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Abstract
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1 Introduction
Throughout this paper, we denote by X and X* a real Banach space and the dual space of
X, respectively. Let C be a nonempty closed convex subset of X.

The duality mapping / : X — 2X" is defined by J(x) = {x* € X* : (x,x*) = |l%|% |lx*| =
lx]l}, Vx € X. It is well known that if X is smooth, then J is single-valued, which is denoted
by j. Let g > 1 be a real number. The generalized duality mapping J, : X — 2% is defined

by

]q(x) = {x* ex” :<x’x*> = ”x”q,

o = e,

for all x € X, where (-,-) denotes the generalized duality pairing between X and X*. In
particular, J = J, is called the normalized duality mapping and J,(x) = ll]19-2J5 (x) for x # 0.
It is well known that if X is smooth, then J, is single-valued, which is denoted by j,.

Recall that a mapping f : C — C is a contraction on C if there exists a constant & € (0,1)
such that

Ifx)=fO)| <ellx-yl, VryeC. (11)
A mapping W : C — C is said to be nonexpansive if

|Wx) - W) <lx-yl, VxyeC. (1.2)
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A mapping F : E — C is said to be L-Lipschitzian if there exists a positive constant L
such that

|F@) - Fo)| <Llx-yl, VayeC. (13)

A mapping F : E — C is said to be 7-strongly accretive if there exist j,(x — y) € J,(x — )
and 7 > 0 such that

(Fx = Fy,jg(x =) = nllx—yl?, Vx,yeC. (1.4)

Without loss of generality, we can assume that 1 € (0,1] and L € [1, 00).

Recall that if C and D are nonempty subsets of a Banach space X such that C is nonempty
closed convex and D C C, then a mapping P: C — D is sunny [1] provided P(x + t(x —
P(x))) = P(x) for all x € C and ¢ > 0, whenever x + t(x — P(x)) € C. A mapping P: C — D is
called aretraction if Px = x for all x € D. Furthermore, P is a sunny nonexpansive retraction
from C onto D if P is a retraction from C onto D which is also sunny and nonexpansive.
A subset D of C is called a sunny nonexpansive retraction of C if there exists a sunny
nonexpansive retraction from C onto D.

Let {B,} be a family of mappings from a subset C of a Banach space X into itself with
Mooy E(By) # 9. We say that {B,} satisfies the AKT T-condition if for each bounded subset
D of C,

[e°]
> sup [Braw - Byol| < co.

-1 weD

Proposition 1.1 (Banach [2]) Let (X, d) be a complete metric space, and let f be a contrac-
tion on X, then f has a unique fixed point.

Proposition 1.2 (Meir and Keeler [3]) Let (X, d) be a complete metric space, and let ¢ be
a Meir-Keeler contraction (MKC, for short) on X, that is, for every € > 0, there exists § >0
such that d(x,y) < € + 8 implies d(¢(x), p(y)) < € for all x,y € X. Then ¢ has a unique fixed
point.

This proposition is one of generalizations of Proposition 1.1, because the contractions

are Meir-Keeler contractions.

Proposition 1.3 [4] Let C be a closed convex subset of a smooth Banach space X. Let C be
a nonempty subset of C. Let Q¢ : C — C be a retraction, and let ] be the normalized duality
mapping on X. Then the following are equivalent:
(i) Qc is sunny and nonexpansive.
(i) 1Qcx — Qeyll* = (x = 2,J(Qex = Qcy)), Vx,y € C.
(ili) (x— Qcx,J(y —Qcx)) <0,Vxe C,y e C.

Variational inequality theory has emerged as a great important tool in studying a wide
class of unilateral, free, obstacle, moving and equilibrium problems arising in several

branches of pure and applied sciences in a unified and general framework. This field is


http://www.fixedpointtheoryandapplications.com/content/2013/1/292

Guan et al. Fixed Point Theory and Applications 2013, 2013:292 Page 3 of 21
http://www.fixedpointtheoryandapplications.com/content/2013/1/292

dynamics and it is experiencing an explosive growth in both theory and applications. Sev-
eral numerical methods have been developed for solving variational inequalities and re-
lated optimization problems; see [4—7] and the references therein.

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that the
classical variational inequality is to find an x* such that

(Fx*,x-x*)>0, VxeC, (1.5)

where F : C — C is a nonlinear mapping. The set of solutions of (1.5) is denoted by
VI(F, C).

In 2008, Yao et al. [8] modified Mann’s iterative scheme by using the viscosity approx-
imation method which was introduced by Moudafi [1]. More precisely, they introduced
and studied the following iterative algorithm:

xo=x€C,
In = ﬂnxn + (1 - ﬁn)Txm (16)
Kntl = ar(f(xn) + (1 - an)ym n>0,

where T is a nonexpansive mapping of K into itself and f is a contraction on K. They
obtained a strong convergence theorem under some mild restrictions on the parameters.

Zhou [9] and Qin et al. [10] modified normal Mann’s iterative process (1.6) for k-strictly
pseudo-contractions to have strong convergence in Hilbert spaces. Qin et al. [10] intro-
duced the following iterative algorithm scheme:

X1=X€ K,
Yn = Pi[Buxn + (1= Bn)Tx,), (L7)
Xn+l = argf(xn) + (1 - anA)yn) n>1,

where T is a k-strictly pseudo-contraction, f is a contraction and A is a strong positive
linear bounded operator, Pk is the metric projection. They proved, under certain appro-
priate assumptions on the sequences {o,} and {8,}, that {x,} defined by (1.7) converges
strongly to a fixed point of the k-strictly pseudo-contraction, which solves some varia-
tional inequality.

Very recently, Song et al. [11] introduced the following iteration process:

x1=x€eC,
I = PclButn + (1= B) 305 1" T, (18)
Xn+l = an¢(xn) + VnXn + ((1 - Vn)l - anF)ym n=> 1;

where T; is a k;-strictly pseudo-contraction, ¢ is an MKC contraction and F: C — C is
an L-Lipschitzian and n-strongly monotone mapping in a Hilbert space, P¢ is the metric
projection. Under certain appropriate assumptions on the sequences {«,}, {84}, {y.} and
{u}, the sequence {x,} defined by (1.8) converges strongly to a common fixed point of an
infinite family of k;-strictly pseudo-contractions, which solves some variational inequality.

Question1 Can the space in Song [11] be extended from a Hilbert space to a g-uniformly
smooth Banach space?
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Question 2 Can the projection P¢ in Song [11] be changed to the sunny nonexpansive

retraction Q¢ and be put to other place of the iteration process?

Question 3 Can we extend the iterative scheme of algorithm (1.8) to a more general iter-

ative scheme?

Question 4 Can we remove the very strict condition C + C C C which is necessary in
Lemma 3.1 and Theorem 3.2 of Song [11]?

The purpose of this paper is to give affirmative answers to these questions mentioned

above. In this paper we study a new general iterative scheme as follows:

x1=x€C,

Yn = ,ann + (1 - ﬂn) Z?:l /’Lgn) Tixm

%1 = Qcletnyd(,) + yulad + (1= ) Y 1 T, + (1= y)I — F)y,l,
n>1,

(1.9)

where T is a A;-strictly pseudo-contraction, ¢ is an MKC contraction, Q¢ is the sunny
nonexpansive retraction and F : X — Cis an L-Lipschitzian and n-strongly accretive map-
ping in a g-uniformly smooth Banach space. Under some suitable assumptions on the se-
quences {&,}, {B4}, {vs} and {uﬁ")}, the sequence {x,} defined by (1.9) converges strongly
to a common fixed point of an infinite family of A;-strictly pseudo-contractions, which

solves some variational inequality.

2 Preliminaries

In this section, we first recall some notations. 7T is said to be a A-strict pseudo-contraction
in the terminology of Browder and Petryshyn [12] if there exists a constant A € [0,1) such
that

(T = Ty,j,( = 9)) < lx = yll? = 2| - T)x — (I = T)y||” (2.1)

for every x,y € C and for some j;(x — y) € J,(x — ). It is clear that (2.1) is equivalent to the
following:

(I-T)x =T - Ty, jgx =) = 2| T - T)x - T - T)y|". (2.2)
A Banach space X is said to be strictly convex if whenever x and y are not collinear, then

e+ yll < llxll + NIyl
Then the modulus of convexity of X is defined by

. 1
dx(€) = lnf{l - Iyl llell iyl < 3 lle =yl = 6}

for all € € [0,2]. X is said to be uniformly convex if §x(0) = 0 and 5x(¢) > 0 forall 0 < € <2,
and if §x(€) > ce? with p > 2, then X is said to be p-uniformly convex. A Hilbert space

H is 2-uniformly convex, while L? is max{p, 2}-uniformly convex for every p > 1. Let pyx :
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[0,00) — [0, 00) be the modulus of smoothness of X defined by
1
px(£) = sup{§(||x+y|| +lla—yll) - 1:x € S(X), Iyl < t}.

A Banach space X is said to be uniformly smooth if pr(t) — 0ast — 0.A Banach space X
is said to be g-uniformly smooth if there exists a fixed constant ¢ > 0 such that px(¢) < ct?
with g > 1. A typical example of uniformly smooth Banach spaces is L?, where p > 1. More
precisely, L? is min{p, 2}-uniformly smooth for every p > 1.

The norm of a Banach space X is said to be Gateaux differentiable if the limit

. x+ty|| —||x
i 1+ D1 = D]

t—0 t (23)

exists for all x, y on the unit sphere S(X) = {x € X : ||x|| = 1}. If, for each y € S(X), the limit
(2.3) is uniformly attained for x € S(X), then the norm of X is said to be uniformly Gateaux
differentiable. The norm of X is said to be Fréchet differentiable if, for each x € S(X), the
limit (2.3) is attained uniformly for y € S(X).

In order to prove our main results, we need the following lemmas.

Lemma 2.1 [13] Let ¢p be an MKC on a convex subset C of a Banach space X. Then, for
each ¢ > 0, there exists r € (0,1) such that

Il = yll = & implies || px — gyl < rllx-yl, Vx,yeC.

Lemma 2.2 [14] Let X be a real g-uniformly smooth Banach space, then there exists a
constant C; > 0 such that

llc +y117 < %17 + (. Jg @) + Cylly| T for all x,y € X.
Lemma 2.3 [15] Let {«,} be a sequence of nonnegative numbers satisfying the property
p < (1- Vn)an +b,+ YnCny n=0,
where {y,}, {b,}, {c,} satisfy the restrictions:
(i) imsup,_, o ¥n =0, Y neg ¥u = 00;
(11) bn >0, Z;ozl bn <005

(iii) limsup,_, ., ¢x <0. Then lim,_, o, = 0.

Lemma 2.4 [16] Let C be a nonempty convex subset of a real q-uniformly smooth Banach
space X, and let T : C — C be a A-strict pseudo-contraction. For o € (0,1), we define Tyx =
(1-a)x+aTx. Then,as o € (0, ], u = min{l, (%)é }, Ty : C — Cis nonexpansive such that
F(T,) = F(T).

Lemma 2.5 [17] Let q > 1, then the following inequality holds:

for arbitrary positive real numbers a, b.
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Lemma 2.6 Let F be an L-Lipschitzian and n-strongly accretive operator on a nonempty
closed convex subset C of a real g-uniformly smooth Banach space X with 0 <nq <1 and
O0<t< (%)4%1. Then G = (I — tF): C — X is a contraction with contraction coefficient
=1- %(qtn - C,L1t9).

Proof From the definition of n-strongly accretive and L-Lipschitzian operator, we have

1Gx — Gy = [« —y — t(Fx — Fy)|*
< llx =yl — qt(Fx — Fy,jg(x — y)) + Cyt?|| Fx — Fy||
<lx-yl7-qgtnllx—yl7+ CLItx -y

= [1 - (qtn - Cqutq)] [l —y19.
Therefore, we have
1
1Gx ~ Gyl < [1- (qtn — CoL7tT)]7 |l - |

1
p [l - 5(th7 - Cqutq)} llx =yl

1
forallx,yc C.From0<ng<landO0<t< (%)ﬁ, we have 0 <1 — %(qtn - C,L1t7) <1

and

IGx — Gyll < Tl —yll,
where 7, =1 — %(qtn - C,Lt1) € (0,1). Hence, G is a contraction with contraction coeffi-
cient 7;. This completes the proof. O

Lemma 2.7 ([18], Demiclosedness principle) Let C be a nonempty closed convex subset of
a reflexive Banach space X which satisfies Opial’s condition, and suppose that T : C — X is
nonexpansive. Then the mapping I — T is demiclosed at zero, that is, x, — x, x, — Tx, — 0

implies x = Tx.

Lemma 2.8 Let C be a closed convex subset of a smooth Banach space X. Let Cbea
nonempty subset of C. Let Q¢ : C — C be a retraction, and let j» Jjq be the normalized du-
ality mapping and generalized duality mapping on X, respectively. Then the following are
equivalent:
(i) Qc is sunny and nonexpansive.

(i) Qcx—Qeyll* < (x—,j(Qcx — Qcy), Va5 € C.

(ili) (x— Qcx,j(y — Qcx)) <0,Vxe C,y € C.

(iv) (x—Qcx,j (y — Qex)) <0,Vx e C,y e C.

Proof From Proposition 1.3, we have (i) < (ii) < (iii). We need only to prove (iii) < (iv).
Indeed, if y — Qcx # 0, it follows from the fact j,(x) = [|x[97%j(x) that (x — Qcx,j(y —
Qcx)) <0 {x— Qe jg(y — Qex)) <0, Va e Cy € C.
If y— Qcx = 0, then (x — Qcx,j(y — Qcx)) = (¥ — Qcx, j, (¥ — Qcx)) = 0,Vx e C,y € C. This
completes the proof. O
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Lemma 2.9 [19] Suppose that {B,} satisfies the AKTT-condition, then for each bounded
subset D of C:
(i) {B,} converges strongly to some point in C for each x € C;
(i) Furthermore, if the mapping B : C — C is defined by Bx = lim,,_, o, B,x for all x € D,
then lim,,—, oo SUPcp | Bw — B, 0| = 0.

Lemma 2.10 Let C be a closed convex subset of a reflexive Banach space X which admits
a weakly sequentially continuous duality mapping j, from X to X*. Let S: C — C be a
nonexpansive mapping with F(S) # ) and ¢ be an MKC on C. Suppose that F: C — X is
an n-strongly accretive and L-Lipschitzian mapping with coefficient and n > y > 0. Then
the sequence {x,} defined by x; = Qc [ty ¢(x;) + (1 — tF)Sx;] converges strongly ast — 0 to a
fixed point X of S, which solves the variational inequality

((F-y¢)%j,&-2) <0, VzeF(S). (2.4)

Proof The definition of {x;} is a good definition. Indeed, from the definition of MKC, we
can see that an MKC is also a nonexpansive mapping. Consider a mapping L; on C defined
by

Lix= Qc[ty¢(x) + (- tF)Sx], xeC.

1

It is easy to see that L, is a contraction when 0 < £ < (%)ﬁ .Indeed, by Lemmas 2.1 and

2.5, we have
IZix = Leyll = || Qc[ty ¢ () + (I - tF)Sx] - Qc[ty ¢ () + (I - tF)Sy]|
< [ty p@) + 1 - tF)Sx -ty p(y) - U —tF)Sy |
<ty|o@) -0 + | U - tF)Sx — (I - ¢tF)Sy|
<ty o) - o) + wlSx - Syll
<tyla—yl +nllx -yl
<6lx-yl,

where 0, = ty + 17, € (0,1). Hence L, has a unique fixed point, denoted by x;, which uniquely
solves the fixed point equation

X = Qc[tyqb(xt) + - tF)Sxt]. (2.5)

Next we show the uniqueness of a solution of the variational inequality (2.4). Suppose
that ¥ € F(S) and & € F(S) are solutions to (2.4), then, without loss of generality, we may
assume that there is a number ¢ such that ||¥ — ¥|| > ¢. Then, by Lemma 2.1, there is a

number r € (0,1) such that ||¢px — ¢X|| < r||¥ —%||. From (2.4) we have

((F-y¢)%,j,G-2) <0, (2.6)

((F=y¢)3,j (2 -%) < 0. 2.7)
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Adding up (2.6) and (2.7), we obtain
((F~y#)3 — (F - y$)5jy(2 - 3)) < . 2.8
Meanwhile, we notice that

((F-y@)x— (F -y 9)%,j (& %)) = (F& - FX, jy (& - %)) - y (¢ (%) — 9 R), o (& - B))
> 2 =% - yll¢@) - p@ |12 - %7
> nllx %7 - yriz -%| 12 - %]
> nl|& =% - yrlz -%|1
=(n-yn)llx-%|
>(n-yrke
> 0.

Thus % = ¥ and the uniqueness is proved. Below, we use ¥ to denote the unique solution of
(2.3).

First, we prove that {x,} is bounded.

Assume that 0 < £ < "L_—z" for Vz € F(S), fixed ¢’ for each ¢.

Case 1. (J|lx; — z|| < &). In this case, we can see easily that {x,} is bounded.

Case 2. (|lx; — z|| > €’). In this case, by Lemma 2.1, there is a number r’ € (0,1) such that
lp(x:) - #@) < 7 1% - plI, then we have

Il —2ll = [ Qc[ty p(xs) + (I - tF)Sx.] - 2|
= |ty p(x,) + (I - tF)Sx, — 2|
= | t(y o) - Fz) + (I - tF)Sx, — (I - tF)z||
<ty - p|| + wlx — 2l
<t|ypx:) - yo@)| +t]|yd(2 - Fz| + wllx: — 2|
< tyr'llx —zll + t|d(2) - Fz| + wllx, -z,
which implies [jx; — z|| < W Thus {x;} is bounded.
Then, we prove that x, — X (X € F(S)) as t — 0.
Since X is reflexive and {x;} is bounded, there exists a subsequence {x;,} of {x;} such that
xp, — x*. Setting y; = ty ¢(x;) + (I — tF)Sx;, we obtain x; = Qcy;.

We claim |[|x;, —x*|| — 0.
It follows from Lemma 2.8 that

(J/: - Qcytrjq(x* - QC_yt)) = O’ (29)
then we have

”xtm - ”‘1 = <QCJ/tm _ytrn’jq(xtm _x*)> + <ytm _x*’jq(xtm _x*)>

= (ytm - x*7jq(xfm - x*)>

Page 8 of 21
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= (([— tmF)Sx1,, — (I = tuE)x", jg (%, —x*)> + tm<y¢xtm — Fx*,j4 (%4, —x*))

<1ty ||xtm —x* ||q + tm(yqutm — Fx*,j4(%s,, —x*)),

which implies that

[, =" =

—1-1 <y¢x'§m - Fx*’jq (xtm - x*)> (210)

Since t,, — 0 as m — oo, by (2.10) we obtain that x;,, — x*. Hence, we have x;, — x™.
Now, we prove that x* solves the variational inequality (2.4).

Since
% = Qcyr = Qcye — ye + ty d(xy) + (I - tF)Sxy, (2.11)
we get that
1 1
(F-yd)x; = Z(Qcyt —91) - 2(1 — S)x; + (Fx; — FSxy). (212)

Notice that

(I = S)xy = (I = S)z,jg (% — 2)) = (we — 2, (20 — 2)) — (Sxs — Sz, j4 (20 — 2))
> |l — zl|7 — [|Sx, — Szl| [l — 21|77
>l — 2l — llx, — 2|7

=0.

Then, for z € F(S),

_ %((1 = S)x0,jg (% = 2))

+ (Fxy — FSxy,j4(x: — 2))

((F=y@)xe jg(x: — 2)) = %(Qcyt — Vi g% — 2))

_ %<Qcyt  Yorjglee = 2)) - %((1 =S = (= S)zrjy(x ~ 2))
+ (FXt — stt,jq(xt - Z))
< (Fxt — F(Sx;), jq (o — Z)>

< M||x; — Sx¢]|, (2.13)
where M = sup,,_o{L||x; — 2|7} < co. Notice
X — Sxy = t[yqb(xt) - FSxt].
Thus, we have
X —Sx,—> 0 ast— 0.

Now replacing ¢ in (2.13) with ¢, and letting » — 00, notice that (I — S)x;, = (I - S)x* =0
for x* € F(S), we obtain ((F — y¢)x*,j;(x* — 2)) <0, i.e, x* € F(S) is a solution of (2.4).
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Hence ¥ = x* by uniqueness. Thus, we have shown that every cluster point of {x;} (att — 0)
equals X, therefore x; — ¥ as t — 0. O

Lemma 2.11 Let X be a g-uniformly smooth Banach space, and let C be a nonempty convex
subset of X. Assume that T; : C — C is a countable family of A;-strict pseudo-contractions
for some 0 < &; <1 and inf{); : i € N} > 0 such that § = (\;5, F(T;) # V. Assume that {1}
is a positive sequence such that Y . ju; = 1. Then Y oo w; T; : C — C is a A-strict pseudo-
contraction with A = inf{A; : i € N} and F(Y_;5) w;T;) = (g F(T)).

Proof Let Hyx = 1 Tix + o Tox + - -+ + by T, where Zf:l ui=1.ThenH,:C— Xisa
A-strict pseudo-contraction with A = min{A; : 1 <i < n}.

Step 1. We firstly prove the case of n = 2.

(I = Hy)x = (I = Hy)y, jg(x - 9))
= (i = Ty)x + po(I = To)x — iy (I = Th)y — oI = Ta)y, j4(x - 9))
= (- T)x - (= Ty, jg(x = y)) + (U = To)x — (I = Ta)y, jgx — )
> || = T)x = (1= Ty||* + pada | (= To)x = (L= To)y|*
=[] = T)x = (1= Ty " + pa| (I - To)x - (1 - To)y| %]

= 1| - Hy)x — (I - Hy)y |,

where A = min{}; : i = 1,2}, which shows that H, : C — C is a A-strict pseudo-contraction.
Using the same means, our proof method can easily carry over to the general finite case.
Step 2. We prove the infinite case. From the definition of A-strict pseudo-contraction,
we have

(T - T)x— T =Ty, jgx— ) = 1| - T)x - I - Ty (2.14)

then we obtain

1

1\a1
|- T)x— - Tyy| < (X) ll = y1l. (2.15)
Taking p € F(T,), it follows from (2.15) that
1

|- T)x|| = (7 - T)x— (I - T,)p| < (%) “x-pl. (2.16)

Thus, for Vx € X, if (o F(T;) # ¥ with p; > 0 and > ;- i; = 1, then Y -, ; T; strongly
converges.
Let

oo
Hx=) T,

i=1
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then we obtain

Hx = Zu,Tx— lim ZM,Tx— hm

i=1

Therefore

(I -H)x— (I - H)y,jj(x - )

1 n
=tlim( ([ =— Y wT|x+ wiTi )y,jq(x =)
(1= s e (- S

1
= lim —— ) w{ - Tx— (I = Ty, jglx - )
n—00 lel Wi ; i )

. 1 ¢
> lim 5 > ikt = Tx - - To)y|*

=t M o

1 n
_ wiTi Jx - Wi
( Z?:l Mi ; ' l) ( 1M1 le: ' l)

=t -Hx - -H)y|"

q

Thus, H is a A-strict pseudo-contraction.
Step 3. We prove F(} 0 i Ti) = ooy F(T7).
Let x = )7 i Tix, then, for p € (5 F(T;), we obtain

llx = pll? = (x = p,js(x - p))

= <Z wiTix —p,jig(x —P)>

i=1

= ZMi(Tix - P jgx - p))

i=1

[o¢]
<la-pl =2 willx— Tix],

i=1
where A = inf{}; : i € N}. Thus, we obtain x = Ty, it follows that x € (.2, F(T}). O

3 Main results
Lemma 3.1 Let C be a nonempty closed convex subset of a q-uniformly smooth Banach
space X. Let Qc be the sunny nonexpansive retraction from X onto C, and let ¢ be an MKC
on C. Let F: C — X be n-strongly accretive and L-Lipschitzian with 0 <y <n, and let T :
C — C be a \;-strictly pseudo-contractive non-self-mapping such that § := (-, F(T;) # 0.
Assume A =inf{); : i € N} > 0. Let {x,,} be a sequence of C generated by (1.9). We assume
that the following parameters are satisfied:

() O<ay <1, Yooy =00, lim, 00, =0, Y o) X1 — | < 00;

(ii) 0 <1—(ﬂ>% < B <L, X5 1Bt — Bl < 00

1)
(111) Zl II’LL 1 Zn ]Zz 1 |Mzn+ u’i‘n” <005
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(iv) 0< Yn<a<l, Z,o:ol [Vs1 = Yl < 00, dtpi1 BuL + Vi1 + Br > il + BrVuss
1
W) 1-b<a<l,b:= min{l,(%ﬁ}.

Then lim,,_, oo (%41 — %ull = 0.

Proof Let B, =Y /LE") T;, by Lemma 2.11 we obtain that for each n > 0, B,, is a A-strict
pseudo-contraction on C and F(B,) = (5; F(T;). Further, we can get that

oo oo oo
> Bz =Buxll = 3 Y [ = [ Tixl < 00,

n=1 n=1 i=1

thus {B,}%, satisfies the AKTT-condition. Let W, = af + (1 — )Y ) /Lgn) T;, where a €
[1-b,1), b := min{l, (g—’;)%}. From Lemma 2.4 and Lemma 2.11 we have that W, is a non-
expansive mapping and F(W,) = (.5, F(T;) = 3, then the iterative algorithm (1.9) can be
rewritten as follows:

x=x€C,
Yn = Bun + (1= Bu)Buxn, (3.1)
Xn1 = Qclany d(xn) + v Wi, + (1 — vl - a,Fly,l, n=1

We divide the rest of the proof into two parts.
Step 1. We will prove that the sequence {x,} is bounded.
Letting

Lyx= Ian + (1 - ,Bn)any

from Lemma 2.4 and condition (ii), we get that L,, : C — C is nonexpansive. Taking a point
p € (i E(T;), we have L,p = p and p € F(W,,). Therefore, we obtain

s = pll = ILnn — pll < 1%0 = P

From the definition of MKC and Lemma 2.1, for any ¢ > 0, there is a number r, € (0,1), if

lx: = pll <&, then [|§p(x,) — pP)Il < & if [lx, — pll > &, then [[p(x4) — @) < rellx, —pl. It
follows from (3.1) and Lemma 2.5 that

%1 = plI
= H QC[anV¢(xn) + Y Wity + ((1 — Y - anF)yn] _pH

f ||Olny¢(xn) + yn ann + ((1 - yn)l_ anF)yn —P”

= | n (v ¢ @n) = Ep) + yu(Wotn — p) + [(1 = )] = tuF Jyn — [(1 = yi)I — a0uF ||

C Lo}
<(1-vu— (- == ) {15 =Pl + vall%s = pll + 2|y $(x) - Fp|
q(l - yn)q

< [1 - (ann - ﬂ)} %0 = pll + oty max{rlla, —pl, e} + | o (p) - Fp|
q(1 - y,)1!

’

Cquer
=max [1- (e — ———= ) |Il%n = pll + @y 7llx, - pll + ou|y ¢ (p) - Ep
q(l_)/n)q

Page 12 of 21
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C Ll
[1 - (ann - m)] b = Il + @y e + |y $(p) —Fpll}

C,Lia}
= maX{ [1 - <ann e —anyr)] o, = pll + ||y p(p) - Ep

q(1—y,)tt
CanZ >]
1- ann_qi lx, —pll + ctyye +a,|ye )_F .
[ ( g1 -y d y lvot)-Fr

By induction, we obtain

%1 =PI

- { [1 ( CyLery” )} % = pl
< max -yl n-————yr | |, —
20— )T P

-1
CLaj; lyop) - Epll
o\ N -~ o V')
q(l -yt Cqlla)
Q(I—J’n)‘F1 —vr

[1 ( CLa” )} s~ pl
— | = ——— ) 20—
gl -yt P

-1
CLllay \ye+lyolp) - Fpll
+o,| N — 1 .
q(1 -y, _ Cyliay
q(l—)’n)‘F1

’

Hence, we obtain
%, - pll < max{llxo - pll, M}, 10,

where M is a constant such that

lyo(p) - Fpll ye+ lyo) - Fpll
s —yr T
q(l-yn)? q(l-yn)1

M= max{ sup

n>0

which implies that {x,} is bounded, so are {y,} and {L,x,}.
Step 2. We claim that ||x,,; — x,|| = 0 as n — oo.
From (3.1) we have

%042 = X1l

= | Qc[etm1y d@ns1) + Vst Wonsrdmsr + (L= Vi) = 01 F) a1 |
= Qclony d(n) + Yu Wi + (1 = yu)I — &t F) Lyt |

< ety S @) + Vst Wosatwar + (@ = Vius)I = @i F) Lyt
= Y D) = Y Wantn — (1= yu)I — @ F) Ly |

= | (@ = Y1) = @1 F) Lnirdnar — (1 = V)l = @uF) Ly
+ (1Y D Xni1) = Y D)) + Vst Woni1mir — ¥ W) |

< (= Yue)I = @1 F) Lpir®nia = (1 = Vs = 01 F) Ly |

+ || ((1 - yn+1)1 - an+1F)Ln+lxn - ((1 - Vn)l - anF)Lnxn H

’

Page 13 of 21
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+ ||an+ly¢(xn+l) -,y o(x,) ” + [1Vie1 Was1Xe1 — ¥ Waka ||

Coltoy,
<1 — Vn+l — ®py1 (71 - W ||xn+1 _xn”

+ (1 - yn+1)||Ln+1xn - Lnxn” + |Vn+1 - an ”Lnxn”

IA

+ pi1 |FLps1%y — FLyXu || + [€us1 = 0| || FLyx, || + ||an+ly¢(xn+l) — 01y P(xn) ”
+ ||an+17/¢(xn) - any¢(xn)|| + 1 Vi1 Wis1%n41 = Vires W1 % |

+ 1Ve1 W% — Ve Wa ||

CquaZj
(1 = Vn+l — %41 (77 - W o1 — 2l

+(1- Vn+l)||Ln+1xn = Lpxull + [Yus1 = Val I Luxn |l

IA

+ i1 |FLy1%n — FLyxy || + |0t — ay | |1FLyxn || + @1y 16041 — Xl

+ |0t — oty H yd’(xn)H + Va1 %41 — %

+ Vet | W% = Wiull + Ve = Yl ll Wl

CquO‘Zj
(1 — Uy (7] - W -y 141 — Xl

+(1- yml)”LrHlxn = Lypxull + Yur1 | Was1x, — Wi ||

IA

+ Vi1 — yn|(||Lnxn|| +| ann”) + p1 Ll| Lyns1%n — Lyt ||

+ ot _anl(”FLnxn” + ||y¢(xn)||)

C Loy
= (1 — 0yl (TI A Y ) Nxna = xall

+lets = ol (IFLutall + |y b (@) |)
+ |V — Vn|(||Lnxn|| + | ann”) + (1 + o1l = Vi) | Lns1%n — L |
+ V1 | W12 — Wi || (3.2)

Next, we estimate ||L,,1x, — L,x,|| and | W, .12, — W,x,||. Notice that

I Lyr1%n = Lyxll = ” [:3n+lxn +(1- ,Bn+1)Bn+lxn] - [ﬁnxn +(1- ,Bn)ann] ”

= |ﬂn+1 - ﬂn| ”xn - Bn+1xn ” + (1 - ﬂn) ||Bn+1xn - ann”’ (33)
” Wn+1xn - ann || = ”len + Bn+lxn —ox,; + (1 - a)ann ”
= (1= )| Brs1xn — Buxnll. (3.4)

Substituting (3.3) and (3.4) into (3.2) and using condition (iv), we have

Colteys
”xn+2 - xn+1|| = 1- Cpi1| N — W -y ”xn+1 _xn” +M1(|05n+1 — 0y
— Vn

+ (1 + oyl - Vn+1)|,3n+1 = Bul + |Vus1 — Vn|)

+ [1 - (an+1/3nL +AYpa t ,Bn - an+1L - ,Bnyn+1)] ”Brﬁ—lxn - ann ”
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(1 - Vn)q_l -
+ (1 + O5;'1+1L - yn+1)|,3n+1 - ,Bn| + |yn+1 - Vn|) + ”Bn+1xn _ann”: (35)

C,Lia™]
=< (1 — 0yl (77 - qqiml V)) %41 = %] +M1(|an+1 — |

where Mj is an appropriate constant such that
My = |1 = Byall + | FLun | + | L%l + 7 [ @) | + | Wotl - for all m.

Since {B,} satisfies the AKTT-condition, we get that
o0
> " 1Bus1tn = Byl < 00.
i=1

Noticing conditions (i), (iii) and (iv) and applying Lemma 2.3 to (3.5), we obtain

lim %11 — %[l = 0. (3.6)
This completes the proof. d

Lemma 3.2 Let C be a nonempty closed convex subset of a q-uniformly smooth Banach
space X. Let Q¢ be the sunny nonexpansive retraction from X onto C, and let ¢ be an MKC
on C. Let F: C — X be n-strongly accretive and L-Lipschitzian with 0 <y <n, and let T; :
C — C be a A-strictly pseudo-contractive non-self-mapping such that § := (o, F(T;) # 0.
Assume A =inf{); : i € N} > 0. Let {x,,} be a sequence of C generated by (1.9). We assume
that the parameters {«,}, {B,}, {ME")} and {y,} satisfy the conditions (i), (ii), (iii), (iv), (v) in
Lemma 3.1 and (vi) lim,,—. B, = a. Then {x,} converges strongly to ¥ € §, which solves the
following variational inequality:

(vo@ - FX,j,(p -%) <0, Vpe[ |E(T).
i=1

Proof The proof of the lemma will be split into three parts.
Step 1. We will prove that lim,,_,« || 7%, — x,|| = 0, where T : C — C is defined by Tx =
ax + (1 — a)Bx and Bx = lim,,_, oo B,x. From (3.1) we have

IZntn = el = || Qclotny d(6n) + yu Wik + (L= i)l = 0t F) Litn ] = L |
< |ty @ @n) + ¥ Wartn + (A = V)l = 0uF) Ludys — Lt |
= | tny @ (%n) = tuFLun + Ve Wt — YL |
< |y d(en) = FLun || + Vil Wi — Lt
= ||y $®n) = FLutn | + V| s + (1 = @) By — Buks — (1 = Bu)Butin|

= oty || Y (%) = FLuk|| + vl B2 — 1% — Byl
Using conditions (i) and (vi), we obtain

lim [Ly%, = %pia |l = 0. 3.7)
n—00
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Since {B,}:%, satisfies the AKTT-condition, from Lemma 2.9 we can obtain lim,_, || B,x—
Bx|| = 0. Furthermore, notice that
(Bx — By, j,(x - y)> = nlin;o(an - By, j,x - y)>
< Jim [I1B,x ~ Byl ~ 4[|~ Bu)x ~ U - Bu)y[]

= |Bx = By|l? = 1| (I - B)x - (I - B)y|",

therefore, we deduce that B: C — Cisa A-strict pseudo-contraction. Applying Lemma 2.4,
we obtain that T is nonexpansive with F(T) = F(B). Notice that

[l Tt —
< Lty = Tl + (Lt = st | + %01 — %l
= || Bustn + (1 = Bu)Bukn — 0ty — (L= o) By || + | Lty = X | + 1241 — %
= [ (B — )@ — Buxn) + (1 — &) Byt — Bxu) || + | Lnbn — Xwst | + 1211 — |

= |Bn —alll®n — Buxull + (1 — )1 Buxn — Bxull + I Lnxn — X1l + [%ns1 — %l
Using (3.6), (3.7) and (vi), we obtain
lim [T, — x4 = 0. (3.8)
Step 2. We will show that

lim sup(yqﬁ(‘) — FX, jq (%, —36)) <0, (3.9)

n—00

where % = lim;_, ¢ x; with x; being the fixed point of the contraction
x> Qctyp(x) + (1 — tF) Tx].

From the above, we know that ¥ € § = F(T), then we take a subsequence {x,, } of {x,} and
assume that x,, — w, where w € F(T). Since the Banach space X has a weakly sequentially
continuous generalized duality mapping j, : X — X*, by using Lemma 2.7, 2.10 and (3.8),
we have

limsup(y ¢ (%) — FX, j,(x, — %)) = limsup(y ¢(&) — FX, j; (%, — X))

n—o0 k— o0

= <V¢(35) - F%’jq(w —35»

<0.

Step 3. We will prove that lim,,_, o ||x, — %] = 0.
By contradiction, there is a number & such that

limsup ||x, —X|| > &o.
n—0o0

Page 16 of 21
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First, let
Zn = ot,,)/¢(x,,) + Vu ann + ((1 - Vn)l - anF)yn- (310)

Now, we will obtain the contradiction from two cases.

Case 1. Fix &1 (g1 < &), if for some # > N € N such that |x, —X|| > &9 — &1, and for the
other n > N € N such that ||x, —X|| < &9 —&1.

Let

_ q{y dX) — FX, j (%01 — %))
(g0 —&1)4 '

M,

From (3.9) we know limsup,,_, ., M, < 0, thus there are two numbers # and N. When

) C 1908t
n > N, we have M,, < h, where & = min{n — ﬁ — y}. We extract a number ng > N
v

satisfying ||x,,, — %|| < &9 — €1, then from Lemma 2.5 and (3.10), we have

ll%ng+1 — %1
=(Qczny = ZngrjgCngs1 = ) + (2ng = % jg(Xngs1 — %))
< (zno =% jg(®ngs1 — %))
= (0t Y BGng) + Vitg Wingmg + (1= Viug) = ng F) Yy = %o jg (ng 41 — %))
= ([ = Vo)L = g F]ymg = [ = yug)] = otno F &
+ 0o [V B @ng) = FX] + Vg (Wongmg — %), jig (g1 — X))
= ([ = Yo = g Fyng = [ = Yug )T = @y F %, g (g 1 — %)
+ (0o [ D Xng) = ¥ )], Jg (K1 — %))
+ o (Y B@) = FX, g (Kng 1 = B)) + Vo Wng g — %o g (g 11 = %)
< @ = yu)T = g Fyng = [ = 7)) = g FJZ | %001 = %117
+ g ¥ g — X 161 — FI| T

+ ano<y¢(’55) - F%:jq(xno+l _36)> + 7/}10 ”xno _%” ||xn()+l _’55”q_1

CquaZ(;l - ~ig-1
< [1 = Vno — Ong (TI T =it 1Yo = Xl %ng+1 — %Il

~ ~nq-1
+ &g ¥ 1%y = El 1 %ng+1 — %1

+ g (Y D) = Fy g (ng 1 = B)) + Ving 1% = F | 12941 — X[ 77"

C Loy - s
< [1 = Yy = g (n - m)] 46y =l g1 = 17
no

~ ~1g-1
+ QY ”xno —x|| ”xn0+1 - x”q

+ an0<y¢(35) - Fsarjq(xn(ﬁl _36)> + yno ”xi'lo _35” ||xn()+1 _’Eéllq_1

C Lq(xZ_l
I L A | [P T T
|: o <77 q(l e = v no ] no+1 I

+ an0<y¢(35) - P?érjq(xn(ﬁl _36)>
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1 C, anz_l -
< glimon (1 g ) -5
no

q-1 ~ , ~
+ T ||xno+1 -ZI7+ Olno(l/fﬁ(;@ - Fk‘;lq(xnoﬁ-l - x))

1 C,Lial?! g-1
<Z|1=- a7 _g) 4+ L= %N
< q[ Qg (n 20— o) V) (g0 — 1) + p 1%19+1 — %Il
+ Oln0<]/¢(%) —1I x’jq(xn0+1 _36)>:

which implies that
C,Ligt™
%4 _ _ 4z 7" _ o)
”xno+1 x||7 < [1 0770 (77 q(l _ Vno)q_l V)](so £1)
+ qang(V‘ﬁ@) - P%;jq(xno+l _%»

C,Lig%™*
=|1-a, _ a7 - M, _ o)
|: o O(TI q(l—yno)q’l Y 0>:|(80 €1)

< (g0 —&1)%.
Hence, we have
1%1 — %Il < €0 — €1
In the same way, we obtain
I, —=%|| < &0 — &1, VYn > ny.

It contradicts limsup,,_, o [lx, — %] > &o.
Case 2. Fix &1 (&1 < &), if ||x, —=%|| = €9 —&; forall # > N € N. In this case, from Lemma 2.1

there exists a number r € (0,1) such that
o) =@ <7llxn—%I, n=N.
From (3.10) we have

lln1 — %17
=(Qczn = Zns jq(Hn1 = %)) + (20 = % jg (X1 — X))
< (20 =%, jy(Xp1 — %))
= (otay @ (n) + Yu Wanktn + (L= vu)] — €uF) ¥ — %o jg (i1 — %))
=([A =y = uFlyn— [A = yu)] - anF]%
+ [y P(n) = FE| + Yu( Wity = %), jg (X1 — %))
= ([ =yl = auFyn = [(1 = )l = uF [, jy (61 = %)

+ (an [V¢(xn) - V‘p(%)]’jq(xnﬂ _35)>
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+ an()’d)(%) - F%:jq(xnﬂ _%)> + Vn(ann —%;jq(xn+l _%)>
= ” [(1 -y - OlnF]yn - [(1 — Yl - o[nF];E” %241 _%”q_l
+ Oln)””||xn _35” ||le+1 _’55||q—1

+ an(Vﬁb(’E) - F%:jq(xnﬂ _35)> + Yl = X 1% _%”q_l

CquaZ_l -~ o1
= [1 — V= Oy (n Tyt 17 = ElH %1 =%

~ ~1g-1
+ oyl — | o — %[

+ an(y(b(%) _F;Clvjq(xnﬂ _3‘,)> + Yl — %) %1 _Fcl”cf1

C,Lial™
_ _ _ g n _~ _~q-1
=< [1 Yn—Cy (77 q(l _ )/n)q_l 1% = % %1 — %I

~ ~i1g-1
+ oty rllocn = E| llownen — %7

+ an(VQS(%) - F%,jq(xn+l _36)> + VYl = X[ %1 _%”q_l

CquOln_l -~ ~ig-1
= [1 - Oén<77 A yr ) | 1%n = X% — %]l

+ Oln(7/¢(35) - F%:jq(xrwl - 36))

1 [1 ( C Lol )}” 2
S L=\ g YT Xp — X
q q(1 —y,)1
q-1 ~1q .
+ T %41 — %17 + an(y(p(;‘;) _P?‘:»]q(xwrl _35)>r

which implies that

~ C, L1 ~
ll641 — %7 < [1 —an(n - yr)] [l — %1

q(1- V)11
+ qan(y‘{b(%) - Fivjq(xnﬂ - 36)) (3.11)
q-1 B
Puta, = a,(n- qc(‘lffza)';_l —yr)andc, = W. Applying Lemma 2.3 to (3.11), we
n q o
P

obtain x,, — X as n — 00, which contradicts ||x, —%|| > &9 — &1. Thus lim,,_, o ||x, —%|| =
This completes the proof. O

Theorem 3.1 Let C be a nonempty closed subset of a q-uniformly smooth Banach space X.
Let Q¢ be the sunny nonexpansive retraction from X onto C, and let ¢ be an MKC on
C. Let F: C — X be an n-strongly accretive L-Lipschitzian and linear mapping with 0 <
y <n,and let T; : C — C be a A;-strictly pseudo-contractive non-self-mapping such that

=i, F(T;) # 9. Assume ) = inf{}; : i € N} > 0. Let {x,} be a sequence of C generated by
(1.9). We assume that the following parameters are satisfied:

(i) 0<a, <1, Zl 10y =00, limy, 0o 0y = 0, D0 |ots1 — @] < 00;

(i) 0<1- (‘17 )i < Bu<l, Y 1Bust = Bul < 00;
(i) Y 7 =LY 52 h Wzml - n)| <00
)

(IV 0< Yn<ac< 1 Zl 1 |7/n+1 - Vn| <00, Oln+l,3nL +oYp1 t+ ,Bn > an+1L + ,Bnyn+1J
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V) 1-b<a<lb:= min{l,(%)%};

(Vi) lim,,, & Bn=c.

Then {x,} generated by (3.1) converges strongly to X € §, which solves the following varia-

tional inequality:

(vo@) - FX,j,(p -%) <0, Vpe[ |E(T).

i=1

Proof Combining the proof of Lemma 3.1 with Lemma 3.2, we can obtain the conclu-

sion. O

Remark 3.1 Compared with Theorem 3.2 of Song [11], our results are different from those

in the following aspects:

(i) Theorem 3.1 improves and extends Theorem 3.2 of Song [11]. Especially, our results
extend the above results from a Hilbert space to a more general g-uniformly
smooth and uniformly convex Banach space.

(ii) We change the metric projection P¢ in Song [11] into the sunny nonexpansive
retraction Q¢ and put it to the other place of the iteration process so that our
iteration process is better defined.

(iii) We generalize the iteration process so that our iteration process is more general.

(iv) We remove the very strict condition C + C C C in Lemma 3.1 and Theorem 3.2 of
Song [11], and it is worth stressing that the strict condition is also very necessary in
Qin et al. [10] and Cai et al. [20].
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