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Abstract
Based on level sets of fuzzy sets, we propose definitions of limits of sequences of
fuzzy sets, and limits and derivatives of fuzzy set-valued mappings. Then, their
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means ‘non-fuzzy’.
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1 Introduction and preliminaries
The usefulness and importance of limits of sequences of crisp sets, and limits (continuity)
and derivatives of crisp set-valued mappings have been recognized in many areas, for ex-
ample, variational analysis, set-valued optimization, stability theory, sensitivity analysis,
etc. For details, see, for example, [–]. The concept of limits of sequences of crisp sets is
interesting and important for itself, and it is necessary to introduce the concepts of limits
and derivatives of crisp set-valued mappings. Typical and important applications of them
are (i) set-valued optimization and (ii) stability theory and sensitivity analysis for mathe-
maticalmodels. For the case (ii), consider the following system. Somemathematicalmodel
outputs the set of optimal valuesW ∗(u) ⊂R� and the set of optimal solutions S∗(u) ⊂Rn

for a given input parameter u ∈ Rm. Then W ∗ and S∗ are crisp set-valued mappings. Sta-
bility theory deals with the continuity of W ∗ and S∗. Sensitivity analysis deals with the
derivative ofW ∗.
In this article, limits of sequences of fuzzy sets, and limits and derivatives of fuzzy set-

valued mappings are considered. They are generalizations of them for crisp sets. The aim
of this article is to propose those concepts and to investigate their properties systemati-
cally.
Some research works deal with limits of sequences of fuzzy numbers or fuzzy sets with

bounded supports [–], while few research works deal with limits of sequences of fuzzy
sets. In addition, some researchworks deal with limits (continuity) and derivatives of fuzzy
number or fuzzy set with bounded support-valuedmappings [, , ], while few research
works deal with limits (continuity) and derivatives of fuzzy set-valued mappings. Further-
more, their approaches need some assumptions that level sets of fuzzy sets are nonempty
and compact.Our new approach in this article, however, does not need those assumptions.
Limits of sequences of fuzzy sets, and limits and derivatives of fuzzy set-valued mappings
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can be expected to be useful and important for (i) fuzzy set-valued optimization, (ii) sta-
bility theory and sensitivity analysis for fuzzy mathematical models, etc. For the case (ii),
consider the following system. Some fuzzy mathematical model outputs the fuzzy set of
optimal values onR�, W̃ ∗(u), and the set of optimal solutions S∗(u) ⊂Rn for a given input
parameter u ∈ Rm. Then W̃ ∗ is a fuzzy set-valued mapping, and S∗ is a crisp set-valued
mapping. Then we will be able to deal with the continuity of W̃ ∗ and S∗, and the derivative
of W̃ ∗. This means that our proposing approaches give useful tools for stability theory and
sensitivity analysis in fuzzy set theory.
We use the following notations.
For a,b ∈ R ∪ {–∞,∞}, we set [a,b] = {x ∈ R : a ≤ x ≤ b}, [a,b[ = {x ∈ R : a ≤ x < b},

]a,b] = {x ∈R : a < x≤ b}, and ]a,b[ = {x ∈R : a < x < b}.
For aλ ∈ [, ], λ ∈ �, we define

∧
λ∈� aλ = infλ∈� aλ and

∨
λ∈� aλ = supλ∈� aλ, where∧

λ∈� aλ = infλ∈� aλ =  and
∨

λ∈� aλ = supλ∈� aλ =  if � = ∅.
Let N be the set of all natural numbers, and we set

N∞ = {N ⊂N :N \N is finite}
= {subsequences of N containing all k beyond some k},

N �
∞ = {N ⊂N :N is infinite} = {all subsequences of N}.

A subsequence of a sequence {xk}k∈N is represented as {xk}k∈N for some N ∈ N �∞. We
write limk , limk→∞, or limk∈N when k → ∞ in N, but limk∈N or limk→

N
∞ in the case of the

convergence of {xk}k∈N for some N inN �∞ orN∞.
For a set C ⊂Rn, let cl(C) be the closure of C.
Let C(Rn), K(Rn), and CK(Rn) be sets of all closed, convex, and closed convex subsets

of Rn, respectively.

1.1 Limits of sequences of sets
First, we slightly review the definitions of limits of sequences of sets and their properties.

Definition . (Definition . in []) For a sequence {Ck}k∈N of subsets of Rn, its lower
limit is defined as the set

lim inf
k→∞

Ck =
{
x ∈ Rn : ∃N ∈N∞,∃xk ∈ Ck (k ∈ N) with xk →

N
x
}
,

and its upper limit is defined as the set

lim sup
k→∞

Ck =
{
x ∈Rn : ∃N ∈N �

∞,∃xk ∈ Ck (k ∈N) with xk →
N
x
}
.

The limit of {Ck}k∈N is said to exist if lim infk→∞ Ck = lim supk→∞ Ck , and its limit is defined
as the set

lim
k→∞

Ck = lim sup
k→∞

Ck = lim inf
k→∞

Ck .

Example . For a,b, c,d ∈Rwith a < b < c < d, setA = [a, c] andB = [b,d]. For each k ∈N,
letCk = A if k is odd, and letCk = B if k is even. In this case, we have lim infk→∞ Ck = A∩B =
[b, c] and lim supk→∞ Ck = A∪ B = [a,d].
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Proposition . (Exercise .(b) in []) For a sequence {Ck}k∈N of subsets of Rn,
lim infk Ck =

⋂
N∈N �∞ cl(

⋃
k∈N Ck) and lim supk Ck =

⋂
N∈N∞ cl(

⋃
k∈N Ck).

Proposition . (Exercise . in []) For sequences {Ck}k∈N, {C
k}k∈N, {C

k }k∈N of subsets of
Rn and C ⊂Rn, the following statements hold.

(i) If Ck ↗ (which means that Ck ⊂ Ck+ ⊂ · · · ), then limk Ck = cl(
⋃

k∈NCk).
(ii) If Ck ↘ (which means that Ck ⊃ Ck+ ⊃ · · · ), then limk Ck =

⋂
k∈N cl(Ck).

(iii) If C
k ⊂ Ck ⊂ C

k , k ∈N and C
k → C, C

k → C, then Ck → C.

Proposition . (Proposition . in []) For sequences {Ck}k∈N, {Dk}k∈N of subsets of Rn

and C ⊂Rn, the following statements hold.
(i) lim infk Ck , lim supk Ck ∈ C(Rn).
(ii) If cl(Ck) = cl(Dk), k ∈N, then lim infk Ck = lim infk Dk and lim supk Ck = lim supk Dk .
(iii) If Ck = C, k ∈N, then limk Ck = cl(C).

Definition . (Example . in []) For nonempty closed sets C,D ⊂ Rn, the Hausdorff
distance between C and D is defined as

ρ(C,D) = sup
x∈Rn

∣∣dC(x) – dD(x)
∣∣,

where dC(x) = infy∈C ‖y – x‖, dD(x) = infy∈D ‖y – x‖ and ‖ · ‖ is the Euclidean norm. A se-
quence {Ck}k∈N of nonempty closed subsets ofRn is said to converge to a nonempty closed
set C ⊂Rn with respect to ρ if ρ(Ck ,C) → .

Proposition . (Example . in []) Let X ⊂Rn be a bounded set, and let Ck ⊂ X, k ∈N

and C ⊂ X be nonempty closed sets. Then {Ck}k∈N converges to C in the sense of Defini-
tion . if and only if {Ck}k∈N converges to C with respect to ρ .

Proposition . (Proposition . in []) If {Ck}k∈N ⊂K(Rn), then lim infk Ck ∈K(Rn).

From Definition ., the following Proposition . can be obtained.

Proposition . Let Ck ⊂ Rn, k ∈ N, and let C = limk→∞ Ck . In addition, let N ∈ N �∞.
Then C = limk→

N
∞ Ck .

1.2 Limits of set-valuedmappings
Next, we give the definitions of limits of set-valued mappings and their properties.
A mapping F such that F(x) ⊂ Rm for each x ∈ Rn is called a set-valued mapping from

Rn toRm, and it is denoted by F :Rn �Rm. The set-valuedmapping F is said to be closed-
valued, convex-valued, or closed convex-valued if F(x) ∈ C(Rm), F(x) ∈ K(Rm), or F(x) ∈
CK(Rm) for any x ∈Rn, respectively.

Definition . (See p. in []) Let F : Rn � Rm, and let x ∈ Rn. The lower limit of F
when x → x is defined as the set

lim inf
x→x

F(x) =
⋂
xk→x

lim inf
k→∞

F(xk),

http://www.fixedpointtheoryandapplications.com/content/2013/1/327
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and the upper limit of F when x → x is defined as the set

lim sup
x→x

F(x) =
⋃
xk→x

lim sup
k→∞

F(xk),

where
⋂

xk→x and
⋃

xk→x mean the intersection and the union with respect to any se-
quence {xk}k∈N ⊂ Rn such that xk → x, respectively. The limit of F when x → x is said to
exist if lim infx→x F(x) = lim supx→x F(x), and its limit is defined as the set

lim
x→x

F(x) = lim inf
x→x

F(x) = lim sup
x→x

F(x).

Example . For a,b, c,d ∈Rwith a < b < c < d, setA = [b, c] and B = [a,d]. Let F ,G :R�
R be set-valued mappings defined as

F(x) =

{
A if x≤ ,
B if x > ,

G(x) =

{
A if x < ,
B if x ≥ 

for each x ∈ R. In this case, we have lim infx→ F(x) = lim infx→G(x) = A = [b, c] and
lim supx→ F(x) = lim supx→G(x) = B = [a,d].

Definition . (Definition . in []) Let F : Rn � Rm, and let x ∈ Rn. The set-valued
mapping F is said to be lower semicontinuous at x if

lim inf
x→x

F(x)⊃ F(x),

and F is said to be upper semicontinuous at x if

lim sup
x→x

F(x)⊂ F(x).

The set-valued mapping F is said to be continuous at x if F is both lower and upper semi-
continuous at x, that is,

lim
x→x

F(x) = F(x).

Example . Consider the set-valued mappings F and G defined in Example .. Since
lim infx→ F(x) = [b, c]⊃ [b, c] = F() and lim supx→ F(x) = [a,d] �⊂ [b, c] = F(), F is lower
semicontinuous at  but not upper semicontinuous at . Since lim supx→G(x) = [a,d] ⊂
[a,d] = G() and lim infx→G(x) = [b, c] �⊃ [a,d] = G(), G is upper semicontinuous at 
but not lower semicontinuous at .

From Definition ., the following Proposition . can be obtained.

Proposition . Let F : Rn � Rm, and let x ∈ Rn. Then limx→x F(x) = F(x) if and only if
limk F(xk) = F(x) for any sequence {xk}k∈N ⊂Rn such that xk → x.
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1.3 Derivatives of set-valuedmappings
In this subsection, we give the definition of derivatives of set-valued mappings and their
properties.
A set C ⊂Rn is called a cone if  ∈ C and λx ∈ C for any x ∈ C and any λ ≥ .

Definition . (Definition . in []) Let S ⊂Rn, and let x ∈ S. A vector d ∈Rn is called
a tangent vector of S at x if there exists a sequence {xk}k∈N ⊂ S, which converges to x,
and a sequence {tk}k∈N ⊂R of positive real numbers such that

lim
k→∞

tk(xk – x) = d.

The set of all tangent vectors of S at x is called the tangent cone of S at x, and it is denoted
by T(S;x).

A tangent cone in Definition . is also called a contingent cone. For details of tangent
cones, see, for example, [, ].

Example . Let α ∈ ], ], and let S = {(x, y) ∈ R : min{α(x – x), ( – α)(x – x)} ≤
y ≤ max{α(x – x), ( – α)(x – x)}}. In addition, let x = (, ) ∈ S. In this case, we have
T(S;x) = {(x, y) ∈R :min{–αx, –( – α)x} ≤ y≤max{–αx, –( – α)x}}.

Proposition . (Theorem . in []) Let S ⊂ Rn, and let x ∈ S. Then T(S;x) is a closed
cone. Furthermore, if S is convex, then T(S;x) is also convex.

Proposition . (Theorem . in []) Let S,Q ⊂ Rn with S ⊂ Q, and let x ∈ S. Then
T(S;x) ⊂ T(Q;x).
For a set-valued mapping F :Rn �Rm, the set

Graph(F) =
{
(x,y) ∈Rn ×Rm : y ∈ F(x)

}
is called the graph of F .

Definition . (Definition . in [], Definition .. in []) Let F : Rn � Rm, and let
(x,y) ∈ Graph(F). Then the set-valued mapping DF(x,y) :Rn �Rm defined as

DF(x,y)(u) =
{
v ∈Rm : (u,v) ∈ T

(
Graph(F); (x,y)

)}
for each u ∈Rn is called the contingent derivative of F at (x,y).

From Definition ., it can be seen that

Graph
(
DF(x,y)

)
= T

(
Graph(F); (x,y)

)
.

Example . Let α ∈ ], ], and let F : R� R be a set-valued mapping defined as F(x) =
[min{α(x –x), (–α)(x –x)},max{α(x –x), (–α)(x –x)}]. Then (, ) ∈ Graph(F). From
Example ., we have DF(, )(u) = [min{–αu, –( – α)u},max{–αu, –( – α)u}] for each
u ∈ R.

http://www.fixedpointtheoryandapplications.com/content/2013/1/327
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FromDefinition . and Proposition ., the following Proposition . can be obtained.

Proposition . Let F : Rn � Rm, and let (x,y) ∈ Graph(F). Then the following state-
ments hold.

(i) DF(x,y) is closed-valued.
(ii) If Graph(F) ∈K(Rn ×Rm), then DF(x,y) is closed convex-valued.

1.4 Fuzzy sets
We investigate properties of level sets of fuzzy sets, which are necessary to consider limits
of sequences of fuzzy sets, and limits and derivatives of fuzzy set-valued mappings.
We identify each fuzzy set s̃ on Rn with its membership function, and s̃ is interpreted as

s̃ :Rn → [, ]. Let F (Rn) be the set of all fuzzy sets on Rn.
For s̃ ∈F (Rn) and α ∈ [, ], the set

[s̃]α =
{
x ∈Rn : s̃(x)≥ α

}

is called the α-level set of s̃.
For a crisp set S ⊂Rn, the function cS :Rn → {, } defined as

cS(x) =

{
 if x ∈ S,
 if x /∈ S

for each x ∈ Rn is called the indicator function of S. Whenever we consider cS as a fuzzy
set, cS :Rn → {, } is interpreted as cS :Rn → [, ].
It is known as the decomposition theorem that s̃ ∈F (Rn) can be represented as

s̃ = sup
α∈ ],]

αc[s̃]α

(see, for example, []).
A fuzzy set s̃ ∈ F (Rn) is said to be closed if s̃ is upper semicontinuous. A fuzzy set s̃ ∈

F (Rn) is closed if and only if [s̃]α ∈ C(Rn), α ∈ ], ].
A fuzzy set s̃ ∈F (Rn) is said to be convex if

s̃
(
λx + ( – λ)y

) ≥ s̃(x)∧ s̃(y)

for any x,y ∈ Rn and any λ ∈ [, ]. Namely, s̃ ∈ F (Rn) is said to be convex if s̃ is a quasi-
concave function, and s̃ is convex if and only if [s̃]α ∈K(Rn), α ∈ ], ].
Let CF (Rn), KF (Rn), and CKF (Rn) be sets of all closed, convex, and closed convex

fuzzy sets on Rn, respectively.
A fuzzy set s̃ ∈F (Rn) is called a fuzzy cone if [s̃]α ⊂Rn, α ∈ ], ] are cones.
For s̃ ∈F (Rn), the set

hypo(s̃) =
{
(x,α) ∈Rn × [, ] : α ≤ s̃(x)

}

is called the fuzzy hypograph of s̃.

http://www.fixedpointtheoryandapplications.com/content/2013/1/327
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In order to investigate relationships between fuzzy sets and their level sets, we set

S
(
Rn) = {{Sα}α∈ ],] : Sα ⊂Rn,α ∈ ], ], and Sβ ⊃ Sγ for β ,γ ∈ ], ] with β < γ

}
,

and defineM : S(Rn)→F (Rn) as

M
({Sα}α∈ ],]

)
= sup

α∈ ],]
αcSα

for each {Sα}α∈ ],] ∈ S(Rn). For {Sα}α∈ ],] ∈ S(Rn) and x ∈Rn, it can be seen that

M
({Sα}α∈ ],]

)
(x) = sup

α∈ ],]
αcSα (x) = sup

{
α ∈ ], ] : x ∈ Sα

}
,

where sup∅ = . By usingM, the decomposition theorem can be represented as

s̃ =M
({
[s̃]α

}
α∈ ],]

)
for s̃ ∈F (Rn).

Proposition . (Proposition  in []) Let {Sα}α∈ ],], {Tα}α∈ ],] ∈ S(Rn). If Sα ⊂ Tα ,
α ∈], ], then M({Sα}α∈ ],]) ≤M({Tα}α∈ ],]).

Proposition . (Proposition  in []) Let {Sα}α∈ ],] ∈ S(Rn), and let s̃ =M({Sα}α∈ ],]).
Then [s̃]α =

⋂
β∈ ],α[ Sβ for α ∈ ], ].

Definition . For s̃ ∈F (Rn), the fuzzy set

cl(s̃) =M
({
cl

(
[s̃]α

)}
α∈ ],]

)
is called the closure of s̃.

For a crisp set S ⊂ Rn, it can be seen that cl(cS) = ccl(S). Thus, the closure for fuzzy sets
is a generalization of the crisp one.

Proposition . (See pp.- in []) Let s̃ ∈ F (Rn), and let ũ ∈ CF (Rn) be the small-
est closed fuzzy set among closed fuzzy sets t̃ ∈ CF (Rn) such that s̃ ≤ t̃. Then hypo(ũ) =
cl(hypo(s̃)).

Proposition . Let s̃ ∈F (Rn). Then the following statements hold.
(i) [cl(s̃)]α =

⋂
β∈ ],α[ cl([s̃]β ) for α ∈ ], ].

(ii) cl(s̃) ∈ CF (Rn).
(iii) cl(s̃) is the smallest closed fuzzy set among closed fuzzy sets t̃ ∈ CF (Rn) such that

s̃ ≤ t̃.

Proof (i) follows from Proposition .. (ii) follows from (i). In order to show (iii), let ũ ∈
CF (Rn) be the smallest closed fuzzy set among closed fuzzy sets t̃ ∈ CF (Rn) such that
s̃ ≤ t̃, and we show that ũ = cl(s̃). It follows that cl(s̃) ∈ CF (Rn) from (ii), and that s̃ ≤ cl(s̃)

http://www.fixedpointtheoryandapplications.com/content/2013/1/327
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from the decomposition theorem and Proposition .. Thus, we have ũ ≤ cl(s̃). Assume
that there exists x ∈ Rn such that ũ(x) < cl(s̃)(x). We set α = cl(s̃)(x) and β = ũ(x), and
fix any γ ∈ ]β ,α[. Since α = cl(s̃)(x) = sup{η ∈ ], ] : x ∈ cl([s̃]η)}, it follows that

x ∈ cl
(
[s̃]γ

)
. (.)

Since β < γ , it follows that

(x,γ ) /∈ hypo(ũ) = cl
(
hypo(s̃)

)
(.)

from Proposition .. From (.), it follows that there exists {xk}k∈N ⊂ [s̃]γ such that
xk → x. Since s̃(xk) ≥ γ , k ∈ N, we have (xk ,γ ) ∈ hypo(s̃), k ∈ N and (xk ,γ ) → (x,γ ) ∈
cl(hypo(s̃)), which contradicts (.). �

The following Example . shows that [cl(s̃)]α = cl([s̃]α) does not hold in general.

Example . Let s̃ ∈F (R) be a fuzzy set defined as

s̃(x) =

{
max{–|x| + , } if x �= ,
 if x = 

for each x ∈R. In this case, we have cl(s̃)(x) =max{–|x|+ , } for each x ∈R, and cl([s̃]) =
∅ �= {} = [cl(s̃)].

From Propositions ., ., and ., the following Proposition . can be obtained.

Proposition . Let {Sα}α∈ ],] ∈ S(Rn), and let s̃ = M({Sα}α∈ ],]). Then cl(s̃) =
M({cl(Sα)}α∈ ],]).

Proposition . Let {S(λ)α }α∈ ],] ∈ S(Rn), λ ∈ �, and let s̃λ = M({S(λ)α }α∈ ],]), λ ∈ �. In
addition, let Lα =

⋂
λ∈� S(λ)α , Uα =

⋃
λ∈� S(λ)α for each α ∈], ], where Lα =

⋂
λ∈� S(λ)α =

Rn, Uα =
⋃

λ∈� S(λ)α = ∅ for each α ∈], ] if � = ∅. Then M({Lα}α∈ ],]) =
∧

λ∈� s̃λ and
M({Uα}α∈ ],]) =

∨
λ∈� s̃λ.

Proof Fix any x ∈Rn.
First, assume that � = ∅. Then it follows that Lα =Rn, Uα = ∅ for each α ∈ ], ], and we

haveM({Lα}α∈ ],])(x) =  =
∧

λ∈� s̃λ(x) andM({Uα}α∈ ],])(x) =  =
∨

λ∈� s̃λ(x).
Next, assume that � �= ∅. We set β =M({Lα}α∈ ],])(x) = sup{α ∈ ], ] : x ∈ Lα} and γ =

M({Uα}α∈ ],])(x) = sup{α ∈ ], ] : x ∈Uα}.
From the definition of β , it follows that x ∈ Lα , α ∈ ],β[ and x /∈ Lα , α ∈ ]β , ]. For any

λ ∈ � and any α ∈ ],β[, it follows that s̃λ(x) ≥ α since x ∈ S(λ)α . Thus, s̃λ(x) ≥ β for any
λ ∈ �. For each α ∈ ]β , ], since x /∈ Lα , there exists λα ∈ � such that x /∈ S(λα )

α , and it
follows that s̃λα (x) ≤ α. Thus, for any ε > , there exists λ ∈ � such that s̃λ (x) < β + ε.
Therefore, we have β =

∧
λ∈� s̃λ(x).

By the same way, we have γ =
∨

λ∈� s̃λ(x). �

Proposition . Let {Sα}α∈ ],], {Tα}α∈ ],] ∈ S(Rn). If Sα = Tα for any α ∈ ], ] except for
at most countable many α, then M({Sα}α∈ ],]) =M({Tα}α∈ ],]).

http://www.fixedpointtheoryandapplications.com/content/2013/1/327


Kon and Kuwano Fixed Point Theory and Applications 2013, 2013:327 Page 9 of 19
http://www.fixedpointtheoryandapplications.com/content/2013/1/327

Proof Assume that there exists x ∈ Rn such that M({Sα}α∈ ],])(x) �=M({Tα}α∈ ],])(x).
Without loss of generality, assume thatM({Sα}α∈ ],])(x) <M({Tα}α∈ ],])(x). We set β =
M({Sα}α∈ ],])(x) = sup{α ∈ ], ] : x ∈ Sα} and γ = M({Tα}α∈ ],])(x) = sup{α ∈ ], ] :
x ∈ Tα}. Since

β = sup{α ∈ ], ] : x ∈ Sα} ⇔
{
x ∈ Sα , α ∈ ],β[,
x /∈ Sα , α ∈ ]β , ]

and

γ = sup{α ∈ ], ] : x ∈ Tα} ⇔
{
x ∈ Tα , α ∈ ],γ [,
x /∈ Tα , α ∈ ]γ , ],

we have x /∈ Sα , x ∈ Tα , α ∈ ]β ,γ [ and Sα �= Tα , α ∈ ]β ,γ [. Therefore, it is not true that
Sα = Tα for any α ∈ ], ] except for at most countable many α. �

2 Limits of sequences of fuzzy sets
In this section, we propose the definitions of limits of sequences of fuzzy sets based on
their level sets, and investigate their properties.
The following Definition . is a fuzzified one of Definition ..

Definition . Let {s̃k}k∈N ⊂F (Rn), and let

Lα = lim inf
k→∞

[s̃k]α , Uα = lim sup
k→∞

[s̃k]α

for each α ∈ ], ]. The lower limit of {s̃k}k∈N is defined as the fuzzy set

lim inf
k→∞

s̃k =M
({Lα}α∈ ],]

)
,

and the upper limit of {s̃k}k∈N is defined as the fuzzy set

lim sup
k→∞

s̃k =M
({Uα}α∈ ],]

)
.

The limit of {s̃k}k∈N is said to exist if lim infk→∞ s̃k = lim supk→∞ s̃k , and its limit is defined
as the fuzzy set

lim
k→∞

s̃k = lim inf
k→∞

s̃k = lim sup
k→∞

s̃k .

For crisp sets Sk ⊂ Rn, k ∈ N, we set L = lim infk→∞ Sk , U = lim supk→∞ Sk , and set
T = limk→∞ Sk if the limit of {Sk}k∈N exists. Then it can be seen that lim infk→∞ cSk = cL,
lim supk→∞ cSk = cU , and that limk→∞ cSk = cT if the limit of {Sk}k∈N exists. Thus, the lower
limit, upper limit, and limit for sequences of fuzzy sets are generalizations of the crisp
ones.

Example . Let s̃, t̃ ∈F (R) be fuzzy sets defined as

s̃(x) =

{
max{–|x| + , } if x �= ,
 if x = ,

t̃(x) =max
{
–|x| + , 

}

http://www.fixedpointtheoryandapplications.com/content/2013/1/327
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for each x ∈ R, and let {s̃k}k∈N, {t̃k}∈N, {ũk}k∈N ⊂ F (R) be sequences of fuzzy sets defined
as

s̃k = s̃, t̃k = t̃, ũk =

{
s̃ if k is odd,
t̃ if k is even

for each k ∈N. In this case, we have limk[s̃k]α = limk[t̃k]α = limk[ũk]α = [α –, –α] for α ∈
], [, and limk[s̃k] = lim infk[ũk] = ∅ and limk[t̃k] = lim supk[ũk] = {}. Thus, it follows
that limk s̃k = limk t̃k = limk ũk = t̃. Therefore, we obtain the following statements.

(i) lim infk s̃k = lim infk t̃k , while lim infk[s̃k] �= lim infk[t̃k].
(ii) lim supk s̃k = lim supk t̃k , while lim supk[s̃k] �= lim supk[t̃k].
(iii) lim infk ũk = lim supk ũk , while lim infk[ũk] �= lim supk[ũk].
(iv) limk s̃k = limk t̃k = limk ũk , while limk[s̃k] �= limk[t̃k] and there does not exist

limk[ũk].

From Definition . and Propositions ., ., and ., the following Proposition . can
be obtained.

Proposition. Let {s̃k}k∈N ⊂F (Rn), and let Lα = lim infk[s̃k]α ,Uα = lim supk[s̃k]α for each
α ∈ ], ]. Then the following statements hold.

(i) {Lα}α∈ ],], {Uα}α∈ ],] ∈ S(Rn).
(ii) Lα ⊂Uα for α ∈ ], ].
(iii) lim infk s̃k ≤ lim supk s̃k .
(iv) Lα ,Uα ∈ C(Rn) for α ∈ ], ].
(v) Let α ∈ ], ], and assume that [s̃k]α ∈K(Rn), k ∈N. Then Lα ∈K(Rn).

The following Proposition .(i) is a fuzzified one of Proposition .(i), (iii). The fol-
lowing Proposition .(ii) is a fuzzified one of Proposition .. They can be derived from
Propositions ., ., and ..

Proposition .
(i) Let {s̃k}k∈N ⊂F (Rn). Then lim infk s̃k , lim supk s̃k ∈ CF (Rn). If s̃k = ũ, k ∈N for some

ũ ∈F (Rn), then limk s̃k = cl(ũ).
(ii) Let {s̃k}k∈N ⊂KF (Rn). Then lim infk s̃k ∈ CKF (Rn).

The following Proposition . is a fuzzified one of Proposition .. It can be derived from
the decomposition theorem and Propositions ., ., and ..

Proposition . Let {s̃k}k∈N ⊂F (Rn). Then

lim inf
k

s̃k =
∧

N∈N �∞

cl

(∨
k∈N

s̃k
)

and lim sup
k

s̃k =
∧

N∈N∞
cl

(∨
k∈N

s̃k
)
.

From Propositions ., ., ., and ., the following Proposition . can be obtained.

Proposition . Let {S(k)α }α∈ ],] ∈ S(Rn), k ∈ N, and let s̃k = M({S(k)α }α∈],]), k ∈ N. In
addition, let Lα = lim infk S(k)α , Uα = lim supk S(k)α for each α ∈], ]. Then lim infk s̃k =
M({Lα}α∈],]) and lim supk s̃k =M({Uα}α∈],]).

http://www.fixedpointtheoryandapplications.com/content/2013/1/327
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The following Proposition . is a fuzzified one of Proposition .(ii). It can be derived
from Propositions . and ..

Proposition . Let {s̃k}k∈N, {t̃k}k∈N ∈F (Rn), and assume that cl(s̃k) = cl(t̃k), k ∈N. Then
lim infk s̃k = lim infk t̃k and lim supk s̃k = lim supk t̃k .

The following Proposition . is a fuzzified one of Proposition .. It can be derived from
Propositions ., ., ., and ..

Proposition . For {s̃k}k∈N, {s̃k}k∈N, {s̃k}k∈N ⊂F (Rn), the following statements hold.
(i) If s̃k ↗ (which means that s̃k ≤ s̃k+ ≤ · · · ), then limk s̃k = cl(

∨
k∈N s̃k).

(ii) If s̃k ↘ (which means that s̃k ≥ s̃k+ ≥ · · · ), then limk s̃k =
∧

k∈N cl(s̃k).
(iii) If s̃k ≤ s̃k ≤ s̃k , k ∈N and lim infk s̃k = lim infk s̃k , then

lim infk s̃k = lim infk s̃k = lim infk s̃k .
(iv) If s̃k ≤ s̃k ≤ s̃k , k ∈N and lim supk s̃k = lim supk s̃k , then

lim supk s̃k = lim supk s̃k = lim supk s̃k .
(v) If s̃k ≤ s̃k ≤ s̃k , k ∈N and limk s̃k = limk s̃k , then limk s̃k = limk s̃k = limk s̃k .

The following Proposition . is a fuzzified one of Proposition .. It can be derived from
Definition . and Proposition ..

Proposition. Let {s̃k}k∈N ⊂F (Rn),and let s̃ = limk→∞ s̃k . In addition, let N ∈N �∞.Then
s̃ = limk→

N
∞ s̃k .

Throughout the rest of this section, let X ⊂Rn be a compact set, and let

F ′(Rn) = {
s̃ ∈ CF

(
Rn) : sup

x∈Rn
s̃(x) =  and s̃(x) = ,x /∈ X

}
.

For s̃ ∈F ′(Rn) and α ∈ [, ], we set

[[s̃]]α =

{
[s̃]α if α ∈ ], ],
cl({x ∈ Rn : s̃(x) > }) if α = .

Let {s̃k}k∈N ⊂F ′(Rn), and let s̃ ∈F ′(Rn). Then {s̃k}k∈N is said to converge to s̃ in the sense
of Yoshida et al. [] if ρ([[s̃k]]α , [[s̃]]α) →  for any α ∈ [, ] except for at most countable
many α, where ρ([[s̃k]]α , [[s̃]]α) is the Hausdorff distance between [[s̃k]]α and [[s̃]]α defined
in Definition .. From Proposition ., ρ([[s̃k]]α , [[s̃]]α) →  if and only if limk[[s̃k]]α =
[[s̃]]α in the sense of Definition ..
The following Proposition . shows that the concept of the convergence for sequences

of fuzzy sets in the sense of Definition . is weaker than that in the sense of Yoshida et al.
[].

Proposition . Let {s̃k}k∈N ⊂ F ′(Rn), and let s̃ ∈ F ′(Rn). If {s̃k}k∈N converges to s̃ in the
sense of Yoshida et al. [], then limk s̃k = s̃ in the sense of Definition ..

Proof {s̃k}k∈N converges to s̃ in the sense of Yoshida et al. [] if and only if limk[[s̃k]]α =
[[s̃]]α in the sense of Definition . for any α ∈ [, ] except for at most countable many α.

http://www.fixedpointtheoryandapplications.com/content/2013/1/327
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Then it follows that limk[s̃k]α = lim infk[s̃k]α = lim supk[s̃k]α = [s̃]α for any α ∈ ], ] except
for at most countable many α. From Proposition . and the decomposition theorem, we
have s̃ = limk s̃k = lim infk s̃k = lim supk s̃k in the sense of Definition .. �

3 Limits of fuzzy set-valuedmappings
In this section, we propose the definitions of limits of fuzzy set-valued mappings, and
investigate their properties.
For a fuzzy set-valued mapping F̃ : Rn → F (Rm) and α ∈ ], ], we define the crisp set-

valued mapping Fα :Rn �Rm as

Fα(x) =
[
F̃(x)

]
α

for each x ∈Rn.
A fuzzy set-valuedmapping F̃ :Rn →F (Rm) is said to be closed-valued, convex-valued,

or closed convex-valued if F̃(x) ∈ CF (Rm), F̃(x) ∈ KF (Rm), or F̃(x) ∈ CKF (Rm) for any
x ∈Rn, respectively.
The followingDefinition . is a fuzzified one ofDefinition . (see Proposition .which

is mentioned later).

Definition . Let F̃ :Rn →F (Rm), and let x ∈Rn. In addition, let

Lα(x) = lim inf
x→x

Fα(x), Uα(x) = lim sup
x→x

Fα(x)

for each α ∈ ], ]. The lower limit of F̃ when x → x is defined as the fuzzy set

lim inf
x→x

F̃(x) =M
({
Lα(x)

}
α∈ ],]

)
,

and the upper limit of F̃ when x → x is defined as the fuzzy set

lim sup
x→x

F̃(x) =M
({
Uα(x)

}
α∈ ],]

)
.

The limit of F̃ when x → x is said to exist if lim infx→x F̃(x) = lim supx→x F̃(x), and its limit
is defined as the fuzzy set

lim
x→x

F̃(x) = lim inf
x→x

F̃(x) = lim sup
x→x

F̃(x).

For a crisp set-valued mapping F : Rn � Rm and x ∈ Rn, let L(x) = lim infx→x F(x),
U(x) = lim supx→x F(x), and let T(x) = limx→x F(x) if the limit of F when x → x exists.
Then lim infx→x cF(x) = cL(x), lim supx→x cF(x) = cU(x), and limx→x cF(x) = cT(x) if the limit of
F when x → x exists. Thus, the lower limit, upper limit, and limit for fuzzy set-valued
mappings are generalizations of the crisp ones.

Example . Let s̃, t̃, ∅̃ ∈F (R) be fuzzy sets defined as

s̃(x) =

{
max{–|x| + , } if x �= ,
 if x = ,

t̃(x) =max
{
–|x| + , 

}
, ∅̃(x) = 

http://www.fixedpointtheoryandapplications.com/content/2013/1/327
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for each x ∈R, and let F̃ :R →F (R) be a fuzzy set-valued mapping defined as

F̃(x) =

⎧⎪⎨
⎪⎩
s̃ if x ∈ B(, ε)∪ (B(, ε)∩Q),
t̃ if x ∈ B(, ε)∪ (B(, ε) \Q),
∅̃ otherwise

for each x ∈ R, where Q is the set of all rational numbers, and ε ∈],  [, and B(x, ε) = {x ∈
R : |x – x| < ε} for x ∈R. Since

Fα(x) =

⎧⎪⎨
⎪⎩
[α – , [∪ ],  – α] if x ∈ B(, ε)∪ (B(, ε)∩Q),
[α – ,  – α] if x ∈ B(, ε)∪ (B(, ε) \Q),
∅ otherwise

for each x ∈R when α ∈ ], [, and

F(x) =

{
{} if x ∈ B(, ε)∪ (B(, ε) \Q),
∅ otherwise

for each x ∈ R, we have limx→ Fα(x) = limx→ Fα(x) = limx→ Fα(x) = [α – ,  – α] for
α ∈ ], [, and limx→ F(x) = lim infx→ F(x) = ∅ and limx→ F(x) = lim supx→ F(x) = {}.
Thus, it follows that limx→ F̃(x) = limx→ F̃(x) = limx→ F̃(x) = t̃. Therefore, we obtain the
following statements.

(i) lim infx→F̃(x) = lim infx→F̃(x), while lim infx→F(x) �= lim infx→F(x).
(ii) lim supx→F̃(x) = lim supx→F̃(x), while lim supx→F(x) �= lim supx→F(x).
(iii) lim infx→F̃(x) = lim supx→F̃(x), while lim infx→F(x) �= lim supx→F(x).
(iv) limx→F̃(x) = limx→F̃(x) = limx→F̃(x), while limx→F(x) �= limx→F(x) and there

does not exist limx→F(x).

The following Definition . is a fuzzified one of Definition ..

Definition . Let F̃ : Rn → F (Rm), and let x ∈ Rn. The fuzzy set-valued mapping F̃ is
said to be lower semicontinuous at x if

lim inf
x→x

F̃(x)≥ F̃(x),

and F̃ is said to be upper semicontinuous at x if

lim sup
x→x

F̃(x) ≤ F̃(x).

The fuzzy set-valued mapping F̃ is said to be continuous at x if F̃ is both lower and upper
semicontinuous at x, that is,

lim
x→x

F̃(x) = F̃(x).

Example . Let s̃, t̃ ∈ F (R) be fuzzy sets defined as s̃(x) = max{–|x| + 
 , } and t̃(x) =

max{–|x| + , } for each x ∈ R, and let F̃ , G̃ : R → F (R) be fuzzy set-valued mappings

http://www.fixedpointtheoryandapplications.com/content/2013/1/327
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defined as

F̃(x) =

{
s̃ if x≤ ,
t̃ if x > ,

G̃(x) =

{
s̃ if x < ,
t̃ if x ≥ 

for each x ∈ R. Since lim infx→ F̃(x) = s̃ ≥ s̃ = F̃() and lim supx→ F̃(x) = t̃ � s̃ = F̃(), F̃ is
lower semicontinuous at  but not upper semicontinuous at . Since lim supx→ G̃(x) = t̃ ≤
t̃ = G̃() and lim infx→ G̃(x) = s̃� t̃ = G̃(), G̃ is upper semicontinuous at  but not lower
semicontinuous at .

FromDefinition . and Propositions ., ., and ., the following Proposition . can
be obtained.

Proposition . Let F̃ :Rn →F (Rm), and let x ∈Rn. In addition, let

Lα(x) = lim inf
x→x

Fα(x), Uα(x) = lim sup
x→x

Fα(x)

for each α ∈ ], ]. Then the following statements hold.
(i) {Lα(x)}α∈ ],], {Uα(x)}α∈ ],] ∈ S(Rm).
(ii) Lα(x) ⊂ cl(Fα(x)) ⊂Uα(x) for α ∈ ], ].
(iii) lim infx→x F̃(x) ≤ cl(F̃(x))≤ lim supx→x F̃(x).
(iv) Lα(x) ∈ C(Rm) for α ∈ ], ].
(v) Let α ∈ ], ], and assume that Fα is convex-valued. Then Lα(x) ∈K(Rm).

From Propositions . and ., the following Proposition . can be obtained.

Proposition . Let F̃ :Rn →F (Rm), and let x ∈Rn.Then the following statements hold.
(i) lim infx→x F̃(x) ∈ CF (Rm).
(ii) If F̃ is convex-valued, then lim infx→x F̃(x) ∈ CKF (Rm).

The following Proposition . shows that Definition . is a fuzzified one of Defini-
tion .. It can be derived from Proposition ..

Proposition . Let F̃ :Rn →F (Rm), and let x ∈Rn. Then

lim inf
x→x

F̃(x) =
∧
xk→x

lim inf
k

F̃(xk) and lim sup
x→x

F̃(x) =
∨
xk→x

lim sup
k

F̃(xk).

From Propositions ., ., and ., the following Proposition . can be obtained.

Proposition . Let {Sα(x)}α∈ ],] ∈ S(Rm), x ∈ Rn, and assume that F̃ : Rn → F (Rm)
is defined as F̃(x) = M({Sα(x)}α∈],]) for each x ∈ Rn. In addition, let x ∈ Rn, and let
Lα(x) = lim infx→x Sα(x),Uα(x) = lim supx→x Sα(x) for each α ∈], ].Then lim infx→x F̃(x) =
M({Lα(x)}α∈ ],]) and lim supx→x F̃(x) =M({Uα(x)}α∈ ],]).

The following Proposition . is a fuzzified one of Proposition .. It can be derived from
Proposition ..
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Proposition . Let F̃ :Rn →F (Rm), and let x ∈Rn. Then limx→x F̃(x) = F̃(x) if and only
if limk F̃(xk) = F̃(x) for any sequence {xk}k∈N ⊂ Rn such that xk → x.

4 Derivatives of fuzzy set-valuedmappings
In this section, we propose the definition of derivatives of fuzzy set-valued mappings and
investigate their properties.
The following Definition . is a fuzzified one of Definition ..

Definition . Let s̃ ∈F (Rn), and let x ∈ [s̃]. Then the fuzzy set

T̃(s̃;x) =M
({
T

(
[s̃]α ;x

)}
α∈ ],]

)

is called the fuzzy tangent cone or fuzzy contingent cone of s̃ at x.
Let S ⊂ Rn, and let x ∈ S. Then it can be seen that

T̃(cS;x) = cT(S;x).

Thus, the fuzzy tangent cone is a generalization of the crisp one.

Example . Let f :R →R be a function defined as f (x) = (x+ )x(x– ) = x – x for each
x ∈R, and let s̃ ∈F (R) be a fuzzy set defined as, for each x = (x, y) ∈R,

s̃(x) =max

{
–


|f (x)|

∣∣y – f (x)
∣∣ + , 

}

if f (x) �= , and

s̃(x) =

{
 if y = ,
 if y �= 

if f (x) = . In addition, let x = (, ) ∈ [s̃]. For each α ∈ ], ], since [s̃]α = {(x, y) ∈
R : min{α(x – x), ( – α)(x – x)} ≤ y ≤ max{α(x – x), ( – α)(x – x)}}, it follows that
T([s̃]α ;x) = {(x, y) ∈ R : min{–αx, –( – α)x} ≤ y ≤ max{–αx, –( – α)x}} from Exam-
ple .. Therefore, for each x = (x, y) ∈R, we have

T̃(s̃;x)(x) =max

{
–


|x| |y + x| + , 

}

if x �= , and

T̃(s̃;x)(x) =

{
 if y = ,
 if y �= 

if x = .

The following Proposition . is a fuzzified one of Proposition .. It can be derived from
Propositions . and ..
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Proposition . Let s̃ ∈F (Rn), and let x ∈ [s̃]. Then the following statements hold.
(i) T̃(s̃;x) is a closed fuzzy cone.
(ii) If s̃ ∈KF (Rn), then T̃(s̃;x) is a closed convex fuzzy cone.

The following Proposition . is a fuzzified one of Proposition .. It can be derived from
Propositions . and ..

Proposition . Let s̃, t̃ ∈F (Rn) with s̃≤ t̃, and let x ∈ [s̃]. Then T̃(s̃;x) ≤ T̃(t̃;x).

The followingDefinition . is a fuzzified one of the graph for crisp set-valuedmappings.

Definition . Let F̃ :Rn →F (Rm). The fuzzy set Graph(F̃) ∈F (Rn ×Rm) defined as

Graph(F̃)(x,y) = F̃(x)(y)

for each (x,y) ∈Rn ×Rm is called the fuzzy graph of F̃ .
From Definition ., it can be seen that

[
Graph(F̃)

]
α
=Graph(Fα)

for α ∈ ], ].
Let F : Rn � Rm, and assume that F̃ : Rn → F (Rm) is defined as F̃(x) = cF(x) for each

x ∈Rn. Then it follows that

Graph(F̃)(x,y) = F̃(x)(y) = cF(x)(y) = cGraph(F)(x,y)

for each (x,y) ∈Rn ×Rm. Thus, the fuzzy graph for fuzzy set-valued mappings is a gener-
alization of the crisp one.

The following Definition . is a fuzzified one of Definition ..

Definition . Let F̃ : Rn → F (Rm), and let (x,y) ∈ [Graph(F̃)]. Then the fuzzy set-
valued mapping DF̃(x,y) :Rn →F (Rm) such that

Graph
(
DF̃(x,y)

)
= T̃

(
Graph(F̃); (x,y)

)
is called the fuzzy contingent derivative of F̃ at (x,y).

From Definition ., it can be seen that

DF̃(x,y)(u)(v) =Graph
(
DF̃(x,y)

)
(u,v) = T̃

(
Graph(F̃); (x,y)

)
(u,v)

for each u ∈Rn and each v ∈Rm.
Let F :Rn �Rm, and let (x,y) ∈Graph(F). Assume that F̃ :Rn →F (Rm) is defined as

F̃(x) = cF(x) for each x ∈Rn. Then it follows that

Graph(F̃)(x,y) = cGraph(F)(x,y) = ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/327


Kon and Kuwano Fixed Point Theory and Applications 2013, 2013:327 Page 17 of 19
http://www.fixedpointtheoryandapplications.com/content/2013/1/327

that is, (x,y) ∈ [Graph(F̃)], and that

Graph
(
DF̃(x,y)

)
= T̃

(
Graph(F̃); (x,y)

)
= T̃

(
cGraph(F); (x,y)

)
= cT(Graph(F);(x,y)) = cGraph(DF(x,y)),

that is,

Graph
(
DF̃(x,y)

)
= cGraph(DF(x,y)).

Thus, the fuzzy contingent derivative for fuzzy set-valued mappings is a generalization of
the crisp one.

Example . Let f :R→ R be the function defined in Example ., and let F̃ :R→F (R)
be a fuzzy set-valued mapping defined as, for each x ∈R,

F̃(x)(y) =max

{
–


|f (x)|

∣∣y – f (x)
∣∣ + , 

}

for each y ∈R if f (x) �= , and

F̃(x)(y) =

{
 if y = ,
 if y �= 

for each y ∈R if f (x) = . In addition, let s̃ ∈F (R) be the fuzzy set defined in Example ..
Then it follows that Graph(F̃) = s̃ and (, ) ∈ [Graph(F̃)]. From Example ., we have, for
each u ∈R and each v ∈R,

DF̃(, )(u)(v) =max

{
–


|u| |v + u| + , 

}

if u �= , and

DF̃(, )()(v) =

{
 if v = ,
 if v �= .

Proposition . Let F̃ :Rn →F (Rm), and let (x,y) ∈ [Graph(F̃)]. Then DF̃(x,y)(u) =
M({DFα(x,y)(u)}α∈ ],]) for any u ∈Rn.

Proof Fix any u ∈ Rn and any v ∈Rm. Then we have

DF̃(x,y)(u)(v) = Graph
(
DF̃(x,y)

)
(u,v)

= T̃
(
Graph(F̃); (x,y)

)
(u,v)

= sup
{
α ∈ ], ] : (u,v) ∈ T

([
Graph(F̃)

]
α
; (x,y)

)}
= sup

{
α ∈ ], ] : (u,v) ∈ T

(
Graph(Fα); (x,y)

)}
= sup

{
α ∈ ], ] : (u,v) ∈Graph

(
DFα(x,y)

)}
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= sup
{
α ∈ ], ] : v ∈DFα(x,y)(u)

}
=M

({
DFα(x,y)(u)

}
α∈ ],]

)
(v). �

The following Proposition . is a fuzzified one of Proposition .. It can be derived
from Proposition ..

Proposition . Let F̃ : Rn → F (Rm), and let (x,y) ∈ [Graph(F̃)]. Then the following
statements hold.

(i) DF̃(x,y) is closed-valued.
(ii) If Graph(F̃) ∈KF (Rn ×Rm), then DF̃(x,y) is closed convex-valued.

5 Conclusions
In this article, we proposed definitions of limits of sequences of fuzzy sets, and limits and
derivatives of fuzzy set-valuedmappings based on level sets of fuzzy sets, and investigated
their properties. They are fuzzified ones of them for crisp ones.
Derived results are very general in the sense that they deal with all fuzzy sets, especially

fuzzy sets which are not support bounded.
Consider some fuzzy mathematical model whose optimal value/solution output is a

fuzzy set for an input parameter. The concepts of limits of sequences of fuzzy sets, lim-
its and derivatives of fuzzy set-valued mappings are necessary and important for stability
theory and sensitivity analysis for such fuzzy mathematical models. Then derived results
can be expected to be useful for them.
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