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Abstract
We propose a new approach to study variational relation problems. Namely, we apply
Mizoguchi and Takahashi’s fixed point theorem of contraction mappings and an error
bound of a system of linear inequalities to establish existence conditions for a
variational relation problem in which the variational relation linearly depends on the
decision variable. Then we develop an algorithm to compute a solution of a linear
variational relation problem.
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1 Introduction
We consider the following variational relation problem: find x̄ ∈ X such that
() x̄ is a fixed point of S, that is, x̄ ∈ S(x̄),
() R(x̄, y) holds for every y ∈ T(x̄),

where X and Y are nonempty sets, S is a set-valued mapping from X to itself, T is a set-
valued mapping from X to Y , and R(x, y) is a relation linking x ∈ X and y ∈ Y . In an ab-
stract setting, the relation R is represented by a subset of the product space X × Y so that
R(x, y) holds if and only if the point (x, y) belongs to that set. In practice, however, R is
often given by equality/inequality of real-valued functions, or by inclusion/intersection of
set-valued mappings on X × Y . For instance, given a real-valued function φ on X × Y ,
a variational relation can be defined by any of the following equality and inequalities:
φ(x, y) = , φ(x, y) �= , φ(x, y) >  or φ(x, y)≥ .When two set-valued mappingsG andG

are given on X × Y with values in a nonempty set Z, a variational relation can be defined
by any of the following inclusions and intersections:G(x, y) ⊆G(x, y),G(x, y)�G(x, y),
G(x, y) ∩ G(x, y) = ∅ or G(x, y) ∩ G(x, y) �= ∅. A mixture of the above relations is also
possible.
The variational relation problemwas introduced in [] and studied in a number of recent

works [–]. It encompasses a large class of problems of applied mathematics including
optimization problems, variational inequalities, variational inclusions, equilibrium prob-
lems etc., and offers a unifying treatment of problems that come from different areas and
have a similar structure. Existence conditions of solutions to variational relation problems
were analyzed in great generality, the stability of solutions of a parametric variational re-
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lation was also studied with respect to the continuity of set-valued mappings, and very re-
cently a numerical method was developed to solve variational relation problems when the
data are linear []. As far as we know, all conditions established for existence of solutions
of variational relation problems in the above cited papers utilize intersection theorems or
fixed point theorems involving the KKM property of set-valued mappings in one or an-
other form []. In the present paper, we wish to give existence conditions by exploiting
Mizoguchi and Takahashi’s fixed point theorem for contraction mappings and propose an
algorithm to compute solutions to (VRP), which seems to be new in the theory of varia-
tional relations. Actually, we shall study a particular model of (VRP) in which R linearly
depends on the decision variable x. Throughout we assume
• X and Y are nonempty closed sets in the finite dimensional Euclidean spaces Rn and
Rm, respectively,

• S(x) = X for every x ∈ X ,
• R(x, y) holds if and only if Ax – g(y) ≤  with A a k × nmatrix, g a vector function
from Y to Rk .

Thus, our problem consists of finding a vector x̄ ∈ X such that Ax̄ ≤ g(y) for all y ∈ T(x̄).
This problem can also be transformed to a quasi-variational inequality problemor a quasi-
equilibrium problem [–], but its resolution, as far as we know, is not known, because
a general monotonicity hypothesis often requested for quasi-variational inequality prob-
lems and quasi-equilibrium problems is not satisfied. If we define a set-valued mapping
� : X ⇒ X by

�(x) =
{
z ∈ X : Az ≤ g(y) for all y ∈ T(x)

}
,

then the (VRP) above is equivalent to the fixed point problem: find x̄ ∈ X such that x̄ ∈
�(x̄). Essentiallywe shall exploit this equivalent formulation of (VRP) to establish existence
conditions and to develop a solving method.
The paper is structured as follows. In the next section, we present two preliminary re-

sults which constitute major tools of our study: a fixed point theorem by Mizoguchi and
Takahashi [], which generalizes theNadler fixed point principle [], and an error bound
or Hoffman’s constant for a system of linear inequalities (see [, , –]). Section  is
devoted to sufficient conditions for existence of solutions of (VRP). In the last section, we
propose an algorithm to compute a solution of (VRP) and illustrate it by some numerical
examples.

2 Preliminaries
Contraction mappings
The famous Banach contraction principle states that if (X,d) is a complete metric space
and if f is a real contraction function on X, then f has a fixed point. This principle was
generalized to the case of set-valued mappings by Nadler [] and Markin [] with the
help of the Hausdorff distance. Since then a lot of investigation has been made in order to
weaken the contraction hypothesis (see [, –] andmany references given in these). In
the present paper, we are particularly interested in a theorem byMizoguchi and Takahashi
[], which can elegantly be applied to our model. Let us recall it in details and make a
discussion on its generalization.
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Let D and D be nonempty subsets of X. The Hausdorff distance between D and D is
defined by

h(D,D) =max
{
sup
x∈D

d(x,D); sup
y∈D

d(y,D)
}
,

where d(x,Di) is the distance from x to Di, i = , . In Rn the Hausdorff distance can be
given by

h(D,D) = inf
{
r >  :D ⊆D + B(, r),D ⊆D + B(, r)

}
,

where B(, r) is the closed ball of radius r and centered at the origin of the space. Let F be
a set-valued mapping from X to the space of closed subsets of X and � > . We say that F
is �-Lipschitz on X if for every x,x′ ∈ X, one has

h
(
F(x),F

(
x′)) ≤ �

∥∥x – x′∥∥.

When � < , an �-Lipschitz mapping is called a contraction mapping. We recall the fol-
lowing result by Mizoguchi and Takahachi [], which generalizes Nadler’s theorem on
fixed points of a contraction mapping []: The set-valued mapping F , whose values are
assumed nonempty closed and bounded, has a fixed point in X if the following conditions
hold:

(i) there exists a function γ : (,∞)→ [, ) such that lim supr→t+ γ (r) <  for each
t ∈ [,∞);

(ii) for every x, y ∈ X , one has h(F(x),F(y))≤ γ (d(x, y))d(x, y).
Further developments of this result can be found in [, –]. In particular the following
theorem by Ciric (Theorem . []) is quite general: if F has closed values and if there
exists a real function φ : [,∞) → [a, ) for some a ∈ (, ) such that
• lim sups→t+ φ(s) <  for every t ≥ ;
• for every x ∈ X , there is y ∈ F(x) satisfying

√
φ
(
d(x, y)

)
d(x, y)≤ d

(
x,F(x)

)
,

d
(
y,F(y)

) ≤ φ
(
d(x, y)

)
d(x, y),

then F admits a fixed point.
It is unfortunate that this theorem does not fully generalize Mizoguchi and Takahashi’s
theorem because in the latter theorem it is not requested that the function φ takes its
values bigger than a strictly positive number a. Another observation we can make is the
fact that Mizoguchi and Takahashi’s theorem remains valid with the same argument even
when F has closed values that are not necessarily bounded.

Error bound for a linear system
We consider a linear system Ax ≤ b in Rn, where A is a k × n matrix and b is a k vector.
The solution set to this system is denoted P, which is a polyhedral convex set. It is clear
that x is a solution to this system if and only if d(Ax– b, –Rk

+) = , where Rk
+ is the positive

octant of the space. When x is not a solution, it is important to measure the distance
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from x to the solution set P. This question has completely been studied starting with the
famous Hoffman constant in [] and subsequential works [, , , ] among many
others. Here is a formula for the distance from x to P that can be obtained by elementary
arguments from linear algebra (see []):

d(x,P) =max
I∈I

max
λ∈R|I|\{}

〈λ,AIx – bI〉
‖AT

I λ‖ ,

where |I| denotes the cardinal of I , I the set of index subsets I ⊆ {, . . . ,k} satisfying two
conditions below:
() I is nonempty and the family of rows ai, i ∈ I of the matrix A is linearly independent,
() there is some y ∈ P such that I is contained in the active index set I(y) at y, that is,

aiy = bi, i ∈ I ; AI is the submatrix of A consisting of the rows ai, i ∈ I , and AT
I is its

transpose.
It follows that

d(x,P) ≤ αd
(
Ax – b, –Rk

+
)
= α

∥∥(Ax – b)+
∥∥,

where (Ax – b)+ is the vector obtained from Ax – b by substituting all negative compo-
nents by zeros. The constant α >  is called an error bound of the system or Hoffman’s
constant. The best error bound, denoted α too, is obtained by maximizing the function
d(x,P)/‖(Ax – b)+‖ over x /∈ P. It is given by the formula

α =max
I∈I

[
γ (I)

]–/,

where γ (I) is the smallest Pareto eigenvalue of the matrix AIAT
I (see []), or equivalently,

it is the optimal value of the problem of minimizing yTAIAT
I y over the set {y ∈R|I|

+ : ‖y‖ =
}. If we denote by P′ the solution set to the perturbed system Ax ≤ b′, then

h
(
P,P′) ≤ α

∥∥b – b′∥∥ (.)

whenever both P and P′ are nonempty.

3 Existence conditions
In this section we establish some sufficient conditions for existence of solutions to the
variational problem (VRP) introduced in the beginning of Section .Mizoguchi and Taka-
hashi’s fixed point theorem and the error bound (.) are the main tools we use for this
purpose. Given a real function u(x) onX, we define a value function (called also amarginal
function) of u by β(x) = infz∈T(x) u(z). Stability and sensitivity of this function is one of the
indispensable parts of the theory of optimization. We refer the interested reader to the
books [, , ] for greater details. The next result will be needed in the sequel.

Lemma . Assume that for every x ∈ X, the value function β(x) is finite and that there
are functions φ and ψ from [,∞) to [,∞) with ψ nondecreasing such that

h(T(x),T(y) ≤ φ
(
d(x, y)

)
d(x, y), (.)

∣∣u(x) – u(y)
∣∣ ≤ ψ

(
d(x, y)

)
d(x, y) (.)
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for every x, y ∈ X. Then

∣∣β(x) – β(y)
∣∣ ≤ φ

(
d(x, y)

)
ψ

(
d(x, y)φ

(
d(x, y)

))
d(x, y).

Proof Let x, y ∈ X be given. For each ε > , choose z ∈ T(x) such that β(x) > u(z) – ε.
Choose also w ∈ T(y) such that

d(z,w) ≤ h
(
T(x),T(y)

)
. (.)

Then by (.) we have

β(y) – β(x)≤ u(w) – u(z) + ε ≤ ψ
(
d(w, z)

)
d(w, z) + ε.

Combining this, (.) and (.), we deduce

β(y) – β(x) ≤ ψ
(
h
(
T(x),T(y)

))
h
(
T(x),T(y)

)
+ ε

≤ ψ
(
d(x, y)φ

(
d(x, y)

))
φ
(
d(x, y)

)
d(x, y) + ε.

Switching the roles of x and y in the above inequality and taking into account the fact
that ε is arbitrarily chosen, we obtain |β(x) –β(y)| ≤ φ(d(x, y))ψ(d(x, y)φ(d(x, y)))d(x, y) as
requested. �

In the remaining part of this section, we assume that for every x ∈ X, the values bi(x) =
infz∈T(x) gi(z), i = , . . . ,k, are finite and that the system Az ≤ b(x), z ∈ X is consistent. The
vector whose components are bi(x), i = , . . . ,k, is denoted b(x).

Theorem . Assume that there are functions φ and ψi, i = , . . . ,k, on [,∞) to [,∞)
with ψi nondecreasing and satisfying the following properties:

(i) h(T(x),T(y))≤ φ(d(x, y))d(x, y) for x, y ∈ X ;
(ii) |gi(x) – gi(y)| ≤ ψi(d(x, y))d(x, y) for x, y ∈ X and i = , . . . ,k;
(iii) lim sups→t+ φ(s)

√∑k
i= ψi(sφ(s)) < 

α
for all t > .

Then (VRP) admits a solution.

Proof The aim is to prove that the set-valued mapping � has a fixed point. It is clear that
z ∈ �(x) if and only if aiz ≤ gi(y) for every y ∈ T(x), or equivalently, aiz ≤ bi(x), i = , . . . ,k.
By this, �(x) consists of the solutions to the system Az ≤ b(x). According to (.), we have

h
(
�(x),�(y)

) ≤ α
∥∥b(x) – b(y)

∥∥ for all x, y ∈ X.

We apply Lemma . to obtain

h
(
�(x),�(y)

) ≤ α

√√√√ k∑
i=

∣∣bi(x) – bi(y)
∣∣

≤ αφ
(
d(x, y)

)
√√√√ k∑

i=

ψi
(
d(x, y)φ

(
d(x, y)

))d(x, y).
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Consider the real function γ (t) = αφ(t)
√∑k

i= ψi(tφ(t)) for every t ≥ . Then the hy-
potheses of Mizoguchi and Takahashi’s theorem are satisfied for the set-valued mapping
�, by which it admits a fixed point. Consequently, (VRP) has a solution. �

When the mapping T and the function g are Lipschitz, we derive the following result.

Corollary . Assume that T is κ-Lipschitz and g, . . . , gk is �-Lipschitz with κ� < 
α
√
k
.

Then (VRP) has a solution.

Proof Set φ(t) = κ and ψi(t) = � for i = , . . . ,k and t ∈ [,∞) and apply Theorem .. �

Let us now consider the case when the function g is affine, that is, g(y) = Cy + c, where
C is a k × m matrix, c is a k vector, and the graph of T is a convex polyhedral set, that
is, y ∈ T(x) if and only if x and y solve a linear system Py ≤ Qx + q, where P is a k × m
matrix,Q is a k×nmatrix and q is a k vector. (VRP) with such linear data is called a linear
variational relation problem. It was studied in [] in which a numerical algorithm based
on Delauney’s triangulations is proposed for solving it. It is known that a linear variational
problemmay have no solutions (see Example .).We wish to apply Theorem . to derive
an existence condition for this model. The rows of the matrix C are denoted C, . . . ,Ck ,
while the components of the vector c are denoted c, . . . , ck . The best error bound for the
system Pz ≤Qx + q is denoted α′.

Corollary . Assume that the error bounds α and α′, the matrices Q and C of the linear
(VRP) satisfy

αα′‖Q‖
√∥∥C

∥∥ + · · · + ∥∥Ck
∥∥ < .

Then (VRP) has a solution.

Proof For every x, y ∈ X, by applying (.), we have

∣∣gi(x) – gi(y)
∣∣ = ∣∣Cix + ci –

(
Ciy + ci

)∣∣ ≤ ∥∥Ci∥∥d(x, y),
h
(
T(x),T(y)

) ≤ α′∥∥Qx + q – (Qy + q)
∥∥ ≤ α′‖Q‖d(x, y).

Then, in view of Lemma ., one deduces

∣∣bi(x) – bi(y)
∣∣ ≤ α′‖Q‖∥∥Ci∥∥d(x, y) for i = , . . . ,k.

It remains to apply Theorem . to conclude that (VRP) has a solution. �

4 An algorithm
In this section, we consider a linear (VRP) as mentioned in the preceding section, namely
we wish to find x̄ ∈Rn such thatAx̄ ≤ Cy+ c for every y solution to the system Py ≤Qx̄+q.
As we have already noticed, this problem may have no solutions. Here is an example.

http://www.fixedpointtheoryandapplications.com/content/2013/1/315
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Example . We consider a linear variational relation problem with x ∈ [, ] and y ∈ R.
The relation R is defined by the system

⎛
⎜⎝
–
–


⎞
⎟⎠x ≤

⎛
⎜⎝
–



⎞
⎟⎠ y +

⎛
⎜⎝
–



⎞
⎟⎠

and T is defined by the system

⎛
⎜⎝




⎞
⎟⎠x ≤

⎛
⎜⎝
–
–


⎞
⎟⎠ y +

⎛
⎜⎝




⎞
⎟⎠ .

For every x ∈ [, ], y ∈ T(x) if and only if  ≤ y≤ . With y = , it is clear that R(x, y) does
not hold, which means that (VRP) has no solutions.

Let us now describe an algorithm to solve (VRP).
Step . Choose any x ∈ X, a small tolerance level ε > . Set r = .
Step . For i = , . . . ,k, solve

minimize Ciy + ci

subject to Py ≤Qxr + q,

y ∈ Y .

Let br be the vector whose components are optimal values of the above programs.
Step . Solve

minimize ‖xr – z‖
subject to Az ≤ br ,

x ∈ X.

Let z be an optimal solution of this program.
Step .Check ‖xr – z‖ ≤ ε. If yes, stop. The optimal solution z is considered as a solution

of (VRP). Otherwise, set r = r + , xr = z and return to Step .
We have the following convergence property of the algorithm.

Proposition . Assume that the hypothesis of Corollary . holds. Then, for any ε > ,
the algorithm terminates after a finite number of iterations. If at some iteration the optimal
value of the program in Step  is zero, then xr is a solution of (VRP). If not, with ε tending
to , the sequence of xr obtained in Step  converges to a solution of (VRP).

Proof It is clear that xr+ ∈ �(xr). If, for some r, the optimal value of the program in Step 
is zero, then xr ∈ �(xr) which means that xr is a fixed point of �, and hence a solution
of (VRP). Moreover, since under the hypothesis of Corollary . the mapping � is a con-
traction, the sequence {xr}∞r= converges to a fixed point of �, which is also a solution of

http://www.fixedpointtheoryandapplications.com/content/2013/1/315
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(VRP). By this the algorithm terminates after a finite number of iterations when ε is strictly
positive. �

Belowwe give two examples to show how to perform the algorithm. In the first example,
the algorithm terminates after two iterations and produces an exact solution. In the second
example, we can obtain an approximate solution with any given strictly positive tolerance
level.

Example . Consider a linear (VRP) with the following data: X = [, ], Y =R and

A =

⎛
⎜⎝
–
–


⎞
⎟⎠ , C =

⎛
⎜⎝
–/ /
 
 

⎞
⎟⎠ , c =

⎛
⎜⎝
–



⎞
⎟⎠ ,

P =

⎛
⎜⎜⎜⎝

/ /
/ –/
– 
 –

⎞
⎟⎟⎟⎠ , Q =

⎛
⎜⎜⎜⎝


–



⎞
⎟⎟⎟⎠ , q =

⎛
⎜⎜⎜⎝


/



⎞
⎟⎟⎟⎠ .

Iteration .We start the algorithmwith x = . The feasible set of the programs in Step 
is given by the system Py≤ q, or equivalently,

y + y ≤ ,

y – y ≤ ,

y, y ≥ .

The three functions to minimize are respectively (–y + y)/ – ,  and , which implies
that b = (–, , )T . In the next step, we minimize |z| over the set Az ≤ b, z ∈ X. The
optimal solution is z = . As x �= z, it is not a solution of (VRP).
Iteration . We set x = z =  and return to Step  to solve the three above mentioned

functions over the set Py ≤ Qx + q. The same optimal solutions are obtained and b =
(–, , )T . In Step , weminimize |– z| over the set Az ≤ b, z ∈ X and obtain the optimal
solution z = . Since x = z, the algorithm terminates and x =  is a solution of (VRP). It
is easy to see that � is a (/)-contraction mapping, that is, h(�(x),�(x′)) ≤ |x – x′|/ for
every x,x′ ∈ [, ].

Example . We solve a linear (VRP) with the data X, Y , A, P, Q and q as given in the
preceding example and with

C =

⎛
⎜⎝
/ –/
 
 

⎞
⎟⎠ , c =

⎛
⎜⎝
–/




⎞
⎟⎠ .

Iteration .We start the algorithmwith x = . The feasible set of the programs in Step 
is given by the system Py ≤ q and consists of one element {}. Hence the vector b is equal
to (–/, , )T . In the next step, weminimize |z| over the setAz ≤ b, z ∈ X. The optimal
solution is z = /. As x �= z, it is not a solution of (VRP).
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Iteration .We set x = z = / and return to Step  to solve three programs whose fea-
sible set is given by Py ≤Qx + q. We obtain b = (–/, , )T . In Step , we minimize
|/ – z| over the set Az ≤ b, z ∈ X and obtain the optimal solution z = /. Since
x �= z, the point x is not a solution of (VRP). If we choose a priori a tolerance level ε = .,
then we may stop the algorithm and consider x = / as an approximate solution of
(VRP) because |x – x| < ε. If not, we continue it with x for restarting the procedure. It
can be seen that the algorithm generates the sequence {xr}∞r= converging to x = , which
is the unique solution of (VRP).
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