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Abstract
This paper is devoted to investigating the existence of fixed points and best proximity
points of multivalued cyclic self-mappings in metric spaces under a generalized
contractive condition involving Hausdorff distances. Some background results for
cyclic self-mappings or for multivalued self-mappings in metric fixed point theory are
extended to cyclic multivalued self-mappings. An example concerned with the global
stability of a time-varying discrete-time system is also discussed by applying some of
the results obtained in this paper. Such an example includes the analysis with
numerical simulations of two particular cases which are focused on switched
discrete-time control and integrate the associate theory in the context of multivalued
mappings.
MSC: 47H10; 55M20; 54H25
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1 Introduction
Important attention is being devoted to investigation of fixed point theory for single-
valued and multivalued mappings concerning some relevant properties like, for instance,
stability of the iterations, fixed points of contractive and nonexpansive self-mappings and
the existence of either common or coupled fixed points of several multivalued mappings
or operators. See, for instance, [–] and references therein. Related problems concern-
ing the computational aspects of iterative calculations and best approximations based on
fixed point theory have been also investigated. See, for instance, [–, , ] and some
references therein. On the other hand, a fixed point result for partial metric spaces and
partially ordered metric spaces can be found in [–] and [, , , ], respectively,
and references therein.
This paper is devoted to the investigation of some properties of fixed point and best

proximity point results for multivalued cyclic self-mappings under a general contractive-
type condition based on the Hausdorff metric between subsets of a metric space [–,
, ]. This includes, as a particular case, contractive single-valued self-mappings [–,
, –], and similar problems for cyclic (strictly contractive or not) self-mappings [–
] as well. Some previous results onmultivalued contractions are retaken by generalizing
the contractive condition and extended to cyclic multivalued self-mappings by extending
the results of Ðorić and Lazović in [] (then being extended in [] concerning results on
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common fixed points of a pair of multivalued maps in a complete metric space) which
are based on previous Suzuki et al. and Ćirić’s results for single-valued self-mappings in
some background literature papers. See, for instance, [, , , ] and references therein.
Through this paper, we consider a metric space (X,d) and a multivalued -cyclic self-
mapping T : A∪B → A∪B (being simply referred to as a multivalued cyclic self-mapping
in the sequel), where A and B are nonempty closed subsets of X, so that T(A) ⊆ B and
T(B) ⊆ A and D = dist(A,B) ≥ . Let us consider the subset of the set of real numbers
R+ = R+ ∪ {} = {z ≥  : z ∈ R}, R+ = {z >  : z ∈ R}, let the symbols ‘∨’ and ‘∧’ denote the
logic disjunction (‘or’) and conjunction (‘and’), and define the functionsM : (A∪B)× (B∪
A)× [, )× Δ → R+ and ϕ : (A∪ B)× (B∪A)× [, )× Δ → (, ] as follows:

M(x, y,K ,α,β) =max
[
M(x, y,K ),M(x, y,α,β)

]
, (.)

M(x, y,K ) = K max
{
d(x, y),d(x,Tx),d(y,Ty), /

(
d(x,Ty) + d(y,Tx)

)}
, (.a)

M(x, y,α,β) = αd(x,Tx) + βd(y,Ty), (.b)

ϕ(x, y,K ,α,β)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 if ([(α,β) ∈ Δ\(Δ ∪ Δ)]∨ [(α,β) ∈ Δ\(Δ ∪ Δ)])

∧ (M(x, y,α,β) >M(x, y,K )),

 – β if ([(α,β) ∈ Δ])∧ (M(x, y,α,β) >M(x, y,K )),
–β

–β+α
if ((α,β) ∈ Δ\Δ)∧ (M(x, y,α,β) >M(x, y,K )),

 if ( ≤ K < /)∧ (M(x, y,α,β)≤M(x, y,K )),

 –K if (/ ≤ K < )∧ (M(x, y,α,β)≤M(x, y,K ));

(.)

∀x, y ∈ (A ∪ B) × (B ∪ A) for some real constants K ∈ [, ), (α,β) ∈ Δ ⊆ [, ) × [, ),
where

Δ =
{
(α,β) : α ≥ ,β ≥ ,α + β < 

}
,

Δ =
{
(α,β) ∈ Δ : α ≤ β ,α( + α) + β < 

}
,

Δ =
{
(α,β) ∈ Δ : α ≥ β ,β( + β) + α < 

}
,

Δ =
{
(α,β) ∈ Δ : α ∈ (, /),

 – α


≥ β

}
,

Δ =
{
(α,β) ∈ Δ : α( + α) + β( – β)≥ 

}
.

(.)

Note that ϕ : (A∪B)× (B∪A)× [, )× Δ → (, ] is non-increasing since all its partial
derivatives with respect to K , α, β exist and are non-positive; ∀x, y ∈ (A∪B)× (B∪A) and
note also that Δ is the union of the subsets Δi ⊂ Δ; i = , , , .
A general contractive condition is then proposed and discussed based on the Hausdorff

metric on subsets of a vector space and the constraints (.)-(.). For this purpose, some
preparatory concepts are needed. LetCL(X) be a family of all nonempty and closed subsets
of the vector space X. If A,B ∈ CL(X), then we can define (CL(X),H) as the generalized
hyperspace of (X,d) equipped with the Hausdorff metric H : CL(X) → R+

H(A,B) =max
{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}

(.)
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with A⊂ X and B⊂ X being nonempty sets. The gap between the nonempty sets A and B
is defined by

D = dist(A,B) = inf
x∈A,y∈B

d(x, y) = inf
x∈A

d(x,B) = inf
y∈Bd(y,A)≥ .

The proposed general contractive condition to be then discussed is

[
ϕ(x, y,K ,α,β)d(x,Tx)≤ d(x, y)

] ⇒ [
H(Tx,Ty) ≤M(x, y,K ,α,β) +ωD

]
, (.)

where T : A ∪ B → A ∪ B is a multivalued cyclic self-mapping on the subset A ∪ B of X,
that is, T(A) ⊆ B and T(B) ⊆ A, where (X,d) is a complete metric space including the
case that (X,‖ ‖) is a Banach space with a norm-induced metric d : X × X → R+, so that
(X,‖ ‖) ≡ (X,d) is a complete metric space, is used, subject to (.)-(.), in themain result
Theorem . below. In this context, Tx is the image set through T of any x ∈ A∪ B which
is in B, that is, Tx ⊂ T(A) ⊆ B (respectively, Tx ⊂ T(B)⊆ A) if x ∈ A (respectively, if x ∈ B).
It is inspired by that proposed in [] for single-valued self-mappings while it generalizes
that proposed and discussed in [] for multivalued self-mappings which is based on the
Hausdorff generalized metric.
See Figure  with the plots of the various involved sets Δ and Δi ⊂ Δ for i = , , ,  and

some of their relevant subsets in the contractive condition subject to (.)-(.).
Note that the proposed contractive condition, in fact, considers the worst case, given by

the maximum of (.), of such a contractive condition of [], reflected in (.a), with one
based on a Kannan-type contractive condition associated with the choice of possible dis-
tinct values for the constants α and β , which is reflected in (.b) subject to (.)-(.). In
particular, the choice α = β ∈ [, /) gives a Kannan-type contractive condition in (.b).
Note the importance of Kannan-type contractions for single-valuedmappings in the sense
that a metric space is complete if and only if each Kannan contraction has a unique fixed
point [, , ]. The incorporation of (.b), (.)-(.) to (.) to build the general con-
tractive condition allows an obvious direct generalization of the usual contractive condi-
tion, based on the Banach principle combined with a Kannan-type constraint, since both

Figure 1 The sets Δ and Δi , i = 1,2, 3, 4.
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of them do not imply each other. In this context, note, for instance, that the simple scalar
single-valued sequence xn+ = axn; ∀n ∈ N = N ∪ {}, with initial condition x ∈ R, is a
strict contraction if |a| < . However, it is not a Kannan contraction for all |a| < . This is
easily seen as follows. Check the Kannan condition d(Tx,Ty) ≤ α(d(x,Tx) + d(y,Ty)) for
the self-mapping T on R defining the sequence solution and α ∈ [, /), for instance,
for points x = xn, xn+ = Tx, xn+ = Tx = y and xn+ = Tx = Ty for any n ∈ N. Then
the Kannan contractive test is subject to 

 > α ≥ |a|
+a , which is not fulfilled for given

nonzero sufficiently small values of  > |a| >  and any real α ∈ [, /). It is possible also to
check in a similar way a failure of the generalized Kannan-extended contractive condition
d(Tx,Ty) ≤ αd(x,Tx)+βd(y,Ty) with  ≤ β < –α, α ∈ [, ) for given nonzero sufficiently
small values of  > |a| > .
In the current approach, a combination of distinct contractive conditions for the (α,β)

pairs of values belonging to some relevant sets constructed from the subsetsΔi; i = , , , 
of Δ is itself combined with the two point-to-point possibilities of combinations of the
comparisonsM(x, y,α,β) > (or ≤)M(x, y,K ) for each (x, y) ∈ A×B∪B×A. The various
constraints are used to prove the convergence of the iterated sequences constructed with
cyclic self-mappings T : A ∪ B → A ∪ B to best proximity points. On the other hand, the
use of ωD in the contractive condition, instead of the distance in-between subsets, allows
via the choice of some real constant ω >  to deal with problems where the achievement
of limits of sequences at best proximity points is not of particular interest but just their
limits superior belonging to certain subsets of the relevant sets Ai ⊂ X; i ∈ p̄ containing
the best proximity points. In this case, the permanence of the relevant sequences after a
finite time in subsets of the sets Ai ⊂ X; i ∈ p̄ after a finite number of steps is guaranteed.
The standard analysis can be used for the particular caseω = . The performed study in the
manuscript seems to be also promising for its extension to the study of single-valued and
multivalued proximal contraction mappings in-between subsets of metric spaces because
of the close formal relation between cyclic self-mappings and proximal mappings. See, for
instance, [] and references therein.

2 Main results
The first main result follows.

Theorem. Let (X,d) be a completemetric space,and let T : A∪B → A∪B be, in general,
a multivalued cyclic self-mapping, where A,B ⊂ X are nonempty, closed and subject to the
contractive constraint

[
ϕ(x, y,K ,α,β)d(x,Tx)≤ d(x, y)

] ⇒ [
H(Tx,Ty) ≤M(x, y,K ,α,β) +ωD

]
(.)

subject to (.)-(.), for some ω ∈ R+, K ∈ [, ) and (α,β) ∈ Δ; ∀(x, y) ∈ (A∪ B)× (B∪A).
Assume also that

K =max

(
K ,

β

 – α
,

α

 – β

)
∈ [, ), K =max

(


 – α
,


 – β

)
∈ [,∞). (.)

Then the following properties hold:
(i) There is a sequence {xn} in A∪ B satisfying xi+ ∈ Txi, i ∈N such that

D ≤ d(xn+,xn) < ∞; D ≤ lim sup
n→∞

d(xn+,xn) ≤ ωKD
 –K

.

http://www.fixedpointtheoryandapplications.com/content/2013/1/324
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If A and B are bounded sets which intersect, then
∑∞

n= d(xn+,xn) < ∞ and {xn} is a
Cauchy sequence having its limit in A∩ B, with xn+ ∈ Txn; n ∈N for any given x ∈ A∪ B.
If A and B are not bounded, then the above property still holds if d(x,x) < ∞. Further-

more, limn→∞ d(xn+,xn) = D exists if ω = –K
K

for any given x ∈ A ∪ B with the sequence
{xn} being constructed in such a way that xn+ ∈ Txn.
If x ∈ A, then the sequence of sets {Txn+} ⊂ T(B) ⊆ A converges to a subset {zA} of best

proximity points in A (in the sense that any point zn+ (∈ {Txn}) → z ∈ {zA} as n → ∞)
and the sequence of sets {Txn} ⊂ T(A) ⊆ B converges to a subset {zB} ⊂ T{zA} ⊂ T(A) ⊂ B
of best proximity points in B with {zA} ⊂ T{zB} ⊂ T(B)⊂ A.
If D = , i.e., if A∩B �= ∅, then limn→∞ supm>n d(xm,xn) = limn→∞ d(xn+,xn) = , and any

sequence {xn} being iteratively generated as xn+ ∈ Txn, for any x = x ∈ A∪ B, is a Cauchy
sequence which converges to a fixed point z ∈ Tz ∩ (A∩ B) of T : A∪ B → A∪ B.
(ii)Assume that A∩B �= ∅, that A and B are convex, and that zi ∈ Tzi; i ∈N = {, , . . . ,N}

are fixed points of T : A ∪ B → A ∪ B. Then zi = zj ⊂ A ∩ B and Tzi ≡ Tzj ⊂ A ∩ B; ∀i, j
(�= i) ∈ N = {, , . . . ,N}, that is, the image sets of any fixed points are identical.
(iii)Consider a uniformly convex Banach space (X,‖ ‖), so that (X,d) is a completemetric

space for the norm-inducedmetric d : X×X → R+, and let A and B be nonempty, disjoint,
convex and closed subsets of X with T : A∪B → A∪B satisfying the contractive conditions
(.)-(.) with ω = –K

K
.

Then a sequence {xn} built so that xn ∈ Txn– with xn– ∈ Txn– is a Cauchy se-
quence in A if x ∈ A and a Cauchy sequence in B if x ∈ B so that limn→∞ d(xn+,xn+) =
limn→∞ d(xn+,xn) = ; ∀x ∈ A ∪ B, and limn→∞ d(xn+,xn+) = limn→∞ d(xn+,xn) =
D; ∀x ∈ A ∪ B. If x ∈ A and x ∈ Tx ⊂ T(A) ⊂ B, then the sequences of sets {Tnx} ≡
{T(Tn–x)} and {Tn+x} converge to unique best proximity points zA ∈ TzB and zB ∈ TzA
in A and B, respectively.

Proof The proof is organized by firstly splitting it into two parts, namely, the situations:
(a)M defined in (.a), or (b)M, defined in (.b), gives the maximum forM, defined in
(.); and then in five distinct cases concerning (.), subject to (.), as follows.
(a) Assume that M(x, y,α,β) < M(x, y,K ). Take, with no loss in generality, x ∈ A and

y ∈ Tx and note that ϕ(x, y,K ,α,β)d(x,Tx)≤ d(x,Tx)≤ d(x, y) since ϕ(x, y,K ,α,β) ∈ (, ],
which implies that ϕ(x, y,K ,α,β)d(x,Tx) ≤ d(x,Tx), and since y ∈ Tx, then it follows that
d(x,Tx) ≤ d(x, y). Since M(x, y,α,β) < M(x, y,K ), then one gets from the definition of
Hausdorffmetric (.) and the contractive condition (.), which holds for any x, y ∈ A∪B,
that for some y ∈ Tx,

d(y,Ty) ≤ H(Tx,Ty) ≤M(x, y,K ,α,β) +ωD =M(x, y,K ) +ωD

= K max

{
d(x, y),d(x,Tx),d(y,Ty),



(
d(x,Ty) + d(y,Tx)

)}
+ωD

= K max

{
d(x, y),d(y,Ty),

d(x,Ty)


}
+ωD

= K max

{
d(x, y),

d(x,Ty)


}
+ωD (.)

since K ∈ [, ), d(x,Tx) ≤ d(x, y) and d(y,Tx) = ; ∀y ∈ Tx. Also, since β ∈ [, ) and
ϕ(y,x,K ,α,β)d(y,Ty) ≤ d(y,Ty) ≤ d(x, y), then d(y,Ty) ≤ 

–β
(d(x, y) + ωD). Thus, there is

http://www.fixedpointtheoryandapplications.com/content/2013/1/324
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y ∈ Tx such that d(y,Ty) ≤ 
–β

(d(x,Tx) +ωD) so that

d(y,Ty) ≤ min

(
α

 – β
d(x,Tx),K max

{
d(x, y),

d(x,Ty)


})
+

ωD
 – β

≤ min

(
α

 – β
d(x,Tx),K max

{
d(x, y),

d(x, y) + d(y,Ty)


})
+

ωD
 – β

≤ min

(
α

 – β
d(x,Tx),K max

{
d(x, y),

d(y,Ty)


})
+

ωD
 – β

≤ min

(
α

 – β
d(x,Tx),Kd(x, y)

)
+

ωD
 – β

≤ max

(
K ,

α

 – β

)
d(x, y) +

ωD
 – β

(.)

since d(x,Tx)≤ d(x, y); ∀y ∈ Tx.
(b) Assume thatM(x, y,α,β)≥M(x, y,K ) so that

d(y,Ty) ≤M(x, y) = αd(x,Tx) + βd(y,Ty) +ωD. (.)

This implies also that d(y,Ty) ≤ α
–β

d(x,Tx) + ωD
–β

and again (.) holds for y ∈ Tx. As a
result,

d(y,Ty) ≤max

(
K ,

α

 – β

)
d(x, y) +

ωD
 – β

; ∀x ∈ A,∀y ∈ B.

By interchanging the roles of the sets A and B, one also gets by proceeding in a similar
way:

d(x,Tx)≤max

(
K ,

β

 – α

)
d(x, y) +

ωD
 – α

; ∀x ∈ A,∀y ∈ B.

Thus,

d(x,Tx) ≤ max

(
K ,

β

 – α
,

α

 – β

)
d(x, y) +max

(


 – α
,


 – β

)
ωD

= Kd(x, y) +KωD; (.)

∀(x, y) ∈ (A∪B)× [T(A∪B)], where K =max(K , β

–α
, α
–β

) ∈ [, ) and K =max( 
–α

, 
–β

).
Note that since T : A∪ B → A∪ B is cyclic, then y,Tx ∈ B if x ∈ A and conversely.
Now, construct a sequence {xn} in A ∪ B as follows: x = x ∈ A,x ∈ Tx ⊂ T(A) ⊂

B, . . . ,xn ∈ Txn– ⊂ T(A) ⊂ B, . . . ,xn+ ∈ Txn ⊂ T(B)⊂ A which satisfies

D ≤ d(xn+,xn) ≤ Kd(xn,xn–) +ωKD

≤ Kn–
 d(x,x) +

( n–∑
i=

Ki


)
KωD; n ∈N

≤ Kn–
 d(x,x) +

 –Kn–


 –K
KωD < ∞; n ∈N. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/324
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Then D ≤ limsupn→∞ d(xn+,xn) ≤ KωD
–K

. On the other hand,

j∑
n=

d(xn+,xn) ≤
j∑

n=

(
Kn–
 d(x,x) +

 –Kn–


 –K
KωD

)

≤ 
 –K

[(
 –Kj


)
d(x,x) +

( j∑
n=

(
 –Kn–


))

KωD

]
; n ∈N (.)

so that

∞∑
n=

d(xn+,xn) ≤ 
 –K

[
d(x,x) +

( ∞∑
n=

(
 –Kn–


))

KωD

]
; n ∈ N, (.)

and we conclude that {xn} is a Cauchy sequence if D =  (i.e., if A and B intersect pro-
vided that they are bounded or simply if d(x,x) < ∞) since limn→∞ supm>n d(xm,xn) =
limn→∞ d(xn+,xn) = , which has a limit z in X, since (X,d) is complete, which is also in
A ∩ B which is nonempty and closed since A and B are both nonempty and closed since
T(A) ⊆ B and T(B)⊆ A. On the other hand, for any distance D≥  between A and B,

D ≤ d(xn+,xn+) ≤ Kn+
 d(x,x) +

( n∑
i=

Ki


)
ωD

≤ Kn+
 d(x,x) +

 –Kn+


 –K
KωD; n ∈N, (.)

D ≤ d(xn+,xn+) ≤ Kn
 d(x,x) +

(n–∑
i=

Ki


)
ωD

≤ Kn
 d(x,x) +

 –Kn


 –K
KωD; n ∈N, (.)

 ≤ d(xn+,xn+)≤ Kd(xn+,xn) +ωD ≤ K
 d(xn+,xn–) + ( +K)KωD

≤ K
 d(xn,xn–) +

(
 +K +K


)
ωD ≤ K

 d(xn–,xn–) +
(
 +K +K

 +K

)
KωD

≤ Kn
 d(x,x) +

(n–∑
i=

Ki


)
ωD ≤ Kn

 d(x,x) +
 –Kn


 –K

KωD; n ∈ N. (.)

Note that the sequences {d(xn,xn+)} and {d(xn,xn+)} are bounded if x and x ∈ Tx are
such that d(x,x) < ∞, which is always guaranteed if A and B are bounded. If ω = –K

K
,

then one gets from the above relations that

∃ lim
n→∞d(xn+,xn+) = lim

n→∞d(xn+,xn+) =D,

where xn+ ∈ Txn ⊂ A, xn+ ∈ Txn+ ⊂ B and xn+ ∈ Txn+ ⊂ A. Thus, any sequences
of sets {xn+} and {xn} contain the best proximity points ofA and B, respectively, if x ∈ A
and, conversely, of B and A if x ∈ B and converge to them. This follows by contradiction
since, if not, for each k ∈ N, there is some ε = ε(k) ∈ R+, some subsequence {nkj}j∈N of
natural numbers with nkm > nkj > k form > j, and some related subsequences of real num-
bers {xnkj+} and {xnkj} such that d(xnkj+,xnkj+) ≥D+ ε so that d(xnk+,xnk+) →D as
nk → ∞ is impossible.

http://www.fixedpointtheoryandapplications.com/content/2013/1/324
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Now, assume D =  and consider separately the various cases in (.)-(.), by us-
ing the contractive condition (.), subject to (.)-(.), to prove that there is z ∈ Tz
in A ∩ B to which all sequences converge by using D =  ⇒ limn→∞ supm>n d(xm,xn) =
limn→∞ d(xn+,xn) = ⇒ {xn} → z ∈ A∩B with {xn} being a Cauchy sequence since (X,d)
is complete and A and B are nonempty and closed.
Case : ϕ(x, y,K ,α,β) = , ([(α,β) ∈ Δ] ∨ [(α,β) ∈ Δ]) ∧ (M(z, z,K ,α,β) = M(z, z,

α,β) >M(z, z,K )).
Then d(z,Tz) = ϕ(z, z,K ,α,β)d(z,Tz) ≤ (α + β)d(z,Tz) ≤ ( – α)d(z,Tz) if (α,β) ∈ Δ.

Thus, the contradiction d(z,Tz) < d(z,Tz) holds if (α,β) ∈ Δ, α �=  and z /∈ Tz. Hence,
z ∈ Tz if (α,β) ∈ Δ with α �=  since Tz is closed. If α = , then ≤ β <  so that d(z,Tz) ≤
βd(z,Tz) < d(z,Tz) if z /∈ Tz. Hence, z ∈ Tz if α =  and (,β) ∈ Δ. The proof that z ∈ Tz
if (α,β) ∈ Δ is similar since (α,β) ∈ Δ ⇔ (β ,α) ∈ Δ from the definitions of the sets Δ

and Δ, and the fact that distances have the symmetry property.
Case : ϕ(z, z,K ,α,β) =  – β , ([(α,β) ∈ Δ]) ∧ (M(z, z,K ,α,β) = M(z, z,α,β) > M(z,

z,K )).
Then the contractive condition becomes ( – β)d(z,Tz) = ϕ(x, y,K ,α,β)d(z,Tz) ≤ (α +

β)d(z,Tz). Then either z ∈ Tz or z /∈ Tz and  < α + β with (α,β) ∈ Δ. But the second
possibility is impossible since Δ = {(α,β) ∈ Δ : α ∈ (, /), –α

 ≥ β} so that  ≥ α + β .
Hence, z ∈ Tz since Tz is closed.
Case : ϕ(z, z,K ,α,β) = –β

–β+α
, ((α,β) ∈ Δ) ∧ (M(z, z,K ,α,β) = M(z, z,α,β) > M(z,

z,K )).
Then –β

–β+α
d(z,Tz) = ϕ(z, z,K ,α,β)d(z,Tz) ≤ (α+β)d(z,Tz) if (α,β) ∈ Δ, which implies

for z /∈ Tz if (α,β) ∈ Δ that –β

–β+α
> α + β , equivalently,  > α( + α) + β( – β). Since

Δ = {(α,β) ∈ Δ : α( + α) + β( – β) ≥ }, z /∈ Tz with (α,β) ∈ Δ is impossible. Hence,
z ∈ Tz since Tz is closed.
Case : ϕ(x, y,K ,α,β) = , ( ≤ K < /)∧ (M(z, z,α,β) ≤M(z, z,K ,α,β) =M(z, z,K )).
Then d(z,Tz) = ϕ(z, z,K ,α,β)d(z,Tz) ≤ K max{d(z, z),d(z,Tz), d(z,Tz) } = Kd(z,Tz) < d(z,

Tz), which is a contradiction for any z /∈ Tz. Hence, z ∈ Tz since Tz is closed.
Case : ϕ(x, y,K ,α,β) =  – K , (/ ≤ K < ) ∧ (M(z, z,α,β) ≤ M(z, z,K ,α,β) = M(z,

z,K )).
Then

( –K )d(z,Tz) = ϕ(z, z,K ,α,β)d(z,Tz) ≤ d(z,Tz)

⇒ d(z,Tz) ≤ K max

{
d(z, z),d(z,Tz),

d(z,Tz)


}
= Kd(z,Tz) < d(z,Tz),

which is a contradiction if z /∈ Tz. Hence, z ∈ Tz since Tz is closed. A combined result of
Cases - is thatD =  ⇒ {xn} → z ∈ Tz∩(A∩B) for any x ∈ A∪B. Now, assume again that
A∩B �= ∅ and that there are two distinct fixed points zx (�= zy ∈ Tzy) ∈ Tzx necessary located
in A ∩ B to which the sequences {xn} and {yn} converge to z ∈ A ∩ B and q (�= z) ∈ A ∩ B,
respectively, where xn+ ∈ Txn, yn+ ∈ Tyn for n ∈ N, where x, y (�= x) ∈ A ∪ B. Assume
also that Tz �= Tq. One gets from the contractive condition (.), subject to (.)-(.), that

max
(
d(z,Tq),d(q,Tz)

) ≤ max
(
sup
x∈Tz

d(x,Tq), sup
y∈Tq

d(y,Tz)
)

≤ K max
(
d(z,q), /

(
d(z,Tq) + d(q,Tz)

))
= Kd(z,q) < d(z,q).

http://www.fixedpointtheoryandapplications.com/content/2013/1/324


De la Sen et al. Fixed Point Theory and Applications 2013, 2013:324 Page 9 of 21
http://www.fixedpointtheoryandapplications.com/content/2013/1/324

Thus, construct sequences zn+ ∈ Tzn, qn+ ∈ Tqn with z = z and q = q such that
d(z,qn+) < d(z,qn) and d(q, zn+) < d(q, zn) for n ∈ N. Since z,q ∈ A∩Bwhich is nonempty,
closed and convex, for any given ε ∈ R+, there is n = n(ε) such that xn and qn are in A∩B
for n ≥ n. Then qn → ẑ (∈ Tz) and zn → q̂ (∈ Tq) as n → ∞ with z ∈ Tz ∩ A ∩ B and
q ∈ Tq ∩ A ∩ B. Hence, Tz ≡ Tq in A ∩ B contradicting the hypothesis that such sets are
distinct. Properties (i)-(ii) have been proven.
Property (iii) is proven by using, in addition, [, Lemma .], one gets

∃ lim
n→∞d(xn+,xn+) = lim

n→∞d(xn+,xn+) =D ⇒ lim
n→∞d(xn+,xn+) = 

for any sequence {xn} with x ∈ A ∪ B and xn+ ∈ Txn since (X,d) is a uniformly convex
Banach space, A and B are nonempty and disjoint closed subsets of X and A is convex.
Note that Lemma . of [] and its given proof remain fully valid for multivalued cyclic
self-maps since only metric properties were used in its proof. It turns out that {xn+} is a
Cauchy sequence, then bounded, with a limit zA in A, which is also a best proximity point
of T : A∪ B → A∪ B in A since

lim
n→∞d(xn+,xn+) = lim

n→∞d(xn+, zA) =D≤ lim
n→∞d(xn+,xn) + lim

n→∞d(xn, zA)

= lim
n→∞d(xn, zA) ≤D

and then {xn} converges to some point zB ∈ TzA ⊂ B, which is also a best proximity point
in B (then zB ∈ TzA and TzA ⊂ B), since (X,d) is a uniformly convex Banach space and A
and B are nonempty closed and convex subsets of X. In the same way, zA ∈ TzB ⊂ A. Also,
{xn} and {xn+} are bounded sequences since {xn} is bounded and D < ∞. Also, if x ∈ B
and B is convex, then the above result holds with xn+ ∈ Txn ⊂ B, xn+ ∈ Txn+ ⊂ A and
xn+ ∈ Txn+ ⊂ B. Now, for D > , the reformulated five cases in the proof of Property (i)
would lead to contradictionsD = d(zA, zB) <D �=  if zA /∈ TzB or if zB /∈ TzA. From Proposi-
tion . of [], there are zA ∈ TzB and zB ∈ TzA such that D = d(zA,TzA) = d(zB,TzB) since
T : A∪B → A∪B is cyclic satisfying the contractive conditions (.)-(.), where A and B
are nonempty and closed subsets of a complete metric space (X,d), with convergent sub-
sequences {xn+} and {xn} in both A and B, respectively, for any x = x ∈ A and in B and
A, respectively, for any given x = y ∈ B. Assume that some given sequence {xn+} in A is
generated from some given x ∈ Awith xn+ ∈ Txn, which converges to the best proximity
point zA ∈ A∩TzB inA ofT : A∪B → A∪B. Assume also that there is some sequence {yn},
distinct from {xn}, in A generated from y (�= x) ∈ A with yn+ ∈ Tyn which converges to
zA ∈ A, where zB ∈ B∩TzA is a best proximity point inB ofT : A∪B → A∪B. Consider the
complete metric space (X,d) obtained by using the norm-induced metric in the Banach
space (X,‖ ‖) so that both spaces can bemutually identified to each other. Since d(x, y)≥D
for any x ∈ A and y ∈ B, it follows that D = d(zB, zA) = d(zA,TzA) = d(zB,TzB) < d(zA,TzA)
if zA ∈ A∩ TzB, where zA and zB are best proximity points of T : A∪ B → A∪ B in A and
B and TzB is the closure of TzB. Hence, zA, zA ∈ TzB and zB ∈ TzA and then any sequence
converges to best proximity points.
It is now proven by contradiction that the best proximity points in A and B are unique.

Assume that x, y ∈ A are two distinct best proximity points of T : A ∪ B → A ∪ B in A.
Then there are zx ∈ (Tx ∩ B) ⊂ B, zx ∈ (Ty ∩ B) ⊂ B, z′

x ∈ (Tzx ∩ A) ⊂ (Tx ∩ A) ⊂ A and
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z′
y ∈ (Tzy ∩A)⊂ (Ty∩A)⊂ A so that, one gets

D = ‖x – zx‖ =
∥∥z′

x – zx
∥∥ = ‖y – zy‖ =

∥∥z′
y – zy

∥∥,
which leads to the contradiction D > ‖y – zx‖ = ‖z′

x – zx‖ = D, and then x = y = zA ∈ A.
Hence Property (iii) has been proven. �

A special case of Theorem . is stated and proven in the subsequent result.

Corollary . Assume that (X,‖ ‖) is a uniform Banach space with associate norm-
induced metric d : X × X → R+, and let A and B be nonempty closed and convex subsets
of X. Assume also that K = , K = max( β

–α
, α
–β

) ∈ [, ), K = max( 
–α

, 
–β

) ∈ [,∞) and
ω = –K

K
in the contractive condition (.). If max(α,β) < /, then there are z ∈ A and

z ∈ B such that z ∈ (Tz ∩ Tz), z ∈ (Tz ∩ Tz), i.e., z and z are, respectively, best
proximity points of T : A ∪ B → A ∪ B in A and B, respectively, and simultaneously, fixed
points of T : A∪ B → A∪ B, respectively. In addition, if A∩ B �= ∅, then ∃z ∈ Tz is a fixed
point of T : A ∪ B → A ∪ B. The result also holds if max(α,β) <  (and, in particular, if
min(α,β) = ).

Proof Assume, with no loss in generality, that  ≤ β ≤ α ∈ [, /). Take u ∈ A and u ∈
Tu by noting that u ∈ Tu ⊂ T(A) ⊂ B since T : A ∪ B → A ∪ B a multivalued cyclic
self-mapping. �

Remark . Note that the particular caseM(Tx,Ty,K ,α,β) =M(Tx,Ty,α,β) in the con-
tractive condition (.) is useful to investigate multivalued cyclic Kannan self-mappings
which are contractive with α = β ∈ [, /) and some of their generalizations [, ].

The following result follows directly fromTheorem . and Corollary . without proof.

Corollary . Assume that T : A∪B→ A∪B is a single-valued cyclic self-mapping where
A and B are nonempty closed subsets of X where (X,d) is a complete metric space. Then
Theorem . and Corollary . still hold mutatis-mutandis for a fixed point z = Tz ∈ A∩B
if A and B are convex and intersect and best proximity points are zA ∈ A, zB ∈ B with
zA = TzB = TzA, if, in addition (X,‖ ‖) is a uniformly convex Banach space.

Remark . The results of this section can be extended mutatis-mutandis to multival-
ued s (≥ )-cyclic self-maps T :

⋃
i∈s̄ Ai → ⋃

i∈s̄ Ai, where s̄ = {, , . . . , s}, Ai (�= ∅) ⊂ X,
T(Ai) ⊆ Ai+ andAs+ ≡ A with (X,d) being a completemetric space. See [, , , ] and
references therein for some background results for single-valued cyclic s-self-mappings.

3 Example of application to time-varying discrete-time dynamic systems
3.1 Multi-control discrete-time linear dynamic system
The problems of stability in differential equations, difference equations and related dy-
namic systems are closely related to fixed point theory of single-valued functions since sta-
ble equilibrium points are fixed points [–]. Also, fixed point theory of a class of cyclic
self-mappings has been recently applied to differential and difference impulsive equations
in a stability context study []. On the other hand, some typical applications of multi-
valued maps can be located in the framework of dynamic programming techniques for
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optimal control of dynamic systems [, ]. Several tentative controls are tested to ob-
tain the one which minimizes a suitable cost function on a certain ahead time-interval.
One of them is selected as the optimal one. Ðorić and Lazović discussed in [] a dynamic
programming application in the continuous-time domain of contractive multivalued-self
maps under the theoretical results of their paper. Switches among distinct parameteriza-
tions of a dynamic system and the associate stabilization problem have been discussed in
the literature. Also, switching processes among different estimators of unknown systems
according to the optimization or suboptimization of some appropriate loss function have
been described so as to improve the estimation error. See, for instance, [–] and in-
cluded references. On the other hand, fixed point theory has been shown to be useful to
discuss the stability of iterative sequences and, in general, for the analysis of the stability of
discrete dynamic systems. See, for instance, [] and references therein.We now discuss a
linear time-varying discrete control problem under several tentative controls at each stage
with the purpose of selecting the control sequence which guarantees a prescribed stabil-
ity degree of the feedback system. The problem is stated in such a way that the tentative
state-trajectory solution is formally stated as a multivalued function generating several
point-to-point iterated sequences and one of them is being selected. In particular, each
current state generates a set of tentative ones at the next sampling time which belongs
to the image set of the current sampled state. The convergence to fixed points or to best
proximity points, if the trajectory solution sequence has a cyclic nature, describes the con-
vergence either to equilibrium points or to a limit cycle of the solution. This second case
occurs when the mapping defining the state-trajectory solution is cyclic and the subsets
on whose union such a mapping is defined do not intersect. Consider the discrete time-
varying control system:

xn+ = Anxn + Bnun; n ∈N =N∪ {}, (.)

where xn ∈ Rp is the state vector sequence for any n ∈ N =N ∪ {} under some nonzero
initial state x ∈ Rp and un = Knxn ∈ Rq for some  ≤ q ≤ p and all n ∈ N is the linear
time-varying control where Kn ∈ SKn = {K 

n,K
n , . . . ,KJn

n }; n ∈ N is a sequence of control
gain matrices in Rp×q which is chosen from an admissible set SKn of cardinal Jn ≤ J < ∞
values for each n ∈ N. System (.) is said to be an uncontrolled (or open-loop) system
if the control sequence is identically zero []. The controlled (or closed-loop) system for
any time-varying control being generated by a state-feedback control law under a gain
matrix sequence Kn ∈ SKn results to be

xn+ =Mnxn = Anxn + Bnun = (An + BnKn)xn; n ∈N, (.)

where {Mn} is a sequence of matrices in Rp×q of closed-loop dynamics. The stabilization
via linear state-feedback of (.) and its links to fixed point theory via Theorem . are
now discussed. For any sequence of natural numbers jn ∈ N with n ∈ N, the following
relation is obtained from (.):

xn+jn –

(n+jn–∏
i=n

[Ai]

)
x = C(n, jn)u(n, jn); n ∈N, (.)
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where

C(n, jn) =

[
Bn+jn–,An+jn–Bn+jn–, . . . ,

(n+jn–∏
i=jn+

[Ai]

)
Bjn

]
; n ∈N, (.)

u(n, jn) = [un+jn–,un+jn–, . . . ,ujn ]
T ; n ∈N, (.)

where the superscript ‘T ’ denotes matrix transposition. Note that if jn = p for n ∈N, then
C(n,p) is the p × qp controllability matrix of (.) on the sequence of samples {j}n+p–n .
Any prefixed state is reachable in any given prefixed number of samples from a null initial
condition by some linear time-invariant state-feedback control in at most p samples if and
only if (.) is reachable, that is, if

rankC(n, jn) = rank

(n+jn–∑
i=jn

(n+jn–∏
k=i+

[Ak]

)
BiBT

i

(n+jn–∏
k=i+

[Ak]

)T)
= p (.)

for any sequence of integers {jn} with jn ≥ p, n ∈ N with j =  such that {jn+ – jn} is
uniformly bounded. It is controllable to the origin if and only if it is reachable, that is, (.)
holds and, furthermore, An are all non-singular for n ∈ N. It is well known that if the
dynamic system (.) is controllable to the origin, then it is also stabilizable in the sense
that some linear time-varying state-feedback control sequence {uk} is such that xn →  as
n → ∞ for any x ∈ Rn. The controllability assumption can be weakened while keeping
the stabilizability property as follows.

Proposition . Assume that (.) is stabilizable (which is guaranteed if it is controllable
to the origin).
Then the following properties hold:
(i) There is a sequence of control gain matrices {Kn} such that all the matrices in the

subsequence {∏jn–
i= [Ajn+i+Bjn+iKjn+i]} are convergent matrices with jn ∈Nwith j =  being

some existing sequence with {jn+ – jn} being a uniformly bounded sequence for any n ∈N.
(ii) The subsequence {x∑n

i= ji} of states of the closed-loop system (.) converges to zero as
n → ∞. As a result, the sequence {xn} of states of the closed-loop system also converges to
zero as n → ∞.

Proof One gets from (.) that if such a sequence {jn} of finite natural numbers exists for
n ∈N with j = , then

xjn+jn+ =

(jn+–∏
i=

[Ajn+i + Bjn+iKjn+i]

)
xjn

=
n∏

k=

{(jk+–∏
i=

[Ajk+i + Bjk+iKjk+i]

)}
x →  (.)

as n → ∞ for some existing sequence of stabilizing controller gains {Kn} since
(
∏jn+–

i= [Ajn+i + Bjn+iKjn+i]), and then
∏n

k={(
∏jk+–

i= [Ajk+i + Bjk+iKjk+i])} are all convergent
matrices, i.e., with all their eigenvalues being of modulus less than one. Note that, since
system (.) is stabilizable, then such a sequence of nonnegative integers {jn} always exists
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since it exists with jn =  for all n ∈ N. Now, it follows from (.) for any vector-induced
matrix norm that

‖xj‖ =

∥∥∥∥∥
( j–∏
k=

∑n
i= ji

[Ak + BkKk]

)
x∑n

i= ji

∥∥∥∥∥
≤

∥∥∥∥∥
( j–∏
k=

∑n
i= ji

[Ak + BkKk]

)∥∥∥∥∥
∥∥∥∥∥
( n∏

k=

{(jk+–∏
i=

[Ajk+i + Bjk+iKjk+i]

)})
x

∥∥∥∥∥ →  (.)

as n→ ∞ for any integer j ∈ (
∑n

i= ji,
∑n+

i= ji) since ‖(∏n
k={(

∏jk+–
i= [Ajk+i +Bjk+iKjk+i])})×

x‖ →  as n→ ∞, and

∥∥∥∥∥
( j–∏
k=

∑n
i= ji

[Ak + BkKk]

)∥∥∥∥∥ ≤
∥∥∥∥∥
( jn+–∏
k=

∑n
i= ji

[Ak + BkKk]

)∥∥∥∥∥ ≤Q < ∞ (.)

since the sequence {jn+ – jn} is uniformly bounded. Thus, {xn} converges to zero for any
given x ∈ Rn. �

Proposition . is linked to Theorem . of Section  in the subsequent result.

Theorem . The following properties hold:
(i) Assume that system (.) is stabilizable and a linear time-varying feedback control

un = Knxn ∈ Rq is used where Kn ∈ SKn = {K 
n,K

n , . . . ,KJn
n } for any n ∈ N. Assume also

that for each j ∈ [
∑n

k= jk ,
∑n+

k= jk) for some sequence of nonnegative integers {jn}, such
that {jn+ – jn} is uniformly bounded, for any n ∈ N with j = , there is a controller
gain Kk

j ∈ SKJn = {K ∑n
k= jk

,K∑n
k= jk

, . . . ,KJjn∑n
k= jk

} for some integer k ∈ [, Jjn ] with Jn ≤ J < ∞
for all n ∈ N such that any matrix in the subsequence of matrices {∏jn+–

i= [A∑n
k= jk+i +

B∑n
k= jk+iK

k∑n
k= jk+i

]} is convergent for each k ∈ [, Jjn ] for some uniformly bounded sequence
of samples {jn+ – jn} and some set of upper-bounded positive integer numbers Jn for all
n ∈N.
(ii) If, in addition, the elements of the subsequence of pairs {(Ajn ,Bjn )} are all controllable

for some sequence of nonnegative integers {jn},with the sequence of natural numbers {jn+ –
jn} being uniformly bounded, then the closed-loop system can be exponentially stabilized
via time-varying linear control with prescribed stability degree.

Outline of proof Property (i) follows directly from Proposition .. Property (ii) follows
since all the pairs (Ajn ,Bjn ) being controllable implies that the matrices of the closed-loop
dynamics satisfy at the subsequence {jn} of samples the following matrix relation:

Mjn = Ajn + BjnKjn = Ajn +
q∑
i=

B(i)
jn K

(i)T
jn ≈

[
 Ip–
gTjn

]
, (.)

where the superscript ‘(i)’ stands for the ith row vector of matrix, ‘≈’ stands for matrix
similarity, Ip– denotes the (p–) identity matrix and gTjn denotes some prefixed p-real row
vector by the appropriate choice of the real controller matrix Kjn , since (Ajn ,Bjn ) is con-
trollable, towards the achievement of a suitable closed-loop stability degree. Note that the
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closed-loop matrix of dynamics at the jn-sample is similar by a similarity transformation
to its companion block partitioned form in (.). Thus, bothmatrices have the same char-
acteristicmonic polynomial, thus the same characteristic roots which are also the prefixed
eigenvalues of the closed-loop dynamics given by (.), which can be arbitrarily fixed via
Kjn such that its non-leading real coefficients are the components of the real row vector gTjn .
Thus, the sequence of closed-loopmatrices can be chosen with the sequenceMjn having a
stability degree ρjn ∈ (, ) such that the stability degree of (

∏jn+–
i= [Mjn+i])Mjn ≤ ρ ∈ (, ).

This follows since ‖∏jn+–
i= [Mjn+i]‖ ≤ P < ∞ since {jn+ – jn} is uniformly bounded. Thus,

the time-varying closed-loop system is exponentially stable with prescribed stability de-
gree ρ and ‖xj‖ ≤ Pρn‖x‖ for any integer j ∈ [jn, jn+) and n ∈N. �

The stability degree is defined by the modulus of the dominant eigenvalue of the matrix
of dynamics if the dominant eigenvalue is simple and such a number is a strict upper-
bound of the stability degree, otherwise. At samples which are not in the subsequence
{jn}, the controller gains may be chosen arbitrarily. The exponential stabilization of the
closed-loop system is now related to Theorem . as follows. Assume that the sequence
{SKjn} of sets of matrices SKjn = {K 

jn ,K

jn , . . . ,K

Jjn
jn } contains at least a stabilizing matrix such

that Theorem .(ii) holds via stabilization with such stabilizing matrices.
Then Theorem . is applicable to some subset A = B ⊂ X ≡ Rp being a nonempty

bounded set about  ∈ Rp such that the initial condition of (.) satisfies x ∈ A ⊂ A of
with D =  since A = B. Take the distance function equal to the Euclidean norm so that we
can consider the complete metric space (X,d) to be identical to the Banach space (X,‖ ‖).
Re-denote the sequence of points in A as the states xj ≡ x (∈ A) → x ∈ A (the replace-
ment is made following the notation of Theorem .), xj ≡ xj (∈ A) → x ∈ A,xj ≡ xj
(∈ A)→ x ∈ A, . . . . If Theorem .(ii) holds, then there is some boundedA ⊃ A such that
T : A→ A defined by (Txn = xn+) → ((

∏jn+–
i= [Mjn+i])Mjnxjn = xjn+ ) for n ∈N is a contrac-

tive mapping which defines the state trajectory solution at the points of the sampling sub-
sequence {jn}. TakeK = K = ρ <  and α = β =  inTheorem.. Note that if the stabilizing
matrix is chosen within the sequence of matrices, then T : A → A is single-valued. If all
the matrices in the sequence KJn = {K ∑n

k= jk
,K∑n

k= jk
, . . . ,KJjn∑n

k= jk
} are tested, then themul-

tivalued map T : A→ A is defined as Txn = {xn+, . . . ,xJnn+} such that xn,xn+ ∈ Txn satisfies
the Hausdorff particular contractive condition of Theorem .. Also, one of the points of
the sequence of sets {Txn} satisfies the point-to-point contractive particular condition of
Theorem ., by virtue of such a theorem, according to the constraints

∥∥(Tjn+ – I)xjn+
∥∥ ≤ ∥∥(Tjn+ – I)

∥∥‖xjn+‖ ≤ K
∥∥(Tjn – I)xjn

∥∥ ≤ Kn

∥∥(Tjn – I)x

∥∥ (.)

obtained from the stabilizing control matrix sequence, and, furthermore, ‖xjn+j‖ ≤
PK‖xjn‖ for all samples given by the integers j ∈ [, jn+). Note that the 	-matrix norm
of any real matrix M of any order satisfies λ/

min(MTM) ≤ ‖M‖ = λ/
max(MTM), where

λmax(·) and λmin(·) stand, respectively, for the maximum and minimum eigenvalues of the
(·)-matrix with all its eigenvalues being real. A weak result is obtained with the particular
case K = β =  and K = α

–α
= ρ

–ρ
<  for  < ρ < / in the contractive condition of The-

orem .. In this case, we have a multivalued contractive Kannan self-mapping. In both
cases,  ∈ Rp is a fixed point of T : A→ A for any A⊂ X which is also a stable equilibrium
point of the closed-loop dynamic system. Now assume p = q = , that is, the uncontrolled
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system (.) is scalar subject to a scalar control with A = {z ≥ ε : z ∈ R} ⊆ R+ and B = –A
for some given ε ∈ R+. Take x ∈ A ∪ B, then |x| ≥ ε, and note that D = dist(A,B) = ε.
The tentative controller gains used are Ki

n = –δin sgnxn if xn �=  and Ki
n =  if xn =  for

the bounded sets of integers i ∈ [, Jn] for n ∈N, where the nonnegative real sequences of
sets {δin :  ≤ i ≤ Jn} are uniformly bounded and contain a strictly decreasing positive real
sequence {δinjn } with in ∈ [, Jjn ] and some existing difference sequence of integers {jn+ – jn}
being uniformly upper-bounded for n ∈N.
The formalism of Section  is applicable to bounded sets A ⊂ A and B ⊂ B with

max(diamA,diamB) = ||x| – ε|. If ε = , then a particular case of the above result fol-
lows for p = . If ε > , then the closed-loop state-trajectory solutions {xn+} and {xn+}
converge to the best proximity points ε and –ε, respectively, if the initial condition is in A
and, conversely, if it is in B under the sequence of stabilizing matrices {δinjn }.

3.2 Numerical example: a vector-valued discrete-time dynamic systemwith
multiple parameterizations

A numerical simulation of the above-presented example (.) is given now. Consider the
discrete-time dynamic switched system described by

xn+ = Txn = Aσ (n)xn + Bσ (n)un (.)

with

A =

[
 .

–. .

]
, A =

[
 .

–. .

]
,

A =

[
 .

–. .

]
, B = – · [ .

]T ,
B = – · [ .

]T , B = – · [ .
]T

and σ :N → {, , } being the so-called switching function, which selects one of the dy-
namic systems subscripted by ,  or  which parameterize the time-varying system (.)
at each discrete-time instant (or sample), n. This dynamic system is a simplified version
of an automobile roll dynamics enhancement control system given in []. The switching
function is assumed, for simulation purposes, to be the -sample periodic (cyclic) sequence
→  → → →  → ·· · . The following state-feedback gains are considered:

K ()
n =  · [. –.

]T , K ()
n =  · [– .

]T ,
K ()
n =  · [–. .

]T . (.)

The control design problem can be formulated as how to select the appropriate feedback
gain at each sample, Kn, from the set {K ()

n ,K ()
n ,K ()

n } in order to guarantee the asymptotic
stability of the closed-loop. For this purpose, a dynamic optimization procedure can be
used. Therefore, n, one considers the multivalued map xn+ = Txn = Aσ (n)xn +Bσ (n)K (i)

n xn =
(Aσ (n) +Bσ (n)K (i)

n )xn for i = , ,  for each sample n ∈N from R to R. The Banach space
(R,‖ ‖) can be identified with the metric space (R,d) by taking the distance d : X ×X →
R+ to be the Euclidean norm. Thus, d(xn, ) = ‖xn‖ and d(xn,xn+)x = ‖xn+ – xn‖ so that
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Figure 2 Graphical representation of two iterations of the multivalued map T .

it is direct to apply the formalism and results of Section . The multivalued composite
map THxn = T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸

H

xn represents the set of reachable states starting from xn for

all potential feedback gains {K ()
n ,K ()

n ,K ()
n } at each sample. Figure  displays graphically

this concept. The starting point is depicted with a circle. The application of the multival-
ued map T to this point produces the three points (each one corresponding to one of the
feedback matrices {K ()

n ,K ()
n ,K ()

n }), labeled as first iteration in Figure . A second applica-
tion of T generates three more points from each previous one, providing nine new points,
which are depicted in Figure  as the second iteration. This procedure can be continued
to generate the complete set of reachable states from xn. The ‘plus’ symbols are used to
represent the image for K ()

n , dots are used for K ()
n , while squares are used to represent the

image for K ()
n .

The control algorithm generates all the images of the multivalued map T and then
chooses the gain Kn in such a way that the null vector, z = , is a fixed point of the multi-
valued map T . In this example, the choice Kn = K ()

n for all n≥  allows stabilizing asymp-
totically the system. Then, according to Proposition ., all the states are bounded and the
norm of the state converges to zero asymptotically as Figures  and  show.
In addition, it can be verified that the following matrices are convergent as Proposi-

tion .(i) states:

eig

( ∏
k=

[Aσ (k) + Bσ (k)K]

)
= {., .},

eig

( ∏
k=

[Aσ (k) + Bσ (k)K]

)
= {.± .j},

eig

( ∏
k=

[Aσ (k) + Bσ (k)K]

)
= {., .}

while the eigenvalues of the matrix product
∏N

k=[Aσ (k) + Bσ (k)K], which describes the
evolution of the discrete dynamics, converge asymptotically to zero as N → ∞.
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Figure 3 Evolution of the states with initial condition xT0 = [3 6] and Kn = K (1)
n .

Figure 4 Evolution of the norm of the state, ‖xn‖.

3.3 Numerical example: a scalar discrete-time dynamic systemwith multiple
parameterization

Nowconsider the controlled single-input single-output (SISO) dynamic systemof the con-
trol sequence {un}n∈N given by

xn+ = Txn = xn + un (.)

with the state-feedback control law un = Knxn, where Kn ∈ {K ()
n ,K ()

n ,K ()
n } = {–.,–,–}.

This system defines the multivalued map

xn+ = Txn = ( +Kn)xn =

⎧⎪⎪⎨
⎪⎪⎩
x()n+ = ( +K ()

n )xn,

x()n+ = ( +K ()
n )xn,

x()n+ = ( +K ()
n )xn.

(.)
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Figure 5 Several iterations of the multivalued map (3.14).

Note that (.) is a -cyclic self-mapping with non-disjoint semi-closed sets Ai (i = , )
of A = –A = R+ = R+ ∪ {} of X = R whose intersection is {}. Consider the complete
metric space (X,d) which is also a Banach space (X,‖ ‖) if the defined distance is the
Euclidean norm. Thus, from each value of xn, (.) generates an image set of dimension
, the points being labeled as x()n+, x

()
n+ and x()n+. If the iteration process goes on, then each

one of these values generates three more ones as depicted in Figure .
The multivalued map generates three images at k =  from the starting value at k = ,

x = . Then at k =  three more values are obtained from each previous one. However,
note that only four different values are obtained at k =  and five at k = . Thus, the im-
age of THxn possesses repeated values. Moreover, note that as the number of iterations
increases, there are a larger number of points approaching zero since the use of the sta-
bilizing gain K ()

n forces some of the previously obtained points to approach zero. The
particular numerical values for the first iterations showed in Figure  are as follows:

x = ,

x() = –, x() = , x() = –,

x(,) = ., x(,) = , x(,) = ,

x(,) = , x(,) = , x(,) = ,

x(,) = , x(,) = , x(,) = ,

x(,,) = x(,,) = x(,,) = x(,,) = x(,,) = x(,,) = x(,,) = x(,,) = x(,,) = x(,,)

= x(,,) = x(,,) = x(,,) = x(,,) = x(,,) = x(,,) = x(,,) = x(,,) = x(,,) = ,

x(,,) = –.,

x(,,) = x(,,) = x(,,) = –.,

x(,,) = x(,,) = x(,,) = –,

x(,,) = –,
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Figure 6 Evolution of the norm of xn .

where the subscript denotes the sample while the superscript denotes the sequence of
gains used to reach the point from k = . System (.) is asymptotically stabilizable pro-
vided that at least one of the following conditions for the sequence of feedback gains
{Kn}∞n= is met:

(i) {Kn}∞n= contains K ()
n at least once,

(ii) {Kn}∞n= contains K ()
n an infinite (countable) number of times.

For instance, the sequence Kn = K ()
n for all n≥  satisfies the above condition (ii) and, ac-

cording to Proposition ., the norm of the state will converge to zero as shown in Figure .
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