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Abstract

The classical Brouwer fixed point theorem states that in RY every continuous function
from a convex, compact set on itself has a fixed point. For an arbitrary probability
space, let L9 = [°(£2, A, P) be the set of random variables. We consider (L% as an
L9-module and show that local, sequentially continuous functions on L9-convex,
closed and bounded subsets have a fixed point which is measurable by construction.
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Introduction

The Brouwer fixed point theorem states that a continuous function from a compact and
convex set in R¥ to itself has a fixed point. This result and its extensions play a central
role in analysis, optimization and economic theory among others. To show the result, one
approach is to consider functions on simplexes first and use Sperner’s lemma.

Recently, Cheridito et al. [1], inspired by the theory developed by Filipovi¢ et al. [2] and
Guo [3], studied (L°)? as an L°-module, discussing concepts like linear independence,
o -stability, locality and L°-convexity. Based on this, we define affine independence and
conditional simplexes in (L°)?. Showing first a result similar to Sperner’s lemma, we ob-
tain a fixed point for local, sequentially continuous functions on conditional simplexes.
From the measurable structure of the problem, it turns out that we have to work with
local, measurable labeling functions. To cope with this difficulty and to maintain some
uniform properties, we subdivide the conditional simplex barycentrically. We then prove
the existence of a measurable completely labeled conditional simplex, contained in the
original one, which turns out to be a suitable o -combination of elements of the barycen-
tric subdivision along a partition of Q. Thus, we can construct a sequence of conditional
simplexes converging to a point. By applying always the same rule of labeling using the lo-
cality of the function, we show that this point is a fixed point. Due to the measurability of
the labeling function, the fixed point is measurable by construction. Hence, even though
we follow the constructions and methods used in the proof of the classical result in R¥ (cf.
[4]), we do not need any measurable selection argument.

In probabilistic analysis theory, the problem of finding random fixed points of random
operators is an important issue. Given C, a compact convex set of a Banach space, a con-
tinuous random operator is a function R:  x C — C satisfying

(i) R(-,x): Q2 — C is a random variable for any fixed x € C,

(i) R(w,-):C — C is a continuous function for any fixed w € Q.
For R there exists a random fixed point which is a random variable & : & — C such that
&(w) = R(w, &(w)) for any w (¢f. [5-7]). In contrast to this w-wise consideration, our ap-
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proach is completely within the theory of L°. All objects and properties are therefore de-
fined in that language and proofs are done with L°-methods. Moreover, the connection
between continuous random operators on R and sequentially continuous functions on
(L°)4 is not entirely clear.

An application, though not studied in this paper, is for instance possible in economic
theory or optimization in the context of [8]. Therein the methods from convex analy-
sis are used to obtain equilibrium results for translation invariant utility functionals on
(L°)?. Without translation invariance, these methods fail and will be replaced by fixed
point arguments in an ongoing work. Thus, our result is helpful to develop the theory of
non-translation invariant preference functionals mapping to L°.

The present paper is organized as follows. In the first section, we present the basic con-
cepts concerning (L°)? as an L°-module. We define conditional simplexes and examine
their basic properties. In the second section, we define measurable labeling functions and
show the Brouwer fixed point theorem for conditional simplexes via a construction in the
spirit of Sperner’s lemma. In the third section, we show a fixed point result for L°-convex,
bounded and sequentially closed sets in (L°)%. With this result at hand, we present the
topological implications known from the real-valued case. On the one hand, we show the
)d

impossibility of contracting a ball to a sphere in (L°)? and, on the other hand, an interme-

diate value theorem in L°.

1 Conditional simplex

For a probability space (22, 4,P), let L° = LO(R, A, P) be the space of all .A-measurable
random variables, where P-almost surely equal random variables are identified. In partic-
ular, for X, Y € L9, the relations X > Y and X > Y have to be understood P-almost surely.
The set L° with the P-almost everywhere order is a lattice ordered ring, and for a non-
empty subset C C L%, we denote the least upper bound by ess sup C and the greatest lower
bound by essinfC, respectively (cf [1]). For m € R, we denote the constant random vari-
able mlg by m. Further, we define the sets L% = {X € L°: X > 0}, L, = {X € L° : X > 0}
and A, = {A € A: P(A) > 0}. The set of random variables with values in a set M C R is de-
noted by M(A). For example, {1,...,r}(A) is the set of .A-measurable functions with values
in{L...,r1 SN, [0,1](A)={ZeL’:0<Z<1}and (0,1)(A) = {Z€L°:0<Z <1}.

The convex hull of X3,...,Xn € (L°)%, N € N, is defined as

N N
conv(Xy,...,Xy) = {Zx,xi heL)y hi= 1}.
i=1 i=1

An element Y = ZZI A X;suchthat A; >0 foralliel C{1,...,N} is called a strict convex
combination of {X; : i € I}. Moreover, a set C C (L°)? is said to be L°-convex if for any
X,Y eCand X € [0,1](A), it holds that A X + 1 -21)Y €C.

The o -stable hull of a set C C (L°)? is defined as

o(C) = {Z 14, X : Xi € C, (Ay)jen is apartition},
ieN

where a partition is a countable family (A;);en € A such that P(A; N Aj) = 0 for i # and
P(U;enAi) = 1. We call a non-empty set C o-stable if it is equal to o(C). For a o-stable


http://www.fixedpointtheoryandapplications.com/content/2013/1/301

Drapeau et al. Fixed Point Theory and Applications 2013, 2013:301 Page 3 of 14
http://www.fixedpointtheoryandapplications.com/content/2013/1/301

set C C (L°)%, a function f : C — (L°)? is called local if (D en1aX) = D ey Laf(X;) for
every partition (4;);ey and X; € C,i e N. For X,) C (L%, we call a functionf : X — Y
sequentially continuous if for every sequence (X,,),en in A converging to X € X P-almost-
surely, it holds that £(X,,) converges to f(X) P-almost surely. Further, the L°-scalar product
and L°-norm on (L°)? are defined as

d
(XY =) XY and IX] = (X X)7.

i=1

We call C C (L°)% bounded if esssupy. || X|| € L° and sequentially closed if it contains all
P-almost sure limits of sequences in C. Further, the diameter of C C (L)% is defined as
diam(C) = esssupy yec X - Y.

Definition 1.1 Elements Xj,...,Xy of (L°)4, N € N, are said to be affinely independent, if
either N =1 or N >1and {X; - Xy }N7! are linearly independent, that is,

N-1
D M(X;-Xy)=0 implies Ay=--- =2y =0, 1.1)
i=1

where A1,...,An_1 € LO.

The definition of affine independence is equivalent to

N N
D nXi=0 and ) ;=0 implies A;=---=iy=0. (1.2)
i=1 i=1

Indeed, first we show that (1.1) implies (1.2). Let >, 4,X; = 0 and 3_N, A; = 0. Then
SN = Xn) = AnXn + YN AX; = 0. By assumption (L.1), it holds that A; = - - =
An-1 = 0, thus also Ay = 0. To see that (1.2) implies (1.1), let ZZII Ai(X; — Xn) = 0. With
An = =Y ' A, it holds that SN X = AnXn + Y ony  AXi = YN (X - Xy) = 0. By
assumption (1.2), A; = --- = Ay = 0.

Remark 1.2 We observe that if (X;)¥, C (L°)¢ are affinely independent, then (AX;)Y,
for A € L%, and (X; + Y)f\:[ LforY e (L°)? are affinely independent. Moreover, if a fam-
ily X3, ..., Xy is affinely independent, then also 13Xj,...,13Xy are affinely independent on
B e A,,which means from Zfil 131 X; = 0 and Zf\il 1g2; = O italways follows that 15A; = 0
foralli=1,...,N.

Definition 1.3 A conditional simplex in (L°) is a set of the form
S =conv(Xy,...,XN)
such that Xi,..., Xy € (L°)? are affinely independent. We call N € N the dimension of S.

Remark 1.4 Inaconditional simplex S = conv(Xj, ..., Xy), the coefficients of convex com-
binations are unique in the sense that if YN A; = >N, u; = 1, then

N N
Y nXi=) wX; implies A=y, foralli=1,...,N. (1.3)
i=1 i=1
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Indeed, since Zﬁ\:{l(ki —u)X; =0and Zfil(ki —u;) = 0, it follows from (1.2) that A; —u; = 0
foralli=1,...,N.

Remark 1.5 Note that the present setting - L°-modules and the sequential P-almost sure
convergence - is of local nature. This is, for instance, not the case for subsets of L” or the
convergence in the L”-norm for 1 < p < oo. First, L? is not closed under multiplication
and hence neither a ring nor a module over itself, so that we cannot even speak about
affine independence. Second, it is in general not a o -stable subspace of L°. However, for
a conditional simplex S = conv(Xj,...,Xy) in (L°)? such that any X; is in (Z7)?, it holds
that any P-almost sure converging sequence in S is also converging in the L”-norm for
1 < p < 00 due to the dominated convergence theorem. This shows how one can translate
results from L° to L.

Since a conditional simplex is a convex hull, it is in particular o -stable. In contrast to a
simplex in R, the representation of S as a convex hull of affinely independent elements

is unique but up to o -stability.

Proposition 1.6 Let (X,)Y, and (Y;)¥, be families in (L°)? with o(X,...,Xy) = o(Y3,...,
Yn). Then conv(Xy,...,Xy) = conv(Yy,..., Yn). Moreover, (Xi)f\il are affinely independent if
and only if (Y;)N, are affinely independent.

If S is a conditional simplex such that S = conv(Xy,...,Xy) = conv(Ys,..., Yn), then it
holds that o (X3,...,Xn) =0 (Y1,..., Yn).

Proof Suppose o(X,...,Xn)=0(Y1,...,Yn). Fori=1,...,N, it holds that
XL' GO(XI,...,XN) =O’(Y1,...,YN) gCOIlV(Yl,...,YN).

Therefore, conv(Xj,...,Xy) € conv(Yi,...,Yy) and the reverse inclusion holds analo-
gously.

Now, let (X;)Y, be affinely independent and o (Xj,...,Xy) = o(Y3,..., Ya). We want to
show that (Y,«)f.\z[ , are affinely independent. To that end, we define the affine hull

N N
aff(Xy,..., Xn) = 1> AXith € L% Ai=1¢.
i=1 i=1

First, let Zy,...,Zy € (L°)%, M € N, such that o(Xi,...,Xn) = 0(Z4,...,Zn). We show
that if 1, aff(Xy,...,Xn) C 14 aff(Zy,...,Zy) for A € A, and Xj,..., Xy are affinely inde-
pendent, then M > N. Since X; € 6(X3,...,Xn) = 0(Zy,...,Zy) C aff(Zy,..., Zy), we have
aff(Xy,..., Xx) C aff(Zy,..., Zy). Further, it holds that X; = Y"M 1,1 Z; for a partition (B!)Y,
and hence there exists at least one B} such that A} :=B; NA € A,,and Ly X1=14 Zpy.-

Therefore,

lAllq aff(Xl, e ,XN) - lAllq aff(Zl, e ,ZM)

=1y aff (X1, Zu, ..., Zor) \ {2, }).-
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For X, = Y™ 1 L2 Zi, we find a set A} such that A} = A} NA; € A, lAz X, = 1A2 Zy, and
ki # ky. Assume to the contrary ky = kj, then there exists a set Be A such that 13X, =
15X, which is a contradiction to the affine independence of (X;)N ~,- Hence, we can again
substitute Z, by X, on Aiz. Inductively, we find ki, ..., ky such that

1AkN aff(Xl,...,XN) - lAkN aff({Xl,...,XN,ZI,...,ZM} \ {Z]q,...,ZkN}),

which shows M > N. Now suppose that Yj,..., Yy are not affinely independent. This
means that there exist (A;)Y; such that >N 1,;¥; = "N 4, = 0 but not all coefﬁaents Ai
are zero, without loss of generality, A; > 0 on A € A,. Thus, 1,Y7 = 14 Zl 27 %y, and it
holds that 14 aff(Y3,..., Yx) = 14 aff(Y>,..., Yy). To see this, consider 1,Z = 14 Zl.zl w;Y;in
14 aff(Y3,..., Yy), which means 14 Zﬁl Wi =14. Thus, inserting for Y3,

N N, N N
1AZ=1A|:ZMY;‘—M12}L—1Y;':|=1A[Z<M5—M1A—Z)Yij|~
i=2 =2 "1 1

i=2

Moreover,

lA[i(M m—)] —1A|:Zﬂz:| +1A[——ZA}

1
=141 - 1) +1a—2A1 =14,
Al

Hence, itholdsthat1,4Z € 14 aff(Y5,..., Yy). It follows that 14 aff(X3, ..., Xx) = 14 aff(Y3,.. .,
Yn) = 14 aff(Y>, ..., Yy). This is a contradiction to the former part of the proof (because

-1#N).

Next, we show that in a conditional simplex S = conv(Xj,...,Xy) it holds that X is in
o(Xy,...,Xy) if and only if there do not exist Y and Z in S \ {X} and A € (0,1)(A) such
that 1Y + (1-A)Z = X. Consider X € (X, ..., Xy) which is X = 3"}, 14, X; for a partition
(Ak)k=1,..n- Now assume to the contrary that we find ¥ = 22[:1 M X and Z = Zi\il Wi Xy in
S\ {X} such that X =AY + (1 — A)Z. This means that X = Zlk\il()\.)\.k + (1 —=A) i) Xy. Due to
uniqueness of the coefficients (c¢f. (1.3)) in a conditional simplex, we have Ax + (1 — A) g =
14, forallk =1,...,N.By means of 0 < A < 1, it holds that Adx + (1 - A)ux = 14, if and only if
Ak = i = 14,. Since the last equality holds for all k, it follows that Y = Z = X. Therefore, we
cannot find Y and Z in § \ {X} such that X is a strict convex combination of them. On the
other hand, consider X € S such that X ¢ o(Xj,...,Xx). This means X = 2115:1 Vi Xi such
that there exist vy, and v, and B € A, with 0 < v, <lonBandO0 < v, <1onB.Define g :=
essinf{v, i,»1 — vg, 1 — v, }. Then define py = Ag = vr if ky #k # ko and Ay = vg — &, Mg, =
Vky + &, iy = Vi +€and fig, = v, —€. Thus, Y = ZkN:1 MXyand Z = Zﬁil Wi Xy fulfill 0.5Y +
0.5Z = X but both are not equal to X by construction. Hence, X can be written as a strict
convex combination of elements in S \ {X}. To conclude, consider X € o(Xj,...,Xy) C
S = conv(Xy,...,Xy) = conv(Yy,..., Yy). Since X € o(Xj,...,Xy), it is not a strict convex
combination of elements in S \ {X}, in particular, of elements in conv(Y3,..., Yy) \ {X}.
Therefore, X is also in o (Y73, ..., Yn). Hence, o(X3,...,XN) C o (Y4,..., Yx). With the same

argumentation, the other inclusion follows. O
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As an example, let us consider [0,1](A). For an arbitrary A € A, it holds that 14 and
14c are affinely independent and conv(14,14¢) = {Alg + (1 = A)1ac: 0 < A <1} = [0,1](A).
Thus, the conditional simplex [0, 1](.A) can be written as a convex combination of different
affinely independent elements of L°. This is due to the fact that 0(0,1) = {1z : B € A} =
0 (14,14¢) forall A € A.

Remark 1.7 In (L°)%,let ¢; be the random variable which is 1 in the ith component and 0 in
any other. Then the family 0,e;, ..., e, is affinely independent and (L°)? = aff(0, ey, ..., ez).
Hence, the maximal number of affinely independent elements in (L°)? is d + 1.

The characterization of X € o (X3, ..., Xy) leads to the following definition.

Definition 1.8 Let S = conv(Xj,...,Xy) be a conditional simplex. We define the set of
extremal points ext(S) = 0(Xy,...,Xy). For an index set I and a collection . = (S;);e; of
conditional simplexes, we denote ext(.7) = o (|, ext(Sy)).

Remark1.9 LetS = conv(X{, e ,Xf\,), j € N, be conditional simplexes of the same dimen-
sion N and (4;)jen a partition. Then ZIEN lA/.Sj is again a conditional simplex. To that end,

we define Y = Z/’EN lAiXi and recognize ZjeN IA/S/ =conv(Yy,...,Yy). Indeed,

N N N
Y Y=Yk ZIA,,X{( =Y 14 ZMX’& ey 148, (1.4)
k=1 k=1

k=1 jeN jeN = jeN

shows conv(Yy,...,Yy) C ZjeN lAij . The other inclusion follows by considering Z],:il)fl; X
X;‘( € & and defining A = ZjeN lA]. k’,'(. To show that Y7, ..., Yy are affinely independent, we
consider 22[:1 AYe=0= 2221 M. Then by (1.4) it holds that 1, Zj,:[:] )»/(Xf( =0 and since
& is a conditional simplex, lAjAk =0forallje Nandk =1,...,N. From the fact that (4;);en

is a partition, it follows that A; =0 forall k =1,...,N.

We will prove the Brouwer fixed point theorem in the present setting using an L°-
module version of Sperner’s lemma. As in the unconditional case, we have to subdivide
a conditional simplex into smaller ones. For our argumentation, we cannot use arbitrary
subdivisions and need very special properties of the conditional simplexes in which we
subdivide. This leads to the following definition.

Definition1.10 Let S = conv(Xj, ..., Xy) be a conditional simplex and Sy be the group of
permutations of {1,...,N}. Then, for = € Sy, we define

k
1
r=2 Zxﬂ@, k=1,...,N,
i=1
Cr =conv(YT,..., Y).
We call (Cx)resy the barycentric subdivision of S.

Lemma 1.11 Let X;,...,Xy € (L°)? be affinely independent. The barycentric subdivision
of § = conv(Xy,...,Xn) is a collection of finitely many conditional simplexes satisfying the
following properties:
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) 0(Uyesy Cx) = S.
(ii) Cy has dimension N, T € Sy.
(ili) Cr NCx is a conditional simplex of dimensionr e Nandr <N form,w € Sy, m # 7.
(iv) Fors=1,...,N -1, let B, := conv(Xj,...,X;). All conditional simplexes C,, N B;,
7 € SN, of dimension s subdivide Bs barycentrically.

Proof We show the affine independence of Y7, ..., Y] in C,. It holds that

N N
Xeq) + Xr(2) DX

= k
Az Xrq) + kn(z)f + Az N k) = Z wiXi,

with p; = 2]1:[::1-1(1‘) A”k“() .Since YN, i = YN, A, the affine independence of Y7',..., Y is
obtained by the affine independence of Xj,...,Xy. Therefore all C; are conditional sim-
plexes.

As for Condition (i), it clearly holds that o (|, eSn C,) € S. On the other hand, let X =
Zf\il A:X; € S. Then we find a partition (A,),-1,..m, for some M € N, such that on every
A, the indexes are completely ordered, which is )Lii: > )Lig > > A% on A,.2 This means
that X € 14,C,» with "(j) = t]" Indeed, we can rewrite X on A, as

N-1 N
_ Xi" Z = Xi”
X =0 = A X 4+ (N =D = A ) % N =
1 2/ N-1 N N -1 N N
which shows that X € C;» on A,,. Condition (ii) is fulfilled by construction.
The intersection of two conditional simplexes C, and Cz can be expressed in the follow-
ing manner. Let ] = {j: {w(1),..., 7w ()} = {7w(1),...,7(j)}} be the set of indexes up to which

both 7 and 7 have the same set of images. Then
Cr N Cx = conv (Y] :j €)). (1.5)

To show D, let j € J. It holds that Y.” is in both C, and Cz since {m(1),...,7(j)} =
{m(1),...,7(j)}. Since the intersection of L°-convex sets is L°-convex, we get this inclu-
sion. As for the reverse inclusion, consider X € C; N Cz. From X € C, N Cx, it follows that
X=YN L X”l-(k)) = >k (i Xﬁi(k) ). Consider j ¢ J. By definition of J, there exist

P q <j with 77 ( (p)), 771 (7T(q)) ¢ {L,...,j}. By (1.3), the coefficients of Xﬂ(p are equal:

Hi N i N l
>y i 1= =N Ly 7+ The same holds for Xo(g): 3.7, 4 = Y012 -1z - Put together

N N N )" N)\ N)\’ N i N/,Li
N N N N
=, = (7 =,

which is only possible if 11; = A; = 0 since p,q < j. Furthermore, if C; N Cx is of dimension
N, by (1.5) it follows that 7 = 7. This shows (iii).

Further, for B; = conv(Xj, ..., X;), the elements C,» N B; of dimension s are exactly the
ones with {7’(i):i=1,...,s} = {1,...,s}. To this end, let C,» N B, be of dimension s. This
means there exists an element Y in this intersection such that ¥ = Zf\il AX; with A; >0
foralli=1,...,s and A 0 for i > 5. As an element of C,/, this Y has a representation of the
formY = Z]];[l( k= k B X for Zk ik =1and py € L for every k = 1,...,N. Suppose
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now that there exists some j, < swith 7'(j) > s. Then due to A,/(j,) = 0 and the uniqueness
of the coefficients (cf (1.3)) in a conditional simplex, it holds that ZI,:[ —io “—k = 0 and within
ZN Lk = 0 for all j > jo. This means Y = Z’OII(Zk = )Xz and hence Y is the convex
Combmatlon of jo — 1 elements with jy — 1 < s. This contradicts the property that A; > 0 for
s elements. Therefore, (C,» N B;), is exactly the barycentric subdivision of By, which has
been shown to fulfill the properties (i)-(iii). O

Subdividing a conditional simplex & = conv(Xj,...,Xy) barycentrically, we obtain
(Cx)resy- Dividing every C, barycentrically results in a new collection of conditional sim-
plexes and we call this the two-fold barycentric subdivision of S. Inductively, we can sub-
divide every conditional simplex of the (72 —1)th step barycentrically and call the resulting
collection of conditional simplexes the m-fold barycentric subdivision of S and denote it
by .. Further, we define ext(.#") = o ({ext(C) : C € .¥"}) to be the o -stable hull of all
extremal points of the conditional simplexes of the m-fold barycentric subdivision of S.
Notice that this is the o -stable hull of only finitely many elements, since there are only
finitely many simplexes in the subdivision, each of which is the convex hull of N elements.

Remark1.12 Consider an arbitrary C, = conv(Y{,...,YJ), m € Sy in the barycentric sub-
division of a conditional simplex S. Then it holds that

L diam(S).

diam(C,) = esssup | Y7 - Y7 | < N-
ij=1..N

Since this holds for any 7 € Sy, it follows that the diameter of S, which is an arbi-
trary conditional simplex of the m-fold barycentric subdivision of S, fulfills diam(S™) <
(%)m diam(S). Since diam(S) < oo and (%)”‘ — 0, for m — o0, it follows that

diam(S™) — 0 for m — oo for every sequence (S™)uen.

2 Brouwer fixed point theorem for conditional simplexes

Definition 2.1 Let S = conv(Xj,...,Xx) be a conditional simplex, m-fold barycentrically
subdivided in .. A local function ¢ : ext(#") — {1,...,N}(A) is called a labeling func-
tion of S. For fixed Xj,..., Xy € ext(S) with S = conv(Xj, ..., Xy), the labeling function is
called proper if for any Y € ext(.”") it holds that

P({w:¢(Y)(w) =i,Ai(®) =0}) =0

fori= .,N,where Y = Zl 1 AiXi. A conditional simplex C = conv(Y3,..., Yx), with C C
S, w1th Y, e ext(."),j=1,...,N, is said to be completely labeled by ¢ if ¢ is a proper
labeling function of S and

P({a) : there exists j € {1,...,N},¢(¥))(w) = L}) =1
forallie{l,...,N}.
Lemma 2.2 Let S = conv(Xy,...,XN) be a conditional simplex and f : S — S be a lo-

cal function. Let ¢ : ext(#™) — {0,...,N}(A) be a local function such that for every
X € ext(S™) it holds that
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(i) P{w: ¢p(X)(w) =i ri(w) =0 or pui(w) > 1i(w)}) =0 forall i = 1,...,N,
(i) P({w:p(X) (@) =0,3ie{L,...,N},1i(®) > 0, Ai(w) > pi(w)}) =
where (\;)i=1,. N and (i4;)i=1,. N are determined by X = Zl 1 AiX; undf( ) Zﬁl wiX;. Then

¢ is a proper labeling function.
Moreover, the set of functions fulfilling these properties is non-empty.

Proof First we show that ¢ is a labeling function. Since ¢ is local, we just have to prove
that ¢ actually maps into {1,...,N}. Due to (ii), we have to show that

P({a) there exists i € {1,...,N}, A;(®) > w;i(w), Ai(w) > 0})

Assume, to the contrary, that u; > A; on A € A, for all A; with A; >0 on A. Then it holds
that 1= 3N, Adps0) < Yonq Milgu0) = 1 on A, which yields a contradiction. Thus, ¢ is a
labeling function. Moreover, due to (i), it holds in particular that P({w : ¢(X)(w) = i, Ai(w) =
0}) = 0, which shows that ¢ is proper.

To prove the existence for X € ext(&””) with X = Zﬁl AiXi f(X) = Zﬁl Wi, let B :={w:
Ai(w) > 0} N {w: Ai(w) > ;Ll(w)}, i= .,N. Then we define the function ¢ at X as {w :
oX)(w) =i} =B;\ (U 1 Bi), i = N It has been shown that ¢ maps to {1,...,N}(A)
and is proper. It remains to show that ¢ is local. To this end, consider X = Z/eN lAI,Xf ,
where X/ = "N, )J;Xi and f(X/) = YN, /LJI:X,». Due to uniqueness of the coefficients in a
conditional simplex, it holds that A; = Z}
Wi = Z}EN Ly, .. Therefore it holds that B; = UIGN({a) )J(co) >0 Niw: )J(a)) > W (w)} N
A)_UleN(B’ﬂA) Hence, ¢(X) = i on B; \ (U2, Bx) = [Ujen( B’mA) Ui (UleNB’ N
Al = UjeN[(B’ \UZ B’k) N A;j]. On the other hand, we see that > jen 14;0(X0) is i on any
Aj N {w: ¢(X)(w) = i}, hence it is i on U]EN B’ \ U ) NA;. Thus, Z]’EN lAl.qb(Xf) =
(e 14,X7), which shows that ¢ is local. O

en Lo A {, and due to locality of f, it follows that

The reason to demand locality of a labeling function is exactly because we want to label
by the function ¢ mentioned in the existence proof of Lemma 2.2 and hence keep local
information with it. For example, consider a conditional simplex & = conv(Xy, X5, X3, X4)
and Q = {w;, w,}. Let Y e ext(.¥) be given by Y = % Zil X;. Now consider a function f on
S such that

SO = Xl + S50 SN = Xalon) + 2 Xaln) + 2 Xalon).

If we label Y by the rule explained in Lemma 2.2, ¢ takes the values ¢(Y)(w1) € {1,2}
and ¢(Y)(wz) = 3. Therefore, we can really distinguish on which sets X; > ;. Yet, using a
deterministic labeling of Y, we would lose this information.

Theorem 2.3 Let S = conv(Xy, ..., Xy) be a conditional simplex in (L°)*. Let further f :
S — S be a local, sequentially continuous function. Then there exists Y € S such that

S =Y

Proof We consider the barycentric subdivision (C;)zes, of S and a proper labeling func-
tion ¢ on ext(.). First, we show that we can find a completely labeled conditional simplex
in S. By induction on the dimension of S = conv(Xj, ..., Xy), we show that there exists a
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.....

The case N =1 is clear since a point can be labeled with the constant index 1 only.

Suppose that the case N -1 is proven. Since the number of Y7 of the barycentric subdi-
vision is finite and ¢ can only take finitely many values, it holds for all V' € (Y] )1, nresy
that there exists a partition (A]‘(/)/(=1,m,](, K < oo, where ¢(V) is constant on any A,‘(/. There-
Aj now.

In the following, we denote by C,» those conditional simplexes for which C_» N By_; are
N — 1-dimensional (¢f Lemma 1.11(iv)), therefore 7°(N) = N. Further we denote by Cyc
these conditional simplexes which are not of the type C,», that is, 7°(N) # N. If we use Cy,
we mean a conditional simplex of arbitrary type. We define:

o € C(Cx)resy to be the set of C; which are completely labeled on Ay.

o @ C(Cx)resy to be the set of P-almost completely labeled Cy, that is,

{(Y7), kefl,....N}} ={1,...,N-1} onA.

+ & to be the set of intersections (Cr N Cy,)x,esy, Which are N —1-dimensional and
completely labeled on A.

o Py to be the set of intersections C, N By_; which are completely labeled on Ay.
Itholds that &, N %, = @ and hence |6, UPB, | = | & | +| P |. Since Cre N By_1 is at most N —
2-dimensional, it holds that Z;c = ) and hence |%,¢| = 0. Moreover, we know that C; NCy,
is N — 1-dimensional on Ay if and only if this holds on the whole © (¢f Lemma 1.11(iii))
and C» N By_1 # ¥ on Ay if and only if this also holds on the whole 2 (¢f. Lemma 1.11(iv)).
So, it does not play any role if we look at these sets which are intersections on A or on €
since they are exactly the same sets.

If Cye € €, then |&rc| =1and if C» € G, then |6, U A 5| = 1. If Cyc € of, then |Ec| =2
and if C,» € &7, then |&,5 U B1| = 2. Therefore it holds that ) |& U By = |F)| +
2|.|.

If we pick E; € &, we know that there always exists exactly one other 7; such that E; €
&r, (Lemma 1.11(iii)). Therefore )
Bn-1 barycentrically, and hence we can apply the inductive hypothesis (on ext(C,» N Bxn-1)).

TeSN

zesy |67 | is even. Moreover, (C;» N By-1),» subdivides
Indeed, the set By_; is a o -stable set, so if it is partitioned by the labeling function into
(Ag)k=1,..x> we know that By_;1(S) = f;l 14, Bn-1(14,S) and by Lemma 1.11(iv) we can ap-
ply the induction hypothesis also to every Ay, k =1,..., K. Thus, the number of completely
labeled conditional simplexes is odd on a partition of €2, but since ¢ is constant on Ay, it
also has to be odd there. This means that ) _, |%,»| has to be odd. Hence, we also have
that ) |&; UZ,|is the sum of an even and an odd number and thus odd. So, we conclude
|€’| +2|47] is odd and hence also |€’|. Thus, we find for any Ay a completely labeled Cy, .

We define S! = le 14,Cx, which by Remark 1.9 is indeed a conditional simplex. Due
to o -stability of S, it holds that S! € S. By Remark 1.12, S! has a diameter which is less
than ]% diam(S) and since ¢ is local, S! is completely labeled on the whole Q.

The same argumentation holds for every m-fold barycentric subdivision .”” of S, m €
N, that is, there exists a completely labeled conditional simplex in every m-fold barycen-
trically subdivided conditional simplex which is properly labeled. Henceforth, subdividing
S m-fold barycentrically and labeling it by ¢™ : ext(””"") — {1,...,N}(A), which is a label-
ing function as in Lemma 2.2, we always obtain a completely labeled conditional simplex
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8™ C S for m € N. Moreover, since S! is completely labeled, it holds S* = le 14,Cry
as above, where Cy, is completely labeled on A. This means C,, = conv(Y%,..., Y/\‘,) with
¢(ij) =jon Ay foreveryj=1,...,N. Defining le = le 14, ij foreveryj=1,...,N yields
P({w: ¢(le)(w) =j})=1foreveryj=1,...,N and 8! = conv(V},..., V},). The same holds
for any m € N and so that we can write §” = conv(V{",..., Vi) with P({w: ¢>’"‘1(Vj”‘)(w) =
jh)y=1foreveryj=1,...,N.

Now, (V]™)en is a sequence in the sequentially closed, L°-bounded set S, so that by [1,
Corollary 3.9], there exists Y € S and a sequence (M,;,)nen in N(A) such that M,,,,1 > M,
for all m € N and lim,,,_, oo VIM’” = Y P-almost surely. For M,,, € N(A), Vle is defined as
> wen Lism=m V1'. This means an element with index M,,, for some m € N, equals V] on
Ay, n € N, where the sets A, are determined by M, via A, = {w : M;,(w) = n}, n € N. Fur-
thermore, as m goes to 0o, diam(S™) is converging to zero P-almost surely, and therefore it
also follows that lim,,_, V,fw”’ =Y P-almost surely for every k =1,...,N. Indeed, it holds
that |V} — Y| < diam(S™) + |V{" — Y| for every k= 1,...,N and m € N, so we can use the
sequence (M,,)men for every k=1,...,N.

Let Y = Y ) auX; and f(Y) = Y%, BiX; as well as V7' = S0 /X, and f(V)") =
SN X, for m € N. As f is local, it holds that (V") = 3, _« Lus,=mf (V2. By se-
quential continuity of f, it follows that lim,_ o f (V,ﬁw ") = f(Y) P-almost surely for ev-
ery k=1,...,N. In particular, lim,,_, « )»;VI’”’I = q; and lim,;,_, ;L?/I””l = pB; P-almost surely
for every [ =1,...,N. However, by construction, q)m’l(\/l’”) =/ forevery/=1,...,N, and
from the choice of ¢, it follows that )»7”1 > ulm’l P-almost surely for every /[ =1,...,N
and m € N. Hence, «o; = limmﬁookjw’”’l > lim,_ o M?/I’”’l = B; P-almost surely for every
[=1,...,N. This is possible only if o; = 8; P-almost surely for every [ =1,...,N, showing
that f(Y) =Y. O

3 Applications

3.1 Fixed point theorem for sequentially closed and bounded sets in (L°)¢
Proposition 3.1 Let K be an L°-convex, sequentially closed and bounded subset of (L°)%,
and let f : I — K be a local, sequentially continuous function. Then f has a fixed point.

Proof Since K is bounded, there exists a conditional simplex S such that € S. Now
define the function #: S — KC by

X, ifX el
argmin{||X - Y| : Y € K}, else.

h(X) =

This means, that / is the identity function on K and the projection on X for the elements
in S\ K. Due to [1, Corollary 4.5] this minimum exists and is unique. Therefore % is well
defined.

We can characterize / by

Y=hX) & (X-Y,Z-Y)<0 forallZeKk. 3.1)
Indeed, let (X -Y,Z-Y) <0 forall Z € K. Then

IX-ZIIP=|X-Y)+ (Y -2)|

= IX-YIP+2(X-Y,Y=Z) +IY - Z|* = IX - Y%,
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which shows the minimizing property of /. On the other hand, let Y = 4(X). Since K is
L%-convex, AZ + (1-1)Y € K for any A € (0,1](A) and Z € K. By a standard calculation,

|X-(z+@-0Y)|* = 1X-Y)?

yields 0 > =20 (X, =Y) + (A = A2)(Y, Y) + 2M(X, Z) — 22| Z||? = 2A(1 — 1){Z, Y)). Dividing by
A >0 and letting A | O afterwards yields

0> -2(X,~Y)+2(Y,Y) +2(X,Z) - 2(Z,Y) =2(X - Y, Z - Y),

which is the desired claim.
Furthermore, for any X, Y € S, it holds that

|7X) - )| < I1X =Y.
Indeed,

X-Y=(h(X)-h(Y)) + X - h(X) + h(Y) = Y =: (h(X) = h(Y)) + ¢,
which means

IX = Y2 = [ 1X) = O |+ llell® + 2{e, h(X) = h(Y)). (32)
Since

(e, h(X) = h(Y)) = ~(X = h(X), h(Y) = h(X)) = (Y = h(Y), h(X) — h(Y)),

by (3.1), it follows that (¢, /(X) — h(Y)) > 0. Therefore, | X - Y||2 > ||h(X) = h(Y)|? by (3.2).
This shows that / is sequentially continuous.

The function f o / is a sequentially continuous function mapping from S to £ € S.
Hence, there exists a fixed point f o h(Z) = Z. Since f o h maps into I, this Z has to be
in KC. But then we know 4(Z) = Z and therefore f(Z) = Z, which ends the proof. a

Remark 3.2 In Drapeau et al. [9] the concept of conditional compactness is introduced
and it is shown that there is an equivalence between conditional compactness and condi-
tional closed- and boundedness in (L°)?. In that context we can formulate the conditional
Brouwer fixed point theorem as follows. A sequentially continuous function f : £ — K
such that K is a conditionally compact and L°-convex subset of (L°)? has a fixed point.

3.2 Applications in conditional analysis on (L°)¢

Working in R?, the Brouwer fixed point theorem can be used to prove several topological

properties and is even equivalent to some of them. In the theory of (L°)%, we will show

that the conditional Brouwer fixed point theorem has several implications as well.
Define the unit ball in (L°) by B(d) = {X € (L°)? : | X|| < 1}. Then, by the former the-

orem, any local, sequentially continuous function f : B(d) — B(d) has a fixed point. The

unit sphere S(d — 1) is defined as S(d — 1) = {X e (L°)%: | X|| =1}.
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Definition 3.3 Let X and ) be subsets of (L°)?. An L°-homotopy of two local, sequen-
tially continuous functions f,g : X — } is a jointly local, sequentially continuous function
H: X x [0,1](A) — Y such that H(X,0) = f(X) and H(X,1) = g(X). Jointly local means
H(Z}.EN 14, X, ZjeN 1y,4) = ZjeN 14,H(Xj, tj) for any partition (A))jen, (Xj)jen in X' and
(t))jen in [0,1](A). Sequential continuity of H is therefore H(X,,t,) — H(X,t) whenever
X, — X and t, — t both P-almost surely for X,,, X € X and t,, ¢t € [0,1](A).

Lemma 3.4 The identity function of the sphere is not L°-homotopic to a constant function.
The proof is a consequence of the following lemma.

Lemma 3.5 There does not exist a local, sequentially continuous function f : B(d) — S(d -
1) which is the identity on S(d — 1).

Proof Suppose that there is this local, sequentially continuous function f. Define the func-
tion g: S(d - 1) - S(d - 1) by g(X) = —X. Then the composition g o f : B(d) — B(d),
which actually maps to S(d — 1), is local and sequentially continuous. Therefore, this has
a fixed point Y which has to be in S(d — 1) since this is the image of g o f. But we know
f(Y)=Y and g(Y) = -Y and hence g o f(Y) = —Y. Therefore, ¥ cannot be a fixed point
(since 0 ¢ S(d — 1)), which is a contradiction. a

It directly follows that the identity on the sphere is not L°-homotopic to a constant func-
tion. In the case d = 1, we get the following result which is the L°-module version of an

intermediate value theorem.

Lemma 3.6 Let X, X € L° with X < X and [X,X]:={Z € L°: X < Z < X}. Let further f :
[X,X] — L° be a local, sequentially continuous function and A := {w : f(X)(w) < f(X)(w)}.
IfY is in [14f(X) + 1acf (X), 14f (X) + 14cf (X)), then there exists Y € [X,X] with f(Y) =Y.

Proof Since f is local, it is sufficient to prove the case for f(X) < f(X) which is A = Q. For
the general case, we would consider A and A€ separately, obtain 14f (Y1) = 14Y, Lscf(Y>) =
14¢Y and by locality we have f(14Y] + 14Y3) = Y. So, suppose that Y is in [f(X),f(X)] in
the rest of the proof.

Let first f(X) < Y < f(X). Define the function g : [X, X] — [X, X] by

gV)=p(V-f(V)+Y) with p(Z) =1 0X +1lxzer)Z + LxpyX.

Notice that as a sum, product, and composition of local, sequentially continuous func-
tions, g is so as well. Hence, g has a fixed point Y. If Y = X, it must hold that X — f(X) + Y <
X, which means Y < f(X), which is a contradiction. If Y = X, it follows that f(X) < Y,
which is also a contradiction. Hence, Y = Y — f(Y) + Y, which means f(Y) = Y.

If Y =f(X) on Band Y = f(X) on C, then f(X) < Y < f(X) on D := (BU C)°. Then we find
Y such that f(Y) = Y on D. In total f(13X + IC\B)_(+ 1pY) =1/ (X) + lc\gf()_() +1pf(Y) =Y.
This shows the claim for general Y in [f(X),f(X)]. O
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Endnotes
a Let Br ={® : Az)(@) > Arp)(@) > - -+ > Azy(@)}, T € Sy. This finite collection of measurable sets fulfills
P(UneSN Bx)=1.We can construct a partition (A,),-1,.» such that A, C By, for some 7, € Sy and foralln=1,...,M.
Such a partition fulfills the required property.

b Thatis bearing exactly the label 1,...,N =1 on A;.
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