
Tinh and Kim Fixed Point Theory and Applications 2013, 2013:328
http://www.fixedpointtheoryandapplications.com/content/2013/1/328

RESEARCH Open Access

On generalized Fenchel-Moreau theorem and
second-order characterization for convex
vector functions
Phan Nhat Tinh1 and Do Sang Kim2*

Dedicated to Professor Wataru Takahashi on the occasion of his 70th birthday

*Correspondence:
dskim@pknu.ac.kr
2Department of Applied
Mathematics, Pukyong National
University, Busan, Korea
Full list of author information is
available at the end of the article

Abstract
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1 Introduction
Convex functions play an important role in nonlinear analysis, especially in optimization
theory since they guarantee several useful properties concerning extremum points. Con-
sequently, characterizations of the class of these functions, first-order as well as second-
order, have been studied intensively. We also know that in convex analysis the theory of
Fenchel conjugation plays a central role and the Fenchel-Moreau theorem concerning bi-
conjugate functions plays a key role in the duality theory.
In the vector case, there are also many efforts focussing on these topics (see [–]).

However, the results are still far from the repletion. Themain difficulty for onesworking on
the vector setting is the non-completion of the order under consideration. Hence several
generalizations are not complete.
The first purpose of the paper is to generalize the Fenchel-Moreau theorem to the vector

case. Based on the concepts of supremumand conjugate and biconjugatemaps introduced
in [], we obtain a full generalization of the theorem. Secondly, by using the Clarke gener-
alized first-order derivative for locally Lipschitz vector functions, we establish a first-order
characterization for monotone operators. Consequently, a second-order characterization
for convex vector functions is obtained.
The paper is organized as follows. In the next section, we present some preliminaries on

a cone order in finitely dimensional spaces and on convex vector functions. Section  is
devoted to a generalization of the Fenchel-Moreau theorem. The last section deals with a
second-order characterization of convex vector functions.
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2 Preliminaries
Let C ⊆Rm be a nonempty set.We recall thatC is said to be a cone if tx ∈ C, ∀x ∈ C, t ≥ .
A cone C is said to be pointed if C ∩ (–C) = {}. A convex cone C ⊆Rm specifies on Rm a
partial order defined by

∀x, y ∈Rm, x�C y ⇔ y – x ∈ C.

When intC 	= ∅, we shall write x �C y if y – x ∈ intC. From now on we assume that Rm is
ordered by a convex cone C.

Definition . [, Definition .] Let A ⊆ Rm be a nonempty set, and let a ∈ A. We say
that

(i) a is an ideal efficient (or ideal minimum) point of A with respect to C if

a � x, ∀x ∈ A.

The set of ideal efficient points of A is denoted by IMin(A|C).
(ii) a is an efficient (or Pareto minimum) point of A with respect to C if

∀x ∈ A, x � a ⇒ a� x.

The set of efficient points of A is denoted byMin(A|C).

Remark. WhenC is pointed and IMin(A|C) is nonempty, then IMin(A|C) is a singleton
and Min(A|C) = IMin(A|C). The concepts of Max and IMax are defined analogously. It is
clear that –MinA =Max(–A).

Definition . [] Let A ⊆ Rm be a nonempty set, and let b ∈ Rm. We say that b is an
upper bound of A with respect to C if

x � b, ∀x ∈ A.

The set of upper bounds of A is denoted by Ub(A|C).

When Ub(A|C) 	= ∅, we say that A is bounded from above. The concept of lower bound
is defined analogously. The set of lower bounds of A is denoted by Lb(A|C).

Definition . [, Definition .] Let A⊆Rm be a nonempty set, and let b ∈Rm. We say
that

(i) b is an ideal supremal point of A with respect to C if b ∈ IMin(UbA|C), i.e.,
⎧⎨
⎩x � b, ∀x ∈ A,

b � y, ∀y ∈ Ub(A|C).

The set of ideal supremal points of A is denoted by ISup(A|C).
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(ii) b is a supremal point of A with respect to C if b ∈ Min(UbA|C), i.e.,
⎧⎨
⎩x � b, ∀x ∈ A,

∀y ∈Ub(A|C), y� b ⇒ b � y.

The set of supremal points of A is denoted by Sup(A|C).

Remark . If ISupA 	= ∅, then ISupA = SupA. In addition, if the ordering cone C is
pointed, then ISupA is a singleton.

In the sequel, when there is no risk of confusion, we omit the phrase ‘with respect to C’
and the symbol ‘|C ’ in the definitions above. We list here some properties of supremum
which will be needed in the sequel.

Lemma . Assume that the ordering cone C ⊆Rm is closed, convex and pointed.
(i) [, Corollary .] Let A⊆Rm be nonempty. If UbA∩ coA 	= ∅, then

UbA∩ coA = ISupA

(where coA denotes the closure of the convex hull of A).
(ii) [, Corollary .] Let S ⊆ R be nonempty and bounded from above. Then, for

every c ∈ C, we have

ISup(Sc) = (supS)c

(where Sc := {tc : t ∈ S}).
(iii) [, Theorem ., Remark .] Let A⊆Rm be nonempty. Then SupA 	= ∅ if and

only if A is bounded from above. In this case, we have

UbA = SupA +C.

(iv) [, Proposition .] Let A,B ⊆Rm be nonempty. Then
(a) If A ⊆ B, then SupB ⊆ SupA +C;
(b) SupA + SupB ⊆ Sup(A + B) +C. If, in addition, ISupA∪ ISupB 	= ∅, then

SupA + SupB = Sup(A + B).

Now let f be a vector function from a nonempty set D ⊆Rn to Rm, and let S ⊆D, x ∈ S.
We say that f is continuous relative to S at x if for every neighborhood W of f (x), there
exists a neighborhood V of x such that

x′ ∈ V ∩ S ⇒ f
(
x′) ∈W .

f is called continuous relative to S if it is continuous relative to S at every x ∈ S. The epi-
graph of f (with respect to the ordering cone C) is defined as the set

epi f :=
{
(x, y) ∈D×Rm : f (x)� y

}
.
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f is called closed (with respect to C) if epi f is closed inRn ×Rm. Now assume thatD ⊆Rn

is nonempty and convex.We recall that f :D→Rm is said to be convex (with respect toC)
if for every x, y ∈D, λ ∈ [, ],

f
(
λx + ( – λ)y

) � λf (x) + ( – λ)f (y).

Subdifferential of f at x ∈D is defined as the set

∂f (x) :=
{
A ∈L

(
Rn,Rm)

: A(y – x) � f (y) – f (x) (∀y ∈D)
}
.

Convex vector functions have several nice properties as scalar convex functions (see, [,
, ]). We recall some results which will be used in the sequel.

Lemma . [, Theorem .] Assume that the ordering cone C ⊆ Rm is closed, convex
and pointed. Let f be a convex vector function from a nonempty convex set D ⊆ Rn to Rm.
Then ∂f (x) 	= ∅ for every x ∈ riD.

From [, Theorem .] we immediately have the following lemma.

Lemma . Assume that the ordering cone C ⊆ Rm is closed, convex and pointed with
intC 	= ∅. Let f be a closed convex vector function from a nonempty convex set D ⊆ Rn

to Rm, and let x, y ∈ D be arbitrary. Then f is continuous relative to [x, y] (where [x, y] :=
{tx + ( – t)y : t ∈ [, ]}).

3 Generalized Fenchel-Moreau theorem
Let F be a set-valued map from a finitely dimensional normed space X to Rm. We recall
that the epigraph of F with respect to C is defined as the set

epiF :=
{
(x, y) ∈ X ×Rm : y ∈ F(x) +C

}
.

The effective domain of F is the set

domF :=
{
x ∈ X : F(x) 	= ∅}

.

F is called convex (resp., closed) with respect to C if epiF is convex (resp., closed) in
X ×Rm. Sometimes a vector function f : D ⊆ Rn → Rm is identified with the set-valued
map

F(x) :=

⎧⎨
⎩{f (x)}, x ∈D,

∅, x /∈D.

Definition . [, Definition .] Assume that domF 	= ∅. The conjugate map of F , de-
noted by F∗, is a set-valued map from L(X,Rm) to Rm defined as follows.

F∗(A) := Sup
⋃
x∈X

[
A(x) – F(x)

]
, ∀A ∈L

(
X,Rm)

,

where L(X,Rm) denotes the space of continuous linear maps from X to Rm.
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Definition . [, Definition .] Let F be a set-valuedmap fromRn toRm. Assume that
domF∗ 	= ∅. The biconjugate map of F , denoted by F∗∗, is a set-valued map from Rn to Rm

defined as follows.

F∗∗(x) := Sup
⋃

A∈L(Rn ,Rm)

[
A(x) – F∗(A)

]
, ∀x ∈Rn.

Remark . Let F be a set-valued map from Rn to Rm with domF∗ 	= ∅. By identifying
x ∈Rn with the linear map x̄ :L(Rn,Rm) →Rm defined as follows:

x̄(A) := A(x), ∀A ∈L
(
Rn,Rm)

,

we see that F∗∗ is the restriction of (F∗)∗ on Rn, i.e.,

F∗∗ =
(
F∗)∗|Rn .

In the rest of this section, we assume that the ordering cone C ⊆ Rm is closed, convex,
pointed and intC 	= ∅.

Lemma. [, Proposition .] Let F be a set-valuedmap fromRn toRm with domF 	= ∅.
Then

(i) F∗ is closed and convex.
(ii) If domF∗ 	= ∅, then F(x)⊆ F∗∗(x) +C, ∀x ∈Rn.

Lemma . Let F be a set-valued map from Rn to Rm with domF∗ 	= ∅. Then F∗∗ is closed
and convex.

Proof It is immediate from Remark . and Lemma .. �

Lemma. [, Proposition .] Let f be a convex vector function fromanonempty convex
set D⊆ Rn to Rm, and let x ∈D, A ∈L(Rn,Rm). Then A ∈ ∂f (x) if and only if

f ∗(A) = A(x) – f (x).

Lemma . Let f be a convex vector function from a nonempty convex set D ⊆ Rn to Rm.
Then

D ⊆ dom f ∗∗ ⊆D.

Proof Let x ∈ riD be arbitrary. By Lemma ., ∂f (x) 	= ∅. Then, by Lemma ., ∂f (x) ⊆
dom f ∗. Consequently, dom f ∗ 	= ∅. Then, by Lemma ., D ⊆ dom f ∗∗. Now, suppose on
the contrary that dom f ∗∗ � D. Then there is x ∈ dom f ∗∗ such that x /∈ D. Using the
strong separation theorem, one can find ξ ∈L(Rn,R) \ {} so that

ξ (x) > sup
x∈D

ξ (x). ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/328


Tinh and Kim Fixed Point Theory and Applications 2013, 2013:328 Page 6 of 12
http://www.fixedpointtheoryandapplications.com/content/2013/1/328

Pick any y ∈ riD and A ∈ ∂f (y). By Lemma ., f ∗(A) is a singleton. For each c ∈ C, we
define a linear map βc :R →Rm as follows:

βc(t) = tc (∀t ∈R).

By () and by Lemma .(ii),

ISup
⋃
x∈D

{
(βcξ )(x)

}
=

(
sup
x∈D

ξ (x)
)
c.

Then we have

f ∗(A) +
(
sup
x∈D

ξ (x)
)
c = f ∗(A) + ISup

⋃
x∈D

{
(βcξ )(x)

}

= Sup
⋃
x∈D

{
A(x) – f (x)

}
+ ISup

⋃
x∈D

(βcξ )(x)

= Sup

(⋃
x∈D

{
A(x) – f (x)

}
+

⋃
x∈D

{
(βcξ )(x)

})

(by Lemma .(iv))

⊆ Sup
⋃
x∈D

{
A(x) – f (x) + (βcξ )(x)

}
+C

(by Lemma .(iv))

= f ∗(A + βcξ ) +C.

Then there exists yc ∈ f ∗(A + βcξ ) such that

f ∗(A) +
(
sup
x∈D

ξ (x)
)
c� yc.

Let z ∈ f ∗∗(x) be arbitrary. From the definition of f ∗∗, one has

z � (A + βcξ )(x) – yc

� [
A(x) – f ∗(A)

]
+

[
ξ (x) – sup

x∈D
ξ (x)

]
.c (∀c ∈ C).

By (), this is impossible since C 	= {} and pointed. Thus, dom f ∗∗ ⊆D. The proof is com-
plete.

�

Let x,x ∈Rn, {xk}k ⊆ [x,x]. Then we write ‘xk ↑ x’ if
⎧⎨
⎩xk → x,

‖xk+ – x‖ ≥ ‖xk – x‖ (∀k).

Lemma . [, Lemma .] Let f be a convex function from a nonempty convex set D ⊆
Rn to Rm, and let x ∈D. If there exists x ∈ riD such that

f (x) = lim
t↑ f

(
tx + ( – t)x

)
,

http://www.fixedpointtheoryandapplications.com/content/2013/1/328
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then for every sequence {(Ak ,xk)}k ⊆ L(Rn,Rm)× [x,x] such that xk ↑ x and Ak ∈ ∂f (xk),
we have

lim
k→∞

Ak(x – xk) = .

Although biconjugate maps of vector functions have a set-valued structure, under cer-
tain conditions, they reduce to single-valued maps. Such conditions are the convexity and
closedness of the functions. Moreover, we have the following theorem.

Theorem . (Generalized Fenchel-Moreau theorem) Let f be a vector function from a
nonempty convex set D ⊆Rn to Rm. Then f is closed and convex if and only if

f = f ∗∗.

Proof ⇒: Let x ∈ D be arbitrary. Pick a point x ∈ riD. By Lemma ., f is continuous
relative to [x,x]. Hence

f (x) = lim
t↑ f

(
tx + ( – t)x

)
. ()

Let {λk}k ⊆ (, ) be an increasing sequence that converges to . Put xk = λkx + ( – λk)x.
Then {xk}k ⊆ riD ∩ [x,x] and xk ↑ x. By Lemma ., ∂f (xk) 	= ∅. For each k, pick Ak ∈
∂f (xk). By Lemma ., f (xk) = Ak(xk) – f ∗(Ak). Hence,

∥∥f (x) – [
Ak(x) – f ∗(Ak)

]∥∥ =
∥∥f (x) – [

Ak(xk) – f ∗(Ak)
]
+

[
Ak(xk) –Ak(x)

]∥∥
≤ ∥∥f (x) – f (xk)

∥∥ +
∥∥Ak(xk – x)

∥∥. ()

Take k → ∞ in (), by () and by Lemma ., we have

∥∥f (x) – [
Ak(x) – f ∗(Ak)

]∥∥ → ,

which together with Lemma .(ii) implies

f (x) ∈Ub

( ⋃
A∈L(Rn ,Rm)

[
A(x) – f ∗(A)

]) ∩ cl

(
co

( ⋃
A∈L(Rn ,Rm)

[
A(x) – f ∗(A)

]))
.

Hence, by Lemma .(i), Remark . and by the definition of biconjugate maps, we have

f (x) = ISup
⋃

A∈L(Rn ,Rm)

[
A(x) – f ∗(A)

]
= f ∗∗(x). ()

Finally, we shall show that

dom f ∗∗ =D.

Indeed, by the proof above, we have dom f ∗∗ ⊇ D. Let x ∈ dom f ∗∗ be arbitrary. By
Lemma ., x ∈D. Let y ∈ f ∗∗(x) and x ∈ riD. Then (x, f (x)), (x, y) ∈ epi f ∗∗. For every

http://www.fixedpointtheoryandapplications.com/content/2013/1/328
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natural number k ≥ , put

xk =

k
x +

(
 –


k

)
x,

yk =

k
f (x) +

(
 –


k

)
y.

Obviously, (xk , yk) → (x, y) and (xk , yk) ∈ epi f ∗∗, ∀k, since f ∗∗ is convex. By (), f (xk) =
f ∗∗(xk) since xk ∈ D. Hence, (xk , yk) ∈ epi f (∀k). This fact together with closedness of f
implies

(x, y) ∈ epi f .

Hence x ∈ D. Thus, dom f ∗∗ =D and then f = f ∗∗.
⇐: It is immediate from Lemma .. The theorem is proved. �

Whenm =  andC =R+, Theorem . is the famous Fenchel-Moreau theorem in convex
analysis.

4 Second-order characterization of convex vector functions
Let X,Y be real finitely dimensional normed spaces. We denote by L(X,Y ) the space of
continuous linear maps from X to Y . In L(X,Y ) we equip the norm defined by

‖A‖ := sup
{∥∥A(x)∥∥ : ‖x‖ ≤ 

}
, ∀A ∈L(X,Y ).

Let D ⊆ X be a nonempty open set, x ∈D, and let f :D → Y be a vector function.

Definition . [] Assume that f is locally Lipschitz. The Clarke generalized derivative
of f at x is defined as

∂f (x) := co
{
lim
k→∞

Df (xk) : xk ∈D,xk → x,Df (xk) exists
}
,

where Df (xk) denotes the derivative of f at xk .

The following definition is suggested by [, Definition .].

Definition . Assume that f is a vector function of class C,. The Clarke generalized
second-order derivative of f at x is defined as

∂f (x) := co
{
lim
k→∞

Df (xk) : xk ∈D,xk → x,Df (xk) exists
}
,

where Df (xk) denotes the second-order derivative of f at x.

In the remainder of this section, we assume that the ordering cone C ⊆Rm is closed and
convex.

Definition . Let D ⊆ Rn be a nonempty set, and let a map F : D → L(Rn,Rm). We say
that F is monotone with respect to C if

F(x)(y – x) + F(y)(x – y) � , ∀x, y ∈D.

http://www.fixedpointtheoryandapplications.com/content/2013/1/328
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Whenm =  and C =R+, Definition . collapses to the classical concept of monotonic-
ity.
Now assume that D ⊆ Rn is a nonempty, convex and open set. Let F : D → L(Rn,Rm)

be a locally Lipschitz map, x ∈ D, y ∈ Rn. We denote by I the largest open line segment
satisfying x + ty ∈D, ∀t ∈ I . Define

�(t) := F(x + ty)(y), t ∈ I.

Set

∂�(t)(ε) :=
{
l(ε) : l ∈ ∂�(t)

}
,

M(y, y) :=
[
M(y)

]
(y), ∀M ∈L

(
Rn,L

(
Rn,Rm))

, y ∈Rn,

∂F(x + ty)(y, y) :=
{
M(y, y) :M ∈ ∂F(x + ty)

}
.

We have the following lemma.

Lemma . ∂�(t)(ε) ⊆ ε∂F(x + ty)(y, y), ∀t ∈ I , ε ∈R.

Proof Observe that � = ϕ ◦ F ◦ ψ , where

ψ : t �→ x + ty, ϕ : A ∈ L
(
Rn,Rm) �→ A(y).

Since ϕ is linear and ψ is affine, we have

∂ψ(t)(ε) =Dψ(t)(ε) = εy, ∀t ∈ I, ε ∈R

∂ϕ(A)(M) =Dϕ(A)(M) = ϕ(M) =M(y), ∀A,M ∈L
(
Rn,Rm)

.

Then, applying a chain rule in [, Corollary ..], one obtains

∂�(t)(ε) = ∂
(
(ϕ ◦ F) ◦ ψ

)
(t)(ε)

⊆ co
{
∂(ϕ ◦ F)(ψ(t)

)
∂ψ(t)

}
(ε)

= co
{
∂(ϕ ◦ F)(ψ(t)

)}
(εy)

= co
{
Dϕ

(
F(x + ty)

)
∂F(x + ty)

}
(εy)

= Dϕ
(
F(x + ty)

)
∂F(x + ty)(εy)

(
since ∂F(x + ty) is convex

)
= ε∂F(x + ty)(y, y). �

Theorem . Let D⊆Rn be a nonempty, convex and open set, and let F :D →L(Rn,Rm)
be a locally Lipschitz map. Then the following statements are equivalent:

(i) F is monotone with respect to C.
(ii) For every x ∈D at which F is differentiable,

DF(x)(u,u) ∈ C, ∀u ∈Rn.

http://www.fixedpointtheoryandapplications.com/content/2013/1/328
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(iii) For every x ∈D, A ∈ ∂F(x),

A(u,u) ∈ C, ∀u ∈Rn.

Proof (i) ⇒ (ii) Let x ∈D at which F is differentiable, and let u ∈Rn be arbitrary. Let {tk}k
be a positive sequence converging to . Since F is monotone with respect to C, we have

(F(x + tku) – F(x))
tk

(u) =

tk

(
F(x + tku) – F(x)

)
(x + tku – x) ∈ C, ∀k.

Taking k → ∞, since C is closed, we obtain DF(x)(u,u) ∈ C.
(ii)⇒ (iii) Let x ∈ D, A ∈ ∂F(x) and u ∈ Rn be arbitrary. By the definition of the Clark

generalized derivative, we can represent A in the form

A =
k∑
i=

λiAi, ()

where λi ≥ ,
∑k

i= λi =  and Ai = limj→∞ DF(xij) with xij → x (j → ∞), and there exists
DF(xij) for every i = , . . . ,k; j = , , . . . . Since DF(xij)(u,u) ∈ C and C is closed, passing to
the limit, we have Ai(u,u) ∈ C, ∀i = , . . . ,k. By () and by the convexity of C, we obtain
A(u,u) ∈ C.
(iii) ⇒ (i) Let x, y ∈D be arbitrary. Consider the function

�(t) = F
(
x + t(y – x)

)
(y – x).

Then � is locally Lipschitz on an open line segment I which contains [, ]. Hence � is
Lipschitz on any compact line segment [a,b] with

[, ]⊆ (a,b)⊆ [a,b]⊆ I.

By the mean value theorem, for a vector function [, Proposition ..], there exist
τ, . . . , τk ∈ [, ], λ, . . . ,λk ≥ , λ + · · · + λk =  such that

�() –�() ∈
k∑
i=

λi∂�(τi)().

Hence

(
F(y) – F(x)

)
(y – x) = �() –�()

∈
k∑
i=

λi∂�(τi)()

⊆
k∑
i=

λi∂F
(
x + τi(y – x)

)
(y – x, y – x)

(by Lemma .)

⊆ C.

Thus F is monotone. The proof is complete. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/328
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We note that Theorem . generalizes the corresponding result of Luc and Schaible in
[] in whichm =  and C =R+.

Theorem. Let D ⊆Rn be a nonempty convex and open set, and let f :D→ Rm be a C,

vector function. Then f is convex with respect to C if and only if for every x ∈D, A ∈ ∂f (x),
u ∈ Rn,

A(u,u) ∈ C.

Proof We have

f is convex with respect to C ⇔ Df is monotone with respect to C

(by [, Theorem .])

⇔ A(u,u) ∈ C, ∀x ∈D,A ∈ ∂f (x),u ∈Rn

(by Theorem .).
�

Specially, we have the following.

Corollary . [, Theorem .] Let D ⊆ Rn be a nonempty convex and open set, and let
f : D → Rm be a twice continuously differentiable function. Then f is convex with respect
to C if and only if

Df (x)(u,u) ∈ C, ∀x ∈D,u ∈Rn.

Proof Since continuously differentiable functions are locally Lipschitz, repeating argu-
ments in the proof of the above theorem, we obtain the result. �

We note that when m = , C = R+, Corollary . collapses to the classical result on the
second-order characterization of convex functions.

Example . Let R be ordered by the cone C = con(co{(, , ), (,–,–), (, , )}). Let
f : R → R be defined by f (x,x) := ( x


 + x – x, – 

x

 – x + x, x


 + x – 

x

). By

computing we have

Df (x) =

((
 
 

)
,

(
 
 –

)
,

(
 
 –

))
, ∀x ∈R.

Then

Df (x)(y, y) =
(
y , –y


, y


 – y

)
= y (, , ) + y(,–,–)

∈ C, ∀x, y ∈R.

Hence f is convex with respect to C by Corollary ..
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