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Abstract
In 1994, Matthews introduced and studied the concept of partial metric space and
obtained a Banach-type fixed point theorem on complete partial metric spaces. In
this paper we study fixed point results of new mappings with a contractive iterate at a
point in partial metric spaces. Our results generalize and unify some results of Sehgal,
Guseman and Ćirić for mappings with a generalized contractive iterate at a point to
partial metric spaces. We give some generalized versions of the fixed point theorem
of Matthews. The theory is illustrated by some examples.
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1 Introduction
In , Banach proved the following famous fixed point theorem []. Let (X,d) be a com-
plete metric space. Let T be a contractive mapping on X, that is, one for which exists
q ∈ [, ) satisfying

d(Tx,Ty) ≤ q · d(x, y) (.)

for all x, y ∈ X. Then there exists a unique fixed point x ∈ X of T . This theorem, called
the Banach contraction principle, is a forceful tool in nonlinear analysis. This principle
has many applications and has been extended by a great number of authors. For the con-
venience of the reader, let us recall the following results [–].
In , Sehgal [] proved the following interesting generalization of the contraction

mapping principle.

Theorem . ([]) Let (X,d) be a complete metric space, q ∈ [, ) and T : X �→ X be a
continuous mapping. If for each x ∈ X there exists a positive integer n = n(x) such that

d
(
Tnx,Tny

) ≤ q · d(x, y) (.)

for all y ∈ X, then T has a unique fixed point u ∈ X.Moreover, for any x ∈ X, u = limm Tmx.

In , Guseman [] (see also []) generalized the result of Sehgal to mappings which
are both necessarily continuous and which have a contractive iterate at each point in a
(possibly proper) subset of the space.
In , Ćirić [], among other things, proved the following interesting generalization

of Sehgal’s result.
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Theorem . ([]) Let (X,d) be a complete metric space, q ∈ [, ) and T : X �→ X. If for
each x ∈ X there exists a positive integer n = n(x) such that

d
(
Tnx,Tny

) ≤ q ·max
{
d(x, y),d(x,Ty), . . . ,d

(
x,Tny

)
,d

(
x,Tnx

)}
(.)

holds for all y ∈ X, then T has a unique fixed point u ∈ X. Moreover, for every x ∈ X, u =
limm Tmx.

Partial metric spaces were introduced in [] by Matthews as part of the study of deno-
tational semantics of dataflow networks and served as a device to solve some difficulties
in domain theory of computer science (see also [, ]), in particular the ones which arose
in the modeling of a parallel computation program given in []. The concept has since
proved extremely useful in domain theory (see, e.g., [–]) and in constructing models
in the theory of computation (see, e.g., [–]).
On the other hand, fixed point theory of mappings defined on partial metric spaces

since the first results obtained in [] has flourished in the meantime, a fact evidenced by
quite a number of papers dedicated to this subject (see, e.g., [–]). The task seems to
have been set forth of determining what known fixed point results from the usual metric
setting remain valid - after adequate modifications that should as much as possible reflect
the nature of the concept of partial metric - when formulated in the partial metric setting.
The potentially nonzero self-distance, built into Matthew’s definition of partial metrics,

was taken into account in [] in an essential way by a rather mild variation of the classi-
cal Banach contractive condition, and in [] further considerations in this direction were
carried out which were in turn generalized by Chi et al. in []. This paper represents a
continuation of the previous work by the authors. Nowwe study fixed point results of new
mappings with a contractive iterate at a point in partial metric spaces. Our results general-
ize and unify some results of Sehgal, Guseman and Ćirić for mappings with a generalized
contractive iterate at a point to partial metric spaces. We give some generalized versions
of the fixed point theorem of Matthews. The theory is illustrated by some examples.

2 Preliminaries
Throughout this paper the lettersR andNwill denote the set of real numbers and positive
integers, respectively.
Let us recall [] that a nonnegative mapping p : X ×X →R, where X is a nonempty set,

is said to be a partial metric on X if for any x, y, z ∈ X the following four conditions hold
true:
(P) p(x, y) = p(y,x),
(P) p(x,x)≤ p(x, y),
(P) if p(x,x) = p(y, y) = p(x, y), then x = y,
(P) p(x, z) ≤ p(x, y) + p(y, z) – p(y, y).
The pair (X,p) is then called a partial metric space. A sequence {xm}∞m= of elements ofX

is called p-Cauchy if the limit limm,n p(xn,xm) exists and is finite. The partial metric space
(X,p) is called complete if for each p-Cauchy sequence {xm}∞m= there is some z ∈ X such
that

p(z, z) = lim
n
p(z,xn) = lim

n,m
p(xn,xm). (.)
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Ilić et al. Fixed Point Theory and Applications 2013, 2013:335 Page 3 of 18
http://www.fixedpointtheoryandapplications.com/content/2013/1/335

Observe that condition (P) is a strengthening of the triangle inequality and that p(x, y) = 
implies x = y as in the case of an ordinary metric.
It can be shown that if (X,p) is a partial metric space, then by ps(x, y) = p(x, y) –p(x,x) –

p(y, y), for x, y ∈ X, a metric ps is defined on the set X such that {xn}n≥ converges to z ∈ X
with respect to ps if and only if (.) holds. Also (X,p) is a complete partial metric space if
and only if (X,ps) is a complete metric space. For proofs of these facts, see [, ].
A paradigm for partial metric spaces is the pair (X,p) where X = [,+∞) and p(x, y) =

max{x, y} for x, y ≥ . Below we give two more examples of partial metrics both of which
are taken from [].

Example . If X := {[a,b] | a,b ∈ R,a ≤ b}, then p([a,b], [c,d]) = max{b,d} – min{a,b}
defines a partial metric p on X.

Example . Let X :=R
N ∪ ⋃

n≥R
{,,...,n–}, where N is the set of nonnegative integers.

By L(x) denote the set {, , . . . ,n} if x ∈ R
{,,...,n–} for some n ∈ N, and the set N if

x ∈R
N . Then a partial metric is defined on X by

p(x, y) = inf
{
–i | i ∈ L(x)∩ L(y) and ∀j ∈N

(
j < i⇒ x(j) = y(j)

)}
.

For applications of partial metrics to problems in theoretical computer science, the
reader is referred to [, , , ].
In [] Matthews proved the following extension of the Banach contraction principle to

the setting of partial metric spaces.

Theorem . Let (X,p) be a complete partial metric space, α ∈ [, ) and T : X → X be a
given mapping. Suppose that for each x, y ∈ X the following condition holds

p(Tx,Ty) ≤ αp(x, y). (.)

Then there is a unique z ∈ X such that Tz = z. Also p(z, z) =  and for each x ∈ X the se-
quence {Tnx}n≥ converges with respect to the metric ps to z.

A variant of the result above concerning the so-called dualistic partial metric spaces was
later given in []. Altun et al. [] further generalized the result of Matthews as well as
extended to partial metric spaces several other well-known results about fixed points of
mappings on metric spaces.
Taking a different approach to the way in which contractive condition (.) can be gen-

eralized for partial metrics, we [, ] have obtained other extensions of Theorem .. To
state one of them, wewill use the following notation. Given a partial metric space (X,p) set
rp := inf{p(x, y) : x, y ∈ X} = inf{p(x,x) : x ∈ X} and Rp := {x ∈ X : p(x,x) = rp}. Notice that Rp

may be empty and that if p is a metric, then, clearly, rp =  and Rp = X.

Theorem. (Theorem. of []) Let (X,p) be a complete partialmetric space, α ∈ [, )
and T : X → X be a given mapping. Suppose that for each x, y ∈ X the following condition
holds

p(Tx,Ty) ≤max
{
αp(x, y),p(x,x),p(y, y)

}
. (.)
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Then the set Rp is nonempty. There is a unique u ∈ Rp such that Tu = u. For each x ∈ Rp,
the sequence {Tnx}n≥ converges with respect to the metric ps to u.

Remark . Although Theorem . does not imply uniqueness of the fixed point, it is
easy to see that, under the assumptions made, if u and v are both fixed points satisfying
p(u,u) = p(v, v), then u = v.

Remark . Completeness of a partial metric does not necessarily entail that Rp is
nonempty. A (class of ) counterexample(s) is easily constructed as follows.
Let (X,d) be a partial metric space, a >  and f : X → [,a) be an arbitrary mapping. If

x, y ∈ X are such that x �= y, define p(x, y) = d(x, y) + a and p(x,x) = f (x). Then (X,p) is a
partial metric space, as is easily verified.
Now if b := sup f [X] < a, then, given a sequence {xn}n≥, we have lim supn p(xn,xn) ≤ b < a

and p(xn,xm)≥ awhenever xn �= xm. Thus there are no nonstationary p-Cauchy sequences.
Hence (X,p) is complete. But Rp = ∅ whenever inf f [X] /∈ f [X].

If condition (.) is replaced by the somewhat stronger condition below, then the
uniqueness of the fixed point is guaranteed.

Theorem. (Theorem. of []) Let (X,p) be a complete partialmetric space, α ∈ [, )
and T : X → X be a given mapping. Suppose that for each x, y ∈ X the following condition
holds

p(Tx,Ty) ≤max

{
αp(x, y),

p(x,x) + p(y, y)


}
. (.)

Then there is a unique z ∈ X such that Tz = z. Furthermore, z ∈ Rp and for each x ∈ Rp the
sequence {Tnx}n≥ converges with respect to the metric ps to z.

3 Auxiliary results
We now introduce the two types of contractive conditions that we shall be considering in
this paper. Let us remark that if T : X → X, then we write T = I for the identity mapping
I : X → X, i.e., I(x) = x, x ∈ X.

Definition . Let (X,p) be a partial metric space, α ∈ (, ) and T : X → X.
(i) We say that T is a C-operator on X if for each x ∈ X there is some n(x) ∈N such

that for each y ∈ X there holds

p
(
Tn(x)x,Tn(x)y

)
≤max

{
αp

(
x,Tjy

)
,αp

(
x,Tn(x)x

)
,p(x,x),p

(
Tn(x)–y,Tn(x)–y

)}
(.)

for some j ∈ {, , . . . ,n(x)}.
(ii) We say that T is a C-operator on X if for each x ∈ X there is some n(x) ∈N such

that for each y ∈ X there holds

p
(
Tn(x)x,Tn(x)y

) ≤ αmax
{
p
(
x,Tjy

)
,p

(
x,Tn(x)x

)}
(.)

for some j ∈ {, , . . . ,n(x)}.
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For a C-operator T on a partial metric space (X,p) and x ∈ X define the supporting
sequence at the point x as the sequence {sk}k≥, where s =  and sk+ = sk+n(Tsk x). Clearly,
this is a strictly increasing sequence. Also set RT (X) := {x ∈ X | Tmx = Tm+x for somem ∈
N}.

Lemma . Let T be a C-operator on a partial metric space (X,p), x ∈ X \RT (X), {sk}k≥

be the supporting sequence at x and k ≥  and i ≥ sk be given integers. Then we must have

p
(
Tskx,Tix

) ≤max
{
αp

(
Tsk–x,Tjx

)
,p

(
Tsk–x,Tsk–x

)}
for some j ≥ sk–. (.)

Proof Case . Suppose i = sk + . By (.) we know that if

p
(
Tskx,Tsk+x

)
>max

{
αp

(
Tsk–x,Tjx

)
,p

(
Tsk–x,Tsk–x

)}
for all j ∈ {sk–, . . . , sk + }, (.)

then

p
(
Tskx,Tsk+x

) ≤ p
(
Tsk+x,Tsk+x

)
. (.)

Likewise, if

p
(
Tskx,Tsk+x

)
>max

{
αp

(
Tsk–x,Tjx

)
,p

(
Tsk–x,Tsk–x

)}
for all j ∈ {sk–, . . . , sk + }, (.)

then

p
(
Tskx,Tsk+x

) ≤ p
(
Tskx,Tskx

)
. (.)

Now if (.) were to hold, then (.) and (P) would imply that (.) is true as well. So (.)
also holds and thus

p
(
Tskx,Tsk+x

) ≤ p
(
Tsk+x,Tsk+x

) ≤ p
(
Tsk x,Tsk+x

)
≤ p

(
Tskx,Tskx

) ≤ p
(
Tsk x,Tsk+x

)

meaning (by (P)) that Tsk x = Tsk+x. But this contradicts the assumption x /∈ RT (X), so
(.) must be true.
Case . Suppose i = sk . Since p(Tsk x,Tskx) ≤ p(Tsk x,Tsk+x), the assertion here follows

from the previous case.
Case . Suppose now i = sk + . Assume that

p
(
Tskx,Tsk+x

)
>max

{
αp

(
Tsk–x,Tjx

)
,p

(
Tsk–x,Tsk–x

)}
for all j ∈ {sk–, . . . , sk + }
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since otherwise there is nothing to prove. Then by (.) we must have p(Tsk x,Tsk+x) ≤
p(Tsk x,Tskx). But then, by the previous case, there is some j ≥ sk– such that

p
(
Tskx,Tsk+x

) ≤ p
(
Tskx,Tskx

) ≤max
{
αp

(
Tsk–x,Tjx

)
,p

(
Tsk–x,Tsk–x

)}

and we are done.
For i > sk + , the argument carries on by induction. Suppose that (.) holds for some

i ≥ sk . If p(Tsk x,Ti+x) > {αp(Tsk–x,Tjx),p(Tsk–x,Tsk–x)} for all j ∈ {sk–, . . . , i + }, then
we must have p(Tskx,Ti+x) ≤ p(Tix,Tix). By the induction hypothesis, there is some j ≥
sk– such that

p
(
Tskx,Tix

) ≤ {
αp

(
Tsk–x,Tjx

)
,p

(
Tsk–x,Tsk–x

)}
.

But since p(Tsk x,Ti+x)≤ p(Tix,Tix)≤ p(Tsk x,Tix), the last inequality clashes with our
assumption. �

To shorten the foregoing considerations, we introduce some auxiliary notions as follows.
Fix x ∈ X \ RT (X). For integers k ≥  and i ≥ sk , use Lemma . repeatedly to fix integers
lj ≥ sj, ≤ j < k and t, . . . , tk ∈ {, } such that, putting lk := i, there holds

p
(
Tsjx,Tljx

) ≤ αtjp
(
Tsj–x,Tlj–x

)

for all  ≤ j ≤ k, where

tj =

{
 if sj– < lj–,
 if sj– = lj–.

We shall refer to (l, . . . , lk–) and (t, . . . , tk) as the (k, i)-descent and the (k, i)-signature at
x, respectively. Set Sxk,i := {j ∈ {, . . . ,k} | tj = }. We shall say that x is of type  if there are
sequences of positive integers {km}m≥ and {im}m≥, the first one strictly increasing, such
that for allm ≥  we have im ≥ skm and card(Sxkm ,im ) < card(Sxkm+,im+

); here and henceforth,
for a finite set P, we denote by card(P) the number of its elements. We shall say that x is of
type  if x is not of type , i.e., if there are k,D ∈ N such that for all k ≥ k and all i ≥ sk
there holds card(Sxk,i) <D.
Tomake the proof of ourmain resultmore transparent, we have extracted from it several

parts and presented them first in form of the next five lemmas.

Lemma . Let T be a C-operator on a partial metric space (X,p), x /∈ RT (X), and let
{sk}k≥ be the supporting sequence at x. Then:
(a) If (l, . . . , lk–) is the (k, i)-descent at x, then

p
(
Tskx,Tix

) ≤ α
card(Sxk,i )p

(
x,Tlx

)
and

p
(
Tskx,Tix

) ≤ p
(
Tsjx,Tljx

)
for all  ≤ j ≤ k,

where we set lk := i.

http://www.fixedpointtheoryandapplications.com/content/2013/1/335
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(b) If P ⊆ {, . . . ,k – } is such that card(Sxk,i ) < card(P), then for some j ∈ P there must
hold

p
(
Tskx,Tix

) ≤ p
(
Tsj x,Tsj x

)
.

Proof Regarding Lemma ., we get p(Tsk x,Tix) ≤ α
∑k

i=j+ tip(Tsjx,Tljx) for all j such that
k > j ≥ , recursively. Now (a) follows directly.
To prove (b) simply observe that card(Sxk,i ) < card(P) implies that the set {j +  | j ∈ P} is

a subset of {, . . . ,k} with card(P) > card(Sxk,i ) elements so that there must be some j ∈ P
with tj+ = . Hence

p
(
Tskx,Tix

) ≤ p
(
Tsj+x,Tlj+x

) ≤ αtj+p
(
Tsj x,Tlj x

)
= p

(
Tsj x,Tsj x

)
,

where we used (a) and the fact that lj = sj . �

Lemma . If T is a C-operator on a partial metric space (X,p) and x ∈ X, then there is
some Mx >  such that for all i≥  we must have p(x,Tix)≤Mx.

Proof If x ∈ RT (X), then this is obvious. Thus suppose x /∈ RT (X) and setMx := 
–α

max{p(x,
Tjx) |  < j ≤ n(x)} + p(x,x). If k = n(x), then it is certainly true that p(x,Tix) ≤ Mx for all
 ≤ i≤ k. Now suppose that the same is valid for some k ≥ n(x).
If p(x,Tk+x)≤ p(x,Tix) for some  ≤ i≤ k, then by the induction hypothesis there holds

p(x,Tk+x)≤ p(x,Tix)≤Mx. Otherwise, we must have

p
(
x,Tk+x

)
>max

{
p
(
x,Tix

) |  ≤ i≤ k
}
. (.)

Now using (.)

p
(
x,Tk+x

) ≤ p
(
x,Tn(x)x

)
+ p

(
Tn(x)x,Tk+x

)
≤ p

(
x,Tn(x)x

)
+max

{
αp

(
x,Tjx

)
,p(x,x),p

(
Tkx,Tkx

)
,αp

(
x,Tn(x)x

)}

for some k +  – n(x)≤ j ≤ k + . Hence we either have

p
(
x,Tk+x

) ≤ p
(
x,Tn(x)x

)
+ p(x,x)≤Mx

or, using (.) and the fact that p(Tkx,Tkx) ≤ p(x,Tkx), it must be that

p
(
x,Tk+x

) ≤ p
(
x,Tn(x)x

)
+ αp

(
x,Tk+x

)
, i.e.,

p
(
x,Tk+x

) ≤ 
 – α

p
(
x,Tn(x)x

) ≤Mx.

By induction the desired conclusion follows. �

Lemma . Let T be a C-operator on a partial metric space (X,p) and x ∈ X \ RT (X). If
x is of type , then limi,j p(Tix,Tjx) = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/335
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Proof Fixm≥ . If (l, . . . , lkm–) is the (skm , im)-descent, then by (a) of Lemma . we have

p
(
Tskm x,Timx

) ≤ α
card(Sxkm ,im )p

(
x,Tlx

) ≤ α
card(Sxkm ,im )Mx.

Since limm card(Sxkm ,im ) = ∞, this implies limm p(Tskm x,Timx) = limm p(Tskm x,Tskm x) = .
Now given ε >  choose m ≥  such that αmMx < ε and such that for all m ≥ m it

holds p(Tskm x,Tskm x) < ε. Let i≥ skm
be arbitrary.

Suppose first that card(Sxkm ,i
) ≥m. Then

p
(
Tskm x,Tix

) ≤ α
card(Sxkm ,i

)
Mx ≤ αmMx < ε.

Suppose now that card(Sxkm ,i
) < m. For P := {km , . . . ,km–} ⊆ {, , . . . ,km – }, we

have card(P) > card(Sxkm ,i
), so by (b) of Lemma . there must be some m ≤ j ≤ m – 

such that p(Tskm x,Tix)≤ p(Tskj x,Tskj x) < ε.
We have thus shown that p(Tskm x,Tix) < ε must hold for all i ≥ skm

. Therefore if
i, j ≥ skm

, then

p
(
Tix,Tjx

) ≤ p
(
Tskm x,Tix

)
+ p

(
Tskm x,Tjx

)
< ε.

The previous analysis proves limi,j p(Tix,Tjx) = . �

Lemma . Let T be a C-operator on a partial metric space (X,p) and x ∈ X \ RT (X). If
x is of type , then the sequence {Tix}i≥ is p-Cauchy.

Proof Let {sk}k≥ be the supporting sequence at x.
We first show lim infm p(Tsmx,Tsmx) = lim supm p(Tsmx,Tsmx). Suppose that this is not

true and pick a real θ with lim infm p(Tsmx,Tsmx) < θ < lim supm p(Tsmx,Tsmx). Let k <
k < · · · < kD < kD+ and i > kD+ be positive integers, where kD+ ≥ k, such that

p
(
Tskj x,Tskj x

)
< θ for all  ≤ j ≤D and p

(
Tsix,Tsix

)
> θ .

The fact that si > skD+ implies that SxkD+,si is defined and since kD+ ≥ k, we have
card(SxkD+,si ) < D. For P := {k, . . . ,kD} ⊆ {, , . . . ,kD+ – }, we have card(P) = D >
card(SxkD+,si )| so, by (b) of Lemma ., there is some j ∈ {, . . . ,D} such that

θ < p
(
Tsix,Tsix

) ≤ p
(
TskD+ x,Tsix

) ≤ p
(
Tskj x,Tskj x

)
< θ ,

a contradiction.
By the preceding part and since  ≤ p(Tsmx,Tsmx)≤ Mx, withMx as in Lemma ., we

have rx := limm p(Tsmx,Tsmx) ∈ R.
Let us prove

∀ε >  ∃m ∀m≥m ∀i≥ sm p
(
Tsmx,Tix

) ∈ (rx – ε, rx + ε). (.)

Given ε > , take m ≥ k such that p(Tsmx,Tsmx) ∈ (rx – ε, rx + ε) for all m ≥ m. Let
m ≥m +D and i≥ sm be arbitrary. For P := {m, . . . ,m +D–} ⊆ {, , . . . ,m–}, we have

http://www.fixedpointtheoryandapplications.com/content/2013/1/335
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card(P) =D > card(Sxm,i), so for somem ≤ j ≤m +D –  it must be

rx – ε < p
(
Tsmx,Tsmx

) ≤ p
(
Tsmx,Tix

) ≤ p
(
Tsjx,Tsjx

)
< rx + ε

and we are done.
From (.) it now immediately follows that

∀ε >  ∃k ∀i, j ≥ k p
(
Tix,Tjx

)
< rx + ε. (.)

Indeed, given ε > , considerm as in (.) and let i, j ≥ sm be arbitrary. Then

p
(
Tix,Tjx

) ≤ p
(
Tsm x,Tix

)
+

[
p
(
Tsm x,Tjx

)
– p

(
Tsm x,Tsm x

)]
< rx + ε + ε = rx + ε.

To prove

lim
i,j

p
(
Tix,Tjx

)
= rx, (.)

we now only need to show that

∀ε >  ∃k ∀i, j ≥ k rx – ε < p
(
Tix,Tjx

)
. (.)

Let ε ∈ (, rx(–α)
+α

) be arbitrary and let k ∈ N be as in (.). We claim that rx – ε <
p(Tix,Tix) holds for all i ≥ k. This would prove (.) since p(Tix,Tix) ≤ p(Tix,Tjx).
Suppose to the contrary that there is some i ≥ k with p(Tix,Tix) ≤ rx – ε. Put

z := Tix. x /∈ RT (X) implies z /∈ RT (X). If z is of type , then by Lemma . we have
 = limi,j p(Tiz,Tjz) = limi,j p(Tix,Tjx), so {Tix}i≥ is p-Cauchy and we are finished. Sup-
pose now that z is of type , so that by what we have proved thus far we know that
rz = limm p(Tsmz,Tsmz) ∈ R and also that (.) holds with z taken instead of x. It cannot
be p(Tn(z)z,Tn(z)z) > rx – ε because this would mean that p(z, z) < p(Tn(z)z,Tn(z)z), so using
Lemma ., it would follow rx–ε < p(Tn(z)z,Tn(z)z) ≤ αp(z,Tjz) for some j ∈N, i.e., rx–ε <
αp(Tix,Ti+jx) ≤ α(rx + ε), giving rx(–α)

+α
< ε, a contradiction. So p(Tn(z)z,Tn(z)z) ≤ rx – ε.

The argument actually shows that p(Tqmz,Tqmz) ≤ rx – ε holds for every m ≥ , where
{qm}m≥ is the supporting sequence at the point z. So rz = limm p(Tqmz,Tqmz) ≤ rx – ε.
Now use the fact that rz < rz+rx

 and (.) (with z taken instead of x and rx–rz
 instead of ε

of course) to find j ∈N such that

p
(
Tjz,Tjz

)
<
rz + rx


for all j ≥ j. (.)

As limm p(Tsmx,Tsmx) = rx and rz+rx
 < rx, there is some m ≥ i + j with p(Tsmx,Tsmx) >

rz+rx
 . Now, using sm – i ≥m – i ≥ j, we obtain

rz + rx


< p
(
Tsmx,Tsmx

)
= p

(
Tsm–iz,Tsm–iz

)
<
rz + rx


,

which is not possible. �
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Lemma . Let T : X → X and let p : X×X →R be anymapping satisfying (P). Suppose
that x ∈ X is such that Tkx = x holds for some positive integer k, and that there exists y ∈ X
such that

p(y, y) = lim
i
p
(
y,Tix

)
= lim

i,j
p
(
Tix,Tjx

)
. (.)

Then Tx = x.

Proof From Tkix = x, i≥ , we have

p(y, y) = lim
i
p
(
y,Tkix

)
= p(y,x) and p(y, y) = lim

i
p
(
Tkix,Tkix

)
= p(x,x),

hence y = x. But (.) now gives

p(x,x) = lim
i
p
(
x,Tki+x

)
= p(x,Tx) and p(x,x) = lim

i
p
(
Tki+x,Tki+x

)
= p(Tx,Tx)

so Tx = x. �

4 Main results
Having made the necessary preparations, we are now able to prove fixed point results for
C-operators on complete partial metric spaces. But first we prove a proposition giving
some insight into the structure of this type of mappings.

Proposition . If T is a C-operator on a complete partial metric space (X,p), then
() for each x ∈ X , the sequence {Tix}i≥ ps-converges to some vx ∈ X ;
() for all x, y ∈ X , there holds p(vx, vy) =max{p(vx, vx),p(vy, vy)}.

Proof The existence of such points vx is assured by Lemmas . and . and completeness
if x ∈ X \ RT (X), and is self-evident if x ∈ RT (X).
To prove (), let x, y ∈ X be arbitrary and suppose that p(vx, vx) ≥ p(vy, vy). If p(vx, vy) = ,

then vx = vy (by (P) and (P)) and we are done. Thus assume that p(vx, vy) >  and let ε > 
be arbitrary such that ε(+α)

–α
< p(vx, vy). There is some m ∈ N such that for all i, j ≥ m

there holds

max
{∣∣p(Tiy,Tjy

)
– p(vy, vy)

∣∣, ∣∣p(vy,Tjy
)
– p(vy, vy)

∣∣} < ε,

max
{∣∣p(Tix,Tjx

)
– p(vx, vx)

∣∣, ∣∣p(vx,Tjx
)
– p(vx, vx)

∣∣} < ε.

For i, j ≥m we have

p
(
Tiy,Tjx

) ≤ p
(
Tiy, vy

)
– p(vy, vy) + p(vy, vx) – p(vx, vx) + p

(
vx,Tjx

)
< ε + p(vy, vx)

and, similarly,

p(vy, vx) ≤ p
(
vy,Tiy

)
– p

(
Tiy,Tiy

)
+ p

(
Tiy,Tjx

)
– p

(
Tjx,Tjx

)
+ p

(
Tjx, vx

)
< ε + p

(
Tiy,Tjx

)
.
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Fix any i ≥m and set i := n(Tix). By (.) there is some j ∈ {i, . . . , i + i} such that

p(vy, vx) – ε

< p
(
Ti+ix,Ti+iy

)
≤max

{
αp

(
Tix,Tjy

)
,αp

(
Tix,Ti+ix

)
,p

(
Tix,Tix

)
,p

(
Ti+i–y,Ti+i–y

)}
≤max

{
α
[
ε + p(vy, vx)

]
,α

[
p(vx, vx) + ε

]
,p(vx, vx) + ε,p(vy, vy) + ε

}
=max

{
α
[
ε + p(vy, vx)

]
,p(vx, vx) + ε

}
.

Now p(vy, vx) – ε < α[ε + p(vy, vx)] is just ε(+α)
–α

> p(vx, vy), which is false by our choice
of ε. This leaves us with the only other possibility: p(vy, vx)–ε < p(vx, vx)+ε, i.e., p(vy, vx) <
p(vx, vx) + ε.
From the preceding analysis it follows that p(vy, vx) ≤ p(vx, vx), which by (P) actually

means that p(vy, vx) = p(vx, vx) =max{p(vx, vx),p(vy, vy)}. �

Theorem . If T is a C-operator on a complete partial metric space (X,p), then there is
a fixed point z ∈ X of T such that p(z, z) = infx∈X p(vx, vx),where vx are as in Proposition ..

Proof For x ∈ X put rx := p(vx, vx) (this is consistent with the notation of Lemma .). Set
I := infx∈X rx. Form ≥  pick xm ∈ X such that for all i, j ≥  it holds

p
(
Tixm,Tjxm

) ∈ (I – /m, I + /m). (.)

(You can first pick x′
m ∈ X such that limi,j p(Tix′

m,Tjx′
m) = vx′

m ∈ [I, I + 
m ), then choose

k(m) ∈ N such that for all i, j ≥ k(m) there holds I – 
m < p(Tix′

m,Tjx′
m) < I + 

m and finally
put xm := Tk(m)x′

m.)
Notice that if i(m) and j(m) are nonnegative integers for m ∈ N, then we have

lim
m

p
(
Ti(m)xm,Tj(m)xm

)
= .

First we prove that limm,k p(xm,xk) = I .
Form,k ≥  let Cm,k >  be such that p(Tixm,Tjxk) < Cm,k holds for all i, j ≥ .
Fix m,k ≥  and let {sq}q∈N be the supporting sequence at xm. Let l ≥  be any integer

such that αlCk < 
k+m . We have

p(xm,xk) ≤ p
(
xm,Tslxm

)
– p

(
Tslxm,Tslxm

)
+ p

(
Tslxm,Tslxk

)
+ p

(
xk ,Tslxk

)
– p

(
Tslxk ,Tslxk

)
.

Now

δm,k := p
(
xm,Tslxm

)
– p

(
Tslxm,Tslxm

)
< /m

and

μm,k := p
(
xk ,Tslxk

)
– p

(
Tslxk ,Tslxk

)
< /k.
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First suppose that p(Tslxm,Tslxk) > p(Tixk ,Tixk) for all i ∈ {, . . . , sl}, and p(Tslxm,
Tslxk) > p(Tixm,Tjxm) for all i, j ∈ {, . . . , sl}. Then, by repeated use of (.), we obtain

p
(
Tslxm,Tslxk

) ≤ αp
(
Tsl–xm,Tixk

)
for some i ≥ sl–,

p
(
Tslxm,Tslxk

) ≤ αp
(
Tsl–xm,Tixk

)
for some i ≥ sl–,

and continuing in this manner finally

p
(
Tslxm,Tslxk

) ≤ αlp
(
xm,Tilxk

)
for some il ≥ .

Thus p(Tslxm,Tslxk) ≤ αlCm,k < 
k+m .

On the other hand, if p(Tslxm,Tslxk) ≤ p(Tixk ,Tixk) for some i ∈ {, . . . , sl}, or p(Tslxm,
Tslxk) ≤ p(Tixm,Tjxm) for some i, j ∈ {, . . . , sl}, then by (.) we must have p(Tslxm,
Tslxk) < I +max{ 

m ,

k }.

Therefore

p(xm,xk) ≤ δm,k +μm,k + p
(
Tslxm,Tslxk

)
< 

(

m

+

k

)
+ I +max

{

m
,

k

}
.

From the above considerations and from I – /m < p(xm,xm) ≤ p(xm,xk), it is now clear
that limm,k p(xm,xk) = I .
So by completeness there is some u ∈ X such that

I = lim
m,k

p(xm,xk) = lim
k
p(u,xk) = p(u,u). (.)

Let {sm}m≥ be the supporting sequence at u.
Let us show by induction on k that if f : N → N is such that f (m) ≥ sk , for all m ∈ N,

then

I = lim
m

p
(
Tsku,Tf (m)xm

)
= p(u,u). (.)

Suppose first that k = .

p(u,u) ≤ p
(
u,Tf (m)xm

) ≤ p(u,xm) + p
(
xm,Tf (m)xm

)
– p(xm,xm)

< p(u,xm) +

m
,

so the desired conclusion immediately follows. Now suppose that the assertion is true for
some k ≥ , take any f :N→ N such that f (m) ≥ sk+,m ≥ , and proceed as follows.
We have

p
(
Tsku,Tsku

) ≤ p
(
Tsku,Tf (m)xm

)
–p

(
Tf (m)xm,Tf (m)xm

) ≤ p
(
Tsku,Tf (m)xm

)
–I+


m

for allm ∈ N, so that taking the limit above asm approaches infinity and using (.) (which
is justified since f (m) ≥ sk+ > sk) it follows that p(Tsku,Tsku) ≤ I .
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Now for eachm ∈N, since f (m)–(sk+–sk) ≥ sk , theremust be some h(m) ∈ {sk , . . . , f (m)}
such that

p
(
Tsk+u,Tf (m)xm

) ≤ max
{
αp

(
Tsku,Th(m)xm

)
,p

(
Tsku,Tsku

)
,

p
(
Tf (m)–xm,Tf (m)–xm

)
,αp

(
Tsku,Tsk+u

)}
.

Using p(Tsku,Tsk+u) ≤ p(Tsku,Tf (m)xm) – p(Tf (m)xm,Tf (m)xm) + p(Tsk+u,Tf (m)xm), we
proceed to obtain

p
(
Tf (m)xm,Tf (m)xm

) ≤ p
(
Tsk+u,Tf (m)xm

) ≤max

{
αp

(
Tsku,Th(m)xm

)
, I, I +


m
,

α

 – α

[
p
(
Tsku,Tf (m)xm

)
– p

(
Tf (m)xm,Tf (m)xm

)]}
.

Now we have I – /m < p(Tf (m)xm,Tf (m)xm) < I + /m and also h(m) ≥ sk and f (m) ≥
sk+ > sk for all m ≥ . Hence, in view of the induction hypothesis, we finally arrive at
limm p(Tsk+u,Tf (m)xm) = I .
Using (.) it is straightforward to see that for all k,k ≥  there holds p(Tsku,Tsku) ≤

I = p(u,u): indeed this follows by lettingm ∈N tend to infinity in

p
(
Tsku,Tsku

) ≤ p
(
Tsku,Tsk xm

)
+ p

(
Tsku,Tsk xm

)
– p

(
Tsk xm,Tsk xm

)
.

Thus ru ≤ I . But by definition of I we must actually have I = ru.
We now claim that there are positive integers k < k such that

p
(
Tsku,Tsku

)
= p

(
Tsku,Tsku

)
= I.

Assume this is not the case. Then p(Tsku,Tsku) = I can hold for at most one k ∈ N. As
we have  ≤ p(Tsku,Tsku) ≤ I for all k ∈ N, our assumption implies in particular that
ru = I > . Thus we can take some ε >  such that ru – ε > α(ru + ε). The assumption also
allows us to find some m ∈ N such that for all k with sk ≥ m we have p(Tsku,Tsku) < I ,
and such that for all i, j ≥ m it holds p(Tiu,Tju) ∈ (ru – ε, ru + ε) (remember that ru =
p(vu, vu) = limi,j p(Tiu,Tju)).
Take any k with sk ≥m. Then L :=max{p(Tsku,Tsku),p(Tsk+u,Tsk+u)} < I = ry. There is

some positive ε < ε such that L < ru–ε. Let i be the smallest integer with i > sk+ such that
p(Tiu,Tiu) > ru – ε, and let m ∈ N be the greatest integer such that sm ≤ i. So m ≥ k + .
By (.) there is some j ≥ sm– such that

p
(
Tiu,Tiu

) ≤ p
(
Tsmu,Tiu

)
≤ max

{
αp

(
Tsm–u,Tju

)
,p

(
Tsm–u,Tsm–u

)
,p

(
Ti–u,Ti–u

)}
.

Clearly, we have sm– ≥ sk ≥ m and i –  ≥ sk+ ≥ m. The minimality of i and m
and the fact that L < ru – ε can now easily be used to deduce that p(Tiu,Tiu) >
max{p(Tsm–u,Tsm–u),p(Ti–u,Ti–u)}. Therefore ru – ε < ru – ε < p(Tiu,Tiu) ≤
αp(Tsm–u,Tju) ≤ α(ru + ε) and this cannot be true by the choice of ε.
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So we have proved that there are positive integers k < k such that p(Tsku,Tsku) =
p(Tsku,Tsku) = I . Since p(Tsku,Tsku) ≤ I , we must have Tsku = Tsku (by (P) and
(P)), i.e., Tsk–sk z = z for z := Tsku. As p(vz, vz) = limi p(vz,Tiz) = limi,j p(Tiz,Tjz) and
sk –sk ∈N, by Lemma. it followsTz = z. Of course limi,j p(Tiz,Tjz) = limi,j p(Tiu,Tju) =
ru = I = infx∈X p(vx, vx). �

Remark . To ensure uniqueness of the fixed point, we can strengthen condition (.) as
follows. Given a partial metric space (X,p), call T : X → X a C-operator if for each x ∈ X
there is some n(x) ∈N such that for each y ∈ X there holds

p
(
Tn(x)x,Tn(x)y

)
≤max

{
αp

(
x,Tjy

)
,αp

(
x,Tn(x)x

)
,
p(x,x) + p(Tn(x)–y,Tn(x)–y)



}
(.)

for some j ∈ {, , . . . ,n(x)}. Evidently, each C-operator is a C-operator as well so that if
(X,p) is complete, the conclusion of Theorem . holds. But now, in addition, if Ta = a and
Tb = b, then

p(a,b) = p
(
Tn(a)a,Tn(b)b

) ≤max

{
αp(a,b),αp(a,a),

p(a,a) + p(b,b)


}

so that either ( – α)p(a,b)≤  or ps(a,b) = p(a,b) – p(a,a) – p(b,b) = , meaning that in
any case we must have a = b.

Recall that a sequence xn in a partial metric space (X,p) is called -Cauchy with re-
spect to p (see, e.g., []) if limm,n p(xn,xm) = . We say that (X,p) is -complete if every
-Cauchy sequence in X ps-converges to some x ∈ X (for which we then necessarily must
have p(x,x) = ). Note that every -Cauchy sequence in (X,p) is Cauchy in (X,ps), and that
every complete partial metric space is -complete.

Remark . Recently a very interesting paper by Haghi, Rezapour and Shahzad []
showed up in which the authors associated to each partial metric space (X,p) a metric
space (X,d) by setting d(x,x) =  and d(x, y) = p(x, y) if x �= y, and proved that (X,p) is
-complete if and only if (X,d) is complete. They then proceeded to demonstrate how
using the associated metric d some of the fixed point results in partial metric spaces can
easily be deduced from the corresponding known results in metric spaces.
Let us point out that these considerations cannot apply to C-operators since the terms

p(x,x) and p(Tn(x)–y,Tn(x)–y) on the right-hand side of (.) are not multiplied by α. Thus
our Theorem . cannot follow from the result of Ćirić it generalizes.

If we completely neglect the role of self-distances in (.), we can easily verify that the
statement of Theorem . remains valid upon substituting the words ‘partial metric’ for
‘metric’ and ‘-complete’ for ‘complete’. We will prove this using the approach of Haghi,
Rezapour and Shahzad [] that will allow us to deduce Theorem . directly from Ćirić’s
result (Theorem .).

Theorem. If T is aC-operator on a -complete partial metric space (X,p), then there is
a unique fixed point z of T . Furthermore,we have p(z, z) =  and for each x ∈ X the sequence
{Tix}i≥ ps-converges to z.
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Proof Let d be defined as in Remark .. So (X,d) is a completemetric space (see Proposi-
tion . of []). Observe that we have d(x, y)≤ p(x, y) for all x, y ∈ X. For x ∈ X let n(x) ∈N

be as in (.), and for x, y ∈ X set

S(x, y) =
{
y,Ty,Ty, . . . ,Tn(x)y,Tn(x)x

}
and Mp =max{p(x, z) | z ∈ S(x, y)}, Md =max{d(x, z) | z ∈ S(x, y)}. We thus have that

p
(
Tn(x)x,Tn(x)y

) ≤ αMp(x, y)

for all x, y ∈ X. We check that for all x, y ∈ X it holds that d(Tn(x)x,Tn(x)y) ≤ αMd(x, y), so
that Theorem . can immediately be applied.
Case . There is some z ∈ S(x, y) such that x �= z and Mp(x, y) = p(x, z). Here we have

d
(
Tn(x)x,Tn(x)y

) ≤ p
(
Tn(x)x,Tn(x)y

) ≤ αMp(x, y) = αp(x, z) = αd(x, z)≤ αMd(x, y).

Case . For all z ∈ S(x, y) we have that Mp(x, y) = p(x, z) ⇒ x = z. So it must be
Mp(x, y) = p(x,x), in particular, and hence p(x,Tn(x)x) ≤ Mp(x, y) = p(x,x) ≤ p(x,Tn(x)x),
i.e., Mp(x, y) = p(x,Tn(x)x). But by our assumption it now follows that x = Tn(x)x. Similarly,
from p(x,Tn(x)y) ≤ Mp(x, y) = p(x,x) ≤ p(x,Tn(x)y), we obtain Mp(x, y) = p(x,Tn(x)y) and
consequently x = Tn(x)y. Now d(Tn(x)x,Tn(x)y) = d(x,x) =  ≤ αMd(x, y). �

Remark . It should be pointed out, however, that even though the results of Haghi et
al. can deduce the same fixed point as the corresponding partial metric fixed point result,
using the partial metric version computers evaluate faster since many nonsense terms are
omitted. This is very important from the aspect of computer science due to its cost and
explains the vast body of partial metric fixed point results found in literature.

Given a C-operator and a point x, one may ask what the minimal value of n(x) is for
which inequality (.) holds true. In the following example, for an arbitrary positive integer
m, we construct a C-operator on a complete partial metric space (X,p) such that for some
x ∈ X it must be n(x) >m.

Example . Denote by X∞ the set of all sequences x :N →N and for n ∈N by Xn the set
of all n-tuples x : {, . . . ,n} → N of positive integers. Put X := X∞ ∪ ⋃

n∈NXn. For x, y ∈ X
set

I(x, y) =
{
i ∈N∪ {} | [j ∈ dom(x)∩ dom(y)∧ j ≤ i

] ⇒ x(j) = y(j)
}

and define p(x, y) := inf{ 
i | i ∈ I(x, y)} (thus if x() �= y(), then I(x, y) = {} and p(x, y) = ).

Here ‘dom(x)’ stands for the domain of the function x. Then (X,p) is a partial metric space
(see []) and a complete one as can easily be verified.
Fix l ∈N and define T : X → X as follows. For x ∈ X let Ix = {i ∈N | x(i) �= i}.
If Ix = ∅, then set Tx = x. If Ix �= ∅, then define Tx = y by x ∈ Xn ⇔ y ∈ Xn, x ∈ X∞ ⇔ y ∈

X∞ and the following two conditions:
– if Ix is finite and has at most l elements, then y(i) = i if i =max Ix, and y(i) = x(i) else;
– if Ix is either infinite or finite with more than l elements, then y(i) = i if i =min Ix, and
y(i) = x(i) else.
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Let us show that T is a C-operator with n(x) = l for all x ∈ N. Before we proceed,
observe that if k is a nonnegative integer such that k +  ∈ dom(x) and x(i) = i for ≤ i≤ k,
then for y = Tlx we must have y(i) = i for all  ≤ i ≤ k + .
Case . There is a nonnegative integer i with i +  ∈ dom(x)∩ dom(y) such that x(i + ) �=

i + ∨ y(i + ) �= i + . Denote by k the least such nonnegative integer.
If x(k + ) �= y(k + ), then p(Tlx,Tly) ≤ 

k+ =




k =


p(x, y).

If x(k + ) = y(k + ), then since x(k + ) �= k +  ∨ y(i + ) �= i +  we must actually have
x(k + ) = y(k + ) �= k +  and thus p(x,Tlx) = 

k . Hence p(Tlx,Tly) ≤ 
k+ =


p(x,T

lx).
Case . x = (, , . . . ,k) for some k ∈N and x ⊆ y. Here p(Tlx,Tly) = 

k = p(x,x).
Case . y = (, , . . . ,k) for some k ∈ N and y ⊆ x. Here p(Tlx,Tly) = 

k = p(y, y) =
p(Tl–y,Tl–y).
Condition (.) fails because the fixed point is not unique. So T is not a C-operator,

hence not a C-operator either.
Now suppose that l < l is an arbitrary positive integer and take x, y ∈ N

l+ such that
x(i) =  for all  ≤ i≤ l + , and y() = , y(i) =  for all  ≤ i≤ l + .
We have p(Tlx,Tly) =  = p(x,Tjy), for  ≤ j ≤ l, p(x,Tlx) = 

 and p(Tl–y,Tl–y) =
p(x,x) = 

l+
. So we see that for this particular choice of x and y, substituting l for n(x) in

(.) makes the inequality false.
Let us use this very example to illustrate Proposition .. Let t ∈ X∞ be defined by t(i) = i

for all i ∈N. For n ∈N let tn ∈ Xn be defined by tn(i) = i for i = ,n.
If x ∈ X∞, we clearly have vx = t. Similarly, if x ∈ Xn, then vx = tn. So p(t, tn) = 

n =
max{p(tn, tn),p(t, t)} because p(tn, tn) = 

n and p(t, t) = . Also

p(tm, tn) =

{

n = p(tn, tn) if n≤m,

m = p(tm, tm) ifm ≤ n,

thus p(tm, tn) =max{p(tn, tn),p(tm, tm)}.

Remark . It should be noted that if in Theorem . we require n(x) to be equal to 
for all x ∈ X, then Theorem . is obtained as a corollary. On the other hand, as already
pointed out, if in Theorem . p is a complete (ordinary) metric on X, then the result of
Ćirić (Theorem .) is recovered.
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28. Ćirić, L, Samet, B, Aydi, H, Vetro, C: Common fixed points of generalized contractions on partial metric spaces and an

application. Appl. Math. Comput. 218, 2398-2406 (2011)
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1594-1600 (2012)

http://www.fixedpointtheoryandapplications.com/content/2013/1/335
http://dx.doi.org/10.1016/j.aml.2011.05.014
http://dx.doi.org/10.1155/2011/508730
http://dx.doi.org/10.1016/j.mcm.2011.09.005
http://dx.doi.org/10.1007/s13398-012-0066-6
http://dx.doi.org/10.1186/1687-1812-2011-4
http://dx.doi.org/10.1016/j.aml.2011.05.013
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