn} : X → X be a countable family of quasi-nonexpansive mappings with F :=⋂∞

n= F(Tn) �=∅. Then there exist a family of quasi-nonexpansive mappings {Wn} : X → X
and a quasi-nonexpansive mapping W : X → X such that

(i) ({Wn},W ) satisfies AKTT-condition and F(W ) =
⋂∞

n= F(Wn) = F;
(ii) W is �-demiclosed whenever Tn is �-demiclosed for all n ∈N.

To prove Theorem ., we need the following lemmas.

Lemma. ([]) Let X be a completeCAT() space such that d(u, v) < π/ for all u, v ∈ X,
and let S,T : X → X be quasi-nonexpansive mappings with F(S)∩F(T) �=∅.Then, for each
 < t < , F(S)∩F(T) = F(tS⊕ (– t)T) and themapping tS⊕ (– t)T is quasi-nonexpansive.

The following lemma is essentially proved in []. For the sake of completeness, we show
the proof.

Lemma . Let X be a complete CAT() space such that d(u, v) < π/ for all u, v ∈ X,
and let S,T : X → X be quasi-nonexpansive mappings with F(S) ∩ F(T) �=∅. Let {xn} be a
sequence of X. If d(xn, Sxn ⊕ 

Txn) → , then d(xn,Sxn)→  and d(xn,Txn)→ .

Proof Put W := 
S ⊕ 

T . By Lemma ., we have that W is quasi-nonexpansive and
F(W ) = F(S) ∩ F(T). Let p ∈ F(W ). By Lemma . and the quasi-nonexpansiveness of S
and T , we get that

 cosd(Wxn,p) sin
d(Sxn,Txn)


cos

d(Sxn,Txn)


= cosd
(


Sxn ⊕ 


Txn,p

)
sind(Sxn,Txn)

≥ cosd(Sxn,p) sin
d(Sxn,Txn)


+ cosd(Txn,p) sin

d(Sxn,Txn)


≥  cosd(xn,p) sin
d(Sxn,Txn)


.

This implies that

d(Sxn,Txn) =  or cos
d(Sxn,Txn)


≥ cosd(xn,p)

cosd(Wxn,p)
.

It follows from d(xn,Wxn) →  that cosd(xn ,p)
cosd(Wxn ,p) → , that is, d(Sxn,Txn) → . Thus

d(xn,Sxn) ≤ d
(
xn,



Sxn ⊕ 


Txn

)
+ d

(


Sxn ⊕ 


Txn,Sxn

)

= d
(
xn,



Sxn ⊕ 


Txn

)
+
d(Sxn,Txn)


→ .

Hence d(xn,Sxn) → . Similarly, d(xn,Txn)→  and the proof is finished. �
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We are now ready to prove Theorem ..

Proof of Theorem . Put Sn := 
 I ⊕ 

Tn for all n ∈ N. We define a family of mappings
{Wn} : X → X by

Wx = Sx;

Wx =


Sx⊕ 


Sx;

Wx =


Sx⊕ 



(


Sx⊕ 


Sx

)
;

...

Wnx =


Sx⊕ 



(


Sx⊕ 



(
· · · ⊕ 



(


Sn–x⊕ 


Snx

)
· · ·

))
;

...

It follows from Lemma . thatWn is quasi-nonexpansive for all n ∈N and
⋂∞

n= F(Wn) =⋂∞
n= F(Tn).
We first show that

∑∞
n= sup{d(Wn+x,Wnx) : x ∈ X} < ∞. For k ∈N, put V (k)

k := Sk and

V (k)
n :=



Sk ⊕ 



(


Sk+ ⊕ 



(
· · · ⊕ 



(


Sn– ⊕ 


Sn

)
· · ·

))

for all n > k. By Lemma ., we have that

d(Wn+x,Wnx) = d
(


Sx⊕ 


V ()
n+x,



Sx⊕ 


V ()
n x

)

≤
(√




)
d
(


Sx⊕ 


V ()
n+x,



Sx⊕ 


V ()
n x

)

≤
(√




)

d
(


Sx⊕ 


V ()
n+x,



Sx⊕ 


V ()
n x

)

≤ · · ·

≤
(√




)n–

d
(


Snx⊕ 


Sn+x,Snx

)

≤
(√




)n–

· π



for all x ∈ X and n ∈N. Then

sup
{
d(Wn+x,Wnx) : x ∈ X

} ≤
(√




)n–

· π



and the result follows. In particular, {Wnx} is a Cauchy sequence for each x ∈ X. We now
define the mappingW : X → X by

Wx := lim
n→∞Wnx for all x ∈ X.
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Next, we show that F(W ) =
⋂∞

n= F(Tn). It is easy to see that
⋂∞

n= F(Tn) ⊂ F(W ). On the
other hand, let q ∈ ⋂∞

n= F(Tn) =
⋂∞

n= F(Sn) and p ∈ F(W ). We prove that p ∈ F(Tk) for all
k ∈N. Let k ∈N be given. For any n > k, it follows from Lemma . that

cosd(q,Wnp)

= cosd
(
q,



Sp⊕ 



(


Sp⊕ 



(
· · · ⊕ 



(


Sn–p⊕ 


Snp

)
· · ·

)))

≥ 

cosd(q,Sp) +



cosd

(
q,



Sp⊕ 



(
· · · ⊕ 



(


Sn–p⊕ 


Snp

)
· · ·

))

≥ 

cosd(q,Sp) + · · · + 

k
cosd(q,Skp) + · · · + 

n–
cosd(q,Sn–p)

+


n–
cosd(q,Snp)

≥
(


+ · · · + 

k–
+


k+

+ · · · + 
n–

+


n–

)
cosd(q,p) +


k

cosd(q,Skp)

=
(
 –


k

)
cosd(q,p) +


k

cosd(q,Skp).

Letting n → ∞ yieldsWnp→ Wp = p and

cosd(q,p) = cosd(q,Wp) ≥
(
 –


k

)
cosd(q,p) +


k

cosd(q,Skp).

This implies that cosd(q,p) = cosd(q,Skp). It follows from Lemma . that

cosd(q,p) sind(p,Tkp) = cosd(q,Skp) sind(p,Tkp)

= cosd
(
q,



p⊕ 


Tkp

)
sind(p,Tkp)

≥ cosd(q,p) sin
d(p,Tkp)


+ cosd(q,Tkp) sin

d(p,Tkp)


≥  cosd(q,p) sin
d(p,Tkp)


.

Using elementary trigonometry, we get that d(p,Tkp) = . Since k is arbitrary, we have
p ∈ ⋂∞

n= F(Tn). Hence (i) is proved.
Finally, we prove (ii). We assume that Tn is �-demiclosed for all n ∈ N. We show thatW

is �-demiclosed. Let {xn} ⊂ X be such that limn→∞ d(xn,Wxn) =  and {xn} �-converges
to x ∈ X. It follows from the definitions of {Wn} and {V ()

n } that

Wn =


S ⊕ 


V ()
n for all n≥ .

Similar to the proof of the first and the second steps, we can define the quasi-nonexpansive
mapping V : X → X by

Vx := lim
n→∞V ()

n x for all x ∈ X
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and F(V ) =
⋂∞

n= F(Tn). This implies that

W =


S ⊕ 


V and F(W ) = F(S)∩ F(V ).

Then, by Lemma ., we obtain that d(xn,Sxn)→  and d(xn,Vxn) → . Thus

d(xn,Txn) = d
(
xn,



xn ⊕ 


Txn

)
= d(xn,Sxn) → .

Since T is �-demiclosed, we have x ∈ F(T). Continuing this procedure gives x ∈⋂∞
n= F(Tn) = F(W ). This completes the proof. �
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