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Abstract
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1 Introduction and preliminaries
Throughout this paperwe assume thatE is a real Banach space andT : E → E is amapping.
We denote by F(T) and D(T) the set of fixed points and the domain of T , respectively.
Recently, the convergence problems of an implicit (or non-implicit) iterative process to

a common fixed point for a finite family of asymptotically nonexpansive mappings (or
nonexpansive mappings) in Hilbert spaces or uniformly convex Banach spaces have been
considered by several authors (see, e.g., [–]).
Recall that E is said to satisfy Opial’s condition [] if for each sequence {xn} in E, the

condition that the sequence xn → x weakly implies that

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖

for all y ∈ E with y �= x.

Definition . Let D be a closed subset of E and T :D→D be a mapping.
() T is said to be demi-closed at the origin if for each sequence {xn} in D, the

conditions xn → x weakly and Txn →  strongly imply Tx = .
() T is said to be semi-compact if for any bounded sequence xn in D such that

‖xn – Txn‖ →  (n→ ∞), there exists a subsequence {xni} ⊂ {xn} such that
xni → x∗ ∈D.
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() T is said to be asymptotically nonexpansive [] if there exists a sequence
{kn} ⊂ [,∞) with limn→∞ kn =  such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖, ∀x, y ∈D,n≥ ;

when kn ≡ , T is known as a nonexpansive mapping.
() T is said to be L-Lipschitzian if there exists a constant L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖ for all x, y ∈D.

Proposition . Let K be a nonempty subset of E, and let {Ti}mi= : K → K be m asymptoti-
cally nonexpansive mappings. Then there exists a sequence {kn} ⊂ [,∞) with kn →  such
that

∥∥Tn
i x – Tn

i y
∥∥ ≤ kn‖x – y‖, ∀n≥ ,x, y ∈ K , i = , , . . . ,m. (.)

Proof Since for each i = , , . . . ,m, Ti : K → K is an asymptotically nonexpansive map-
ping, there exists a sequence {k(i)n } ⊂ [,∞) with k(i)n →  (n→ ∞) such that

∥∥Tn
i x – Tn

i y
∥∥ ≤ k(i)n ‖x – y‖, ∀x, y ∈ K ,∀n≥ , i = , , . . . ,m.

Letting

kn =max
{
k()n ,k()n , . . . ,k(m)

n
}
,

we have that {kn} ⊂ [,∞) with kn →  (n→ ∞) and

∥∥Tn
i x – Tn

i y
∥∥ ≤ k(i)n ‖x – y‖ ≤ kn‖x – y‖, ∀n≥ 

for all x, y ∈ K and for each i = , , . . . ,m. �

In , for studying the strong and weak convergence of fixed points of nonexpan-
sive mappings in a Hilbert space H , Wang [] introduced the following hybrid iteration
scheme:

xn+ = αnxn + ( – αn)Tλn+xn, ∀n≥ , (.)

where Tλn+xn = Txn – λn+μF(Txn) for all xn ∈ H , x ∈ H is an initial point, F :H → H is
an η-strongly monotone and k-Lipschitzian mapping, μ is a positive fixed constant.
In the same year, Osilike et al. [] extended the results of Wang from Hilbert spaces to

arbitrary Banach spaces and proved those theorems by Wang without the strong mono-
tonicity condition.
In this paper, we introduce the following new hybrid iterationmethod in Banach spaces:

xn+ = αnxn + ( – αn)

[ m∑
i=

τiTn
i xn – λn+μf

( m∑
i=

τiTn
i xn

)]
, ∀n≥  (.)
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for a finite family of asymptotically nonexpansive mappings {Ti}mi= : K → K , where f :
K → K is an L-Lipschitzian mapping, μ is a positive fixed constant, {αn} is a sequence in
(, ), {λn} ⊂ [, ) and {τi}mi= ⊂ (, ) such that

∑m
i= τi = .

Especially, if {Ti}mi= : K → K are m nonexpansive mappings, f : K → K is an L-
Lipschitzian mapping, μ is a positive fixed constant, {αn} is a sequence in (, ), {λn} ⊂
[, ) and {τi}mi= ⊂ (, ) such that

∑m
i= τi = , then the sequence {xn} defined by

xn+ = αnxn + ( – αn)

[ m∑
i=

τiTixn – λn+μf

( m∑
i=

τiTixn

)]
, ∀n≥ , (.)

is called the hybrid iteration scheme for a finite family of nonexpansive mappings {Ti}Ni=.
The purpose of this paper is to study the weak and strong convergence of an iterative

sequence {xn} defined by (.) and (.) to a common fixed point for a finite family of
asymptotically nonexpansive mappings and nonexpansive mappings in Banach spaces.
The results presented in this paper extend and improve the main results in [] and [].
In order to prove the main results of this paper, we need the following lemmas.

Lemma . [] Let {an}, {bn}, {cn} be three nonnegative real sequences satisfying the fol-
lowing condition:

an+ ≤ ( + bn)an + cn, ∀n≥ .

If
∑∞

n= bn < ∞ and
∑∞

n= cn < ∞, then the limit limn→∞ an exists.

Lemma . [] Let E be a uniformly convex Banach space, and let b, c be two constants
with  < b < c < . Suppose that {tn} is a sequence in [b, c] and {xn}, {yn} are two sequences
in E. Then the conditions

⎧⎪⎨
⎪⎩
limn→∞ ‖( – tn)xn + tnyn‖ = d,
lim supn→∞ ‖xn‖ ≤ d,
lim supn→∞ ‖yn‖ ≤ d,

imply that limn→∞ ‖xn – yn‖ = , where d ≥  is some constant.

Lemma . [] Let E be a uniformly convex Banach space, let K be a nonempty closed
convex subset of E, and let T : K → K be an asymptotically nonexpansive mapping with
F(T) �= ∅. Then I –T is semi-closed at zero, where I is the identity mapping of E, that is, for
each sequence {xn} in K , if {xn} converges weakly to q ∈ K and {(I –T)xn} converges strongly
to , then (I – T)q = .

2 Main results
We are now in a position to prove our main results in this paper.

Theorem . Let E be a real uniformly convex Banach space, let K be a nonempty closed
convex subset of E, and let {T,T, . . . ,Tm} : K → K be m asymptotically nonexpansive
mappings with F =

⋂m
i= F(Ti) �= ∅ (the set of common fixed points of {T,T, . . . ,Tm});

f : K → K is an L-Lipschitzian mapping. Let the hybrid iteration {xn} be defined by (.),

http://www.fixedpointtheoryandapplications.com/content/2013/1/322
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where {αn} and {λn} are real sequences in [, ), let {kn} be the sequence defined by (.)
satisfying the following conditions:

(i) α ≤ αn ≤ β for some α,β ∈ (, );
(ii)

∑∞
n=(kn – ) < ∞;

(iii)
∑∞

n= λn < ∞.
Then
() limn→∞ ‖xn – p‖ exists for each p ∈ F ,
() limn→∞ ‖xn – Tlxn‖ = , ∀l = , , , . . . ,m,
() {xn} converges strongly to a common fixed point of {T,T,T, . . . ,Tm} if and only if

limn→∞ d(xn,F) = .

Proof () Since F =
⋂m

i= F(Ti) �= ∅, for each p ∈ F , it follows from Proposition . that

‖xn+ – p‖ =

∥∥∥∥∥αnxn + ( – αn)

[ m∑
i=

τiTn
i xn – λn+μf

( m∑
i=

τiTn
i xn

)]
– p

∥∥∥∥∥
≤ αn‖xn – p‖ + ( – αn)

∥∥∥∥∥
m∑
i=

τi
(
Tn
i xn – Tn

i p
)∥∥∥∥∥

+ ( – αn)λn+μ

∥∥∥∥∥f
( m∑

i=

τiTn
i xn

)∥∥∥∥∥
≤ αn‖xn – p‖ + ( – αn)

m∑
i=

τi
∥∥Tn

i xn – Tn
i p

∥∥

+ ( – αn)λn+μ

∥∥∥∥∥f
( m∑

i=

τiTn
i xn

)
– f (p)

∥∥∥∥∥ + ( – αn)λn+μ
∥∥f (p)∥∥

≤ αn‖xn – p‖ + ( – αn)kn‖xn – p‖
+ ( – αn)λn+μknL‖xn – p‖ + ( – αn)λn+μ

∥∥f (p)∥∥. (.)

Since kn →  (n → ∞), we know that {kn} is bounded, and there exists M ≥  such that
kn ≤M. Let un = kn –, ∀n≥ , by condition (ii) we have

∑∞
n= un < ∞. Therefore we have

‖xn+ – p‖ ≤ αn‖xn – p‖ + ( – αn)( + un)‖xn – p‖
+ ( – αn)λn+μML‖xn – p‖ + ( – αn)λn+μ

∥∥f (p)∥∥
≤ αn‖xn – p‖ + ( – αn + un)‖xn – p‖

+ λn+μML‖xn – p‖ + λn+μ
∥∥f (p)∥∥

≤ ( + un + λn+μML)‖xn – p‖ + λn+μ
∥∥f (p)∥∥. (.)

Taking an = ‖xn – p‖, bn = un + λn+μML, cn = λn+μ‖f (p)‖ and by using condition (iii)
and

∑∞
n= un <∞, it is easy to see that

∞∑
n=

bn <∞;
∞∑
n=

cn < ∞.

It follows from Lemma . that limn→∞ ‖xn – p‖ exists.
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() Since {‖xn – p‖} is bounded, there existsM >  such that

‖xn – p‖ ≤M, ∀n≥ . (.)

We can assume that

lim
n→∞‖xn – p‖ = d, (.)

where d ≥  is some number. Since {‖xn – p‖} is a convergent sequence, so {xn} is a
bounded sequence in K . Let

σn =
m∑
i=

τiTn
i xn – λn+μf

( m∑
i=

τiTn
i xn

)
,

then

‖xn+ – p‖ = ∥∥αn(xn – p) + ( – αn)(σn – p)
∥∥. (.)

By (.) we have that

lim sup
n→∞

‖xn – p‖ = d. (.)

From (.) and (.) we have
∥∥∥∥∥f

( m∑
i=

τiTn
i xn

)∥∥∥∥∥ ≤ Lkn‖xn – p‖ + ∥∥f (p)∥∥
≤ LMM +

∥∥f (p)∥∥. (.)

By condition (iii), kn ≤M,
∑∞

n= un < ∞ and (.), (.), (.), we have that

lim sup
n→∞

‖σn – p‖ ≤ lim sup
n→∞

{∥∥∥∥∥
m∑
i=

τiTn
i xn – p

∥∥∥∥∥ + λn+μ

∥∥∥∥∥f
( m∑

i=

τiTn
i xn

)∥∥∥∥∥
}

≤ lim sup
n→∞

{
kn‖xn – p‖ + λn+μ

(
LMM +

∥∥f (p)∥∥)}
= lim sup

n→∞

{
( + un)‖xn – p‖ + λn+μ

(
LMM +

∥∥f (p)∥∥)}
≤ lim sup

n→∞

{‖xn – p‖ + unM + λn+μ
(
LMM +

∥∥f (p)∥∥)}
≤ d. (.)

Thus from (.), (.), (.), (.) and Lemma . we know that

lim
n→∞‖σn – xn‖ = . (.)

By (.), we have that

‖xn+ – xn‖ =
∥∥(αn – )xn + ( – αn)σn

∥∥
≤ ( – αn)‖σn – xn‖ →  (n→ ∞). (.)
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From (.) we obtain that

lim
n→∞‖xn+j – xn‖ = , ∀j = , , , . . . ,m. (.)

It follows from (.) and (.) that

lim
n→∞

∥∥∥∥∥xn –
m∑
i=

τiTn
i xn

∥∥∥∥∥ ≤ lim
n→∞

(
‖xn – σn‖ +

∥∥∥∥∥σn –
m∑
i=

τiTn
i xn

∥∥∥∥∥
)

≤ lim
n→∞

(
‖xn – σn‖ + λn+μ

∥∥∥∥∥f
( m∑

i=

τiTn
i xn

)∥∥∥∥∥
)

≤ lim
n→∞

(‖xn – σn‖ + λn+μ
(
LMM +

∥∥f (p)∥∥))
= . (.)

Let ξl,n = ‖xn – Tn
l xn‖, l ∈ {, , , . . . ,m}, then from (.) we have

ξl,n =
∥∥xn – Tn

l xn
∥∥ =


τl

· τl
∥∥xn – Tn

l xn
∥∥

≤ 
τl

m∑
i=

τi
∥∥xn – Tn

i xn
∥∥ =


τl

∥∥∥∥∥xn –
m∑
i=

τiTn
i xn

∥∥∥∥∥
→  (n→ ∞). (.)

It follows from (.) and (.) that

‖xn – Tlxn‖ ≤ ∥∥xn – Tn
l xn

∥∥ +
∥∥Tn

l xn – Tlxn
∥∥

≤ ξl,n + k
∥∥Tn–

l xn – xn
∥∥

≤ ξl,n + k
(∥∥Tn–

l xn – Tn–
l xn–

∥∥ +
∥∥Tn–

l xn– – xn–
∥∥ + ‖xn– – xn‖

)
≤ ξl,n + k

(
kn–‖xn – xn–‖ + ξl,n– + ‖xn– – xn‖

)
= ξl,n + k( + kn–)‖xn – xn–‖ + ξl,n–

→  (n→ ∞). (.)

() From (.) and (.), we have that

‖xn+ – p‖ ≤ ( + bn)‖xn – p‖ + cn, ∀n≥ , (.)

where bn = un + λn+μML and cn = λn+μ‖f (p)‖ with
∑∞

n= bn < ∞ and
∑∞

n= cn < ∞.
Hence, we have

d(xn,F) ≤ ( + bn)d(xn–,F) + cn, ∀n≥ . (.)

It follows from (.) and Lemma . that the limit limn→∞ d(xn,F) exists.
If {xn} converges strongly to a common fixed point p of {T,T,T, . . . ,Tm}, then it fol-

lows from (.) and Lemma . that the limit limn→∞ ‖xn – p‖ = . Since  ≤ d(xn,F) ≤
‖xn – p‖, we know that limn→∞ d(xn,F) = , and so lim supn→∞ d(xn,F) = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/322
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Conversely, suppose lim supn→∞ d(xn,F) = , then limn→∞ d(xn,F) = .
Next we prove that the sequence {xn} is a Cauchy sequence in K . In fact, since

∑∞
n= bn <

∞,  + t ≤ exp{t} for all t > , from (.) we have

‖xn – p‖ ≤ exp{bn}‖xn– – p‖ + cn. (.)

Hence, for any positive integers n,m, from (.) it follows that

‖xn+m – p‖ ≤ exp{bn+m}‖xn+m– – p‖ + cn+m

≤ exp{bn+m}[exp{bn+m–}‖xn+m– – p‖ + cn+m–
]
+ cn+m

= exp{bn+m + bn+m–}‖xn+m– – p‖ + exp{bn+m}cn+m– + cn+m

≤ · · ·

≤ exp

{n+m∑
i=n

bi

}
‖xn – p‖ + exp

{ n+m∑
i=n+

bi

} n+m∑
i=n+

ci

≤ W‖xn – p‖ +W
∞∑

i=n+

ci,

whereW = exp{∑∞
n= bn} <∞.

Since limn→∞ d(xn,F) =  and
∑∞

n= cn < ∞, for any given ε > , there exists a positive
integer n such that

d(xn,F) <
ε

(W + )
,

∞∑
i=n+

ci <
ε

W
, ∀n≥ n.

Therefore there exists p ∈ F such that

d(xn,p) <
ε

(W + )
, ∀n≥ n.

Consequently, for any n≥ n and for allm≥ , we have

‖xn+m – xn‖ ≤ ‖xn+m – p‖ + ‖xn – p‖

< ( +W )‖xn – p‖ +W
∞∑

i=n+

ci

≤ ε

(W + )
( +W ) +W · ε

W
= ε.

This implies that {xn} is a Cauchy sequence inK . By the completeness ofK , we can assume
that xn → x∗ ∈ K . Then from () and Lemma . we have x∗ ∈ F , and so x∗ is a common
fixed point of T,T,T, . . . ,Tm. This completes the proof of Theorem .. �

Theorem . Let E be a real uniformly convex Banach space, let K be a nonempty closed
convex subset of E, and let {T,T,T, . . . ,Tm} : K → K be m asymptotically nonexpansive

http://www.fixedpointtheoryandapplications.com/content/2013/1/322
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mappings with F =
⋂m

i= F(Ti) �= ∅, and at least there exists Tl ,  ≤ l ≤ m, which is semi-
compact. f : K → K is an L-Lipschitzian mapping. Let {αn} and {λn} be real sequences in
[, ), {kn} be the sequence defined by (.) satisfying the following conditions:

(i) α ≤ αn ≤ β for some α,β ∈ (, );
(ii)

∑∞
n=(kn – ) < ∞;

(iii)
∑∞

n= λn < ∞.
Then the hybrid iterative process {xn} defined by (.) converges strongly to a common fixed
point of {T,T,T, . . . ,Tm} in K .

Proof From the proof of Theorem ., {xn} is bounded, and limn→∞ ‖xn – Tlxn‖ = , ∀l =
, , , . . . ,m. Especially, we have

lim
n→∞‖xn – Txn‖ = . (.)

By the assumption of Theorem ., we may assume that T is semi-compact, without loss
of generality. Then it follows from (.) that there exists a subsequence {xnk } of {xn} such
that {xnk } converges strongly to p ∈ K , and we have

‖p – Tlp‖ = lim
nk→∞‖xnk – Tlxnk‖ = lim

n→∞‖xn – Tlxn‖ = , ∀l = , , , . . . ,m.

This implies that p ∈ F . In addition, since limn→∞ ‖xn – p‖ exists, therefore limn→∞ ‖xn –
p‖ = , that is, {xn} converges strongly to a fixed point of {T,T,T, . . . ,Tm} in K . This
completes the proof of Theorem .. �

Theorem . Under the conditions of Theorem ., if E satisfies Opial’s condition, then
the hybrid iterative process {xn} defined by (.) converges weakly to a common fixed point
of {T,T,T, . . . ,Tm} in K .

Proof From the proof of Theorem., we know that {xn} is a bounded sequence inK . Since
E is uniformly convex, it must be reflexive, so every bounded subset of E is weakly com-
pact. Therefore, there exists a subsequence {xnj} ⊂ {xn} such that {xnj} converges weakly
to x∗ ∈ K . From (.) we have

lim
j→∞‖xnj – Tlxnj‖ = , ∀l = , , , . . . ,m. (.)

By Lemma ., we know that x∗ ∈ F(Tl). By the arbitrariness of l ∈ {, , , . . . ,m}, we have
that x∗ ∈ ⋂m

l= F(Ti).
Suppose that there exists some subsequence {xnk } ⊂ {xn} such that xnk → y∗ ∈ K weakly

and y∗ �= x∗. From Lemma ., y∗ ∈ F . By (.) we know that limn→∞ ‖xn – x∗‖ and
limn→∞ ‖xn – y∗‖ exist. By the virtue of Opial’s condition of E, we have

lim
n→∞

∥∥xn – x∗∥∥ = lim
j→∞

∥∥xnj – x∗∥∥ < lim
j→∞

∥∥xnj – y∗∥∥
= lim

n→∞
∥∥xn – y∗∥∥ = lim

k→∞
∥∥xnk – y∗∥∥

< lim
k→∞

∥∥xk – x∗∥∥ = lim
n→∞

∥∥xn – x∗∥∥,

http://www.fixedpointtheoryandapplications.com/content/2013/1/322
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which is a contraction.Hence x∗ = y∗. This implies that {xn} convergesweakly to a common
fixed point of {T,T,T, . . . ,Tm} in K . This completes the proof of Theorem .. �

Remark . Theorems ., . and . extend the results of [] and [] from a nonex-
pansive mapping to a finite family of asymptotically nonexpansive mappings.

Theorem . Let E be a real uniformly convex Banach space, let K be a nonempty closed
convex subset of E, and let {T,T,T, . . . ,Tm} : K → K be m nonexpansive mappings with
F =

⋂m
i= F(Ti) �= ∅; f : K → K is an L-Lipschitzianmapping. Let a hybrid iterative sequence

{xn} be defined by (.), where {αn} and {λn} are real sequences in [, ) satisfying the fol-
lowing conditions:

(i) α ≤ αn ≤ β for some α,β ∈ (, );
(ii)

∑∞
n= λn < ∞.

Then
() limn→∞ ‖xn – p‖ exists for each p ∈ F ,
() limn→∞ ‖xn – Tlxn‖ = , ∀l = , , , . . . ,m,
() {xn} converges strongly to a common fixed point of {T,T,T, . . . ,Tm} if and only if

limn→∞ d(xn,F) = .

Theorem . Let E be a real uniformly convex Banach space, let K be a nonempty closed
convex subset of E, and let {T,T,T, . . . ,Tm} : K → K be m nonexpansive mappings with
F =

⋂m
i= F(Ti) �= ∅, and at least there exists Tl , ≤ l ≤m,which is semi-compact. f : K → K

is an L-Lipschitzian mapping. Let {αn} and {λn} be real sequences in [, ) satisfying the
following conditions:

(i) α ≤ αn ≤ β for some α,β ∈ (, );
(ii)

∑∞
n= λn < ∞.

Then the hybrid iterative process {xn} defined by (.) converges strongly to a common fixed
point of {T,T,T, . . . ,Tm} in K .

Theorem . Under the conditions of Theorem ., if E satisfies Opial’s condition, then
the hybrid iterative process {xn} defined by (.) converges weakly to a common fixed point
of {T,T,T, . . . ,Tm} in K .

The proofs of Theorems ., . and . can be obtained from those of Theorems ., .
and .with the condition that {T,T,T, . . . ,Tm} : K → K arem nonexpansivemappings.

Remark . Theorems ., . and . extend the results of [] and [] from a nonex-
pansive mapping to a finite family of nonexpansive mappings.
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