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Abstract

In this article, we introduce the notion of a Chatterjea-type cyclic weakly contraction
and derive the existence of a fixed point for such mappings in the setup of complete
metric spaces. Our result extends and improves some fixed point theorems in the
literature. Example is given to support the usability of the result.
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1 Introduction and preliminaries
It is well known that the fixed point theorem of Banach, for contraction mappings, is one
of the pivotal results in analysis. It has been used in many different fields of mathematics
but suffers from one major drawback. More accurately, in order to use the contractive
condition, a self-mapping 7 must be Lipschitz continuous, with the Lipschitz constant
L <1.In particular, T must be continuous at all points of its domain.

A natural question arises:

Could we find contractive conditions which will imply the existence of a fixed point in a
complete metric space but will not imply continuity?

Kannan [1, 2] proved the following result giving an affirmative answer to the above ques-

tion.

Theorem 1.1 If (X, d) is a complete metric space and the mapping T: X — X satisfies
d(Tx, Ty) < k[d(x, Tx) + d(y, T9)] (L1)
where 0 < k < % and x,y € X, then T has a unique fixed point.

The mappings satisfying (1.1) are called Kannan-type mappings.
A similar type of contractive condition has been studied by Chatterjea [3]. He proved
the following result.

Theorem 1.2 If (X, d) is a complete metric space and T : X — X satisfies
d(Tx, Ty) < k[d(x, Ty) + d(y, Tx)], (1.2)

where 0 < k < % and x,y € X, then T has a unique fixed point.
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In Theorems 1.1 and 1.2, there is no the requirement for the continuity of 7.

Alber and Guerre-Delabriere [4] introduced the concept of weakly contractive mappings
and proved the existence of fixed points for single-valued weakly contractive mappings in
Hilbert spaces. Thereafter, in 2001, Rhoades [5] proved the fixed point theorem which is
one of the generalizations of Banach’s contraction mapping principle because the weakly
contractions contain contractions as a special case, and he also showed that some results of
[4] are true for any Banach space. In fact, weakly contractive mappings are closely related
to the mappings of Boyd and Wong [6] and of Reich types [7].

Fixed point problems involving different types of contractive type inequalities have been
studied by many authors (see [1-24] and the references cited therein).

In [22], Kirk et al. introduced the following notion of a cyclic representation and char-

acterized the Banach contraction principle in the context of a cyclic mapping.

Definition 1.1 [22] Let X be anon-emptysetand 7': X — X be an operator. By definition,
X =, X; is a cyclic representation of X with respect to T if

(@) Xi;i=1,...,m are non-empty sets;

(b) T(X1) CXoy.v, T(Xjp1) C Xy T(X,) C X7

It is the aim of this paper to introduce the notion of a cyclic weakly Chatterjea-type con-
traction and then derive a fixed point theorem for such cyclic contractions in the frame-

work of complete metric spaces.

2 Main results

To state and prove our main results, we will introduce our notion of a Chatterjea-type
cyclic weakly contraction in a metric space. In this respect, let ® denote the set of all
monotone increasing continuous functions w: [0,00) — [0, 00), with w(t) = 0, if and only
if £ = 0, and let W denote the set of all lower semi-continuous functions ¥ : [0,00)% —
[0, 00), with (£, £5) > 0, for £, £, € (0,00) and ¥ (0,0) = 0.

Definition 2.1 Let (X, d) be a metric space, m be a natural number, A1, A,...,A,, be non-
empty subsets of X and Y = [, A;. An operator T: Y — Y is called a Chatterjea-type
cyclic weakly contraction if

(1) U, A; is a cyclic representation of Y with respect to T’

(2) w(d(Tx, Ty)) < n(5ld(x, Ty) + d(y, Tx)]) - ¥ (d(x, Ty), d(y, Tx))
foranyx €A, y€Ajy1,i=1,2,...,m,where A, =A;, pe ®and y € V.

Theorem 2.1 Let (X,d) be a complete metric space, m € N, A1, A,,...,A,, be non-empty
closed subsets of X and Y = J!", A;. Suppose that T is a Chatterjea-type cyclic weakly con-
traction. Then T has a fixed point z € [\, A;.

Proof Let xy € X. We can construct a sequence x,,1 = Tx,, n=0,1,2,....

If there exists ny € N such that x,,,,1 = x,,,, hence the result. Indeed, we can see that
Xy = Xngs1 = Xng -

Now, we assume that x,,,; #x, forany n=0,1,2,.... As X = U,-m=1Ai, for any #n > 0, there

exists i, € {1,2,...,m} such that x,.; € A;, and x, € A Since T is a Chatterjea-type

in+1*
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cyclic weakly contraction, we have

/‘L(d(xnﬂ» xn)) = M(d(Txm Txn—l))
= M(% [d(xm Txp1) + d(x4, Txn)])
- ‘ﬁ (d(xm Txn—l)r d(xn—lr Txn))

= M(%d(xn—hxnﬂ)) - I//(0’d(x"‘_l’x'ﬁl))

1
= M(Ed(xnl;xnﬂ))- (21)
Since u is a non-decreasing function, for all n =1,2,..., we have
1 1
d(xn+1rxn) =< Ed(xn—hxnﬂ) =< E[d(xn—bxn) + d(xn:xrﬁl)]' (22)

This implies that d(x,.1,%,) < d(%y,%4-1). Thus {d(x,,1,%,)} is a monotone decreasing se-
quence of non-negative real numbers and hence is convergent. Therefore, there exists
r > 0 such that d(x,,1,%,) — r.Letting n — 0o in (2.2), we obtain that lim d(x,,_,x,,1) = 2.

Letting # — oo in (2.1) and using the continuity of 1 and lower semi-continuity of 1,
we obtain that u(r) < u(r) — ¥(0,2r). This implies that v/ (2r,0) = 0, hence r = 0. Thus we
have proved that

d(xn+1»xn) — 0.

Now, we show that {x,} is a Cauchy sequence. For this purpose, we prove the following
result first.

Lemma 2.1 For every positive €, there exists a natural number n such that if r,q > n with
r—q = 1(modm), then d(x,,%,) < €.

Proof Assume the contrary. Thus there exists € > 0 such that for any # € N, we can find
Ty > q, > n with r, — g, = 1(mod m) satisfying d(x,,,x,,) > €.

Now, we take # > 2m. Then, corresponding to g, > n, we can choose r, such that it is the
smallest integer with r,, > g,, satisfying r,, — g, = 1(mod m) and d(x,,,x,,) > €. Therefore,
d(xy,_,,»%4,) < €. By using the triangular inequality, we have

€ < d(xg, %r,)

m

= d(an 4 xrn—m) + Z d(xrn—i’ x"nflﬁrl )

i=1

m
<€+ Zd(x,n_l.,x,n_M).

i=1

Letting n — oo and using d(x;.1,%,) — 0, we obtain

limd(xg,,x,,) = €. (2.3)
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Again, by the triangular inequality,

€ < d(xg,,%r,)
= d(an ’ xLIrHl ) + d(an+l 1 Xrp ) + d(xrrHl » Xy )

< dXg, %g,0) + ARXg,,15%g,) + A(Xg, %) + Ay, %0 0) + AXr 10 %)
Letting n — oo and using d(x,,1,%,) — 0, we get
limd(xg,,,,%,,,) = €. (2.4)
Consider

d(xg,, Txy,) = d(xq,,%,.,)

=< d(an;xrn) + d(xry,)xrml)) (25)
and

d(xrn ) qun ) = d(xrn ’ an+1 )

< d*xp,,%g,) + d(Xg,,%g,,1)- (2.6)

On taking n — o0 in inequalities (2.5) and (2.6), we have

lim d(xg,, Tx:,) =€, (2.7)
Hn—0Q

and
lim d(x,,, Tx,,) = €. (2.8)
H—>0Q

As x,, and x,, lie in different adjacently labeled sets A; and A;,; for certain 1 < i < m,
using the fact that T is a Chatterjea-type cyclic weakly contraction, we obtain

S (d(xqrﬂl’x’rul))

(d (Txq,, Txy, )

=

— Y (d(xg, Tx,), (s, Tig,))

d(an, Txy,) + d(xy,, qun)]>

NI»——ﬂ

=un d(an 4 xrnﬂ) + d(xrn 4 xq;ﬂl )]>

[\J|’—‘

- I/I(d(an’xrnu)’d(xrn’an+1))' (29)

On taking #n — oo in (2.9), using (2.7) and (2.8), the continuity of 1 and lower semi-
continuity of ¥, we get that

u(e) < u(%[s + 8]) - VY(e,e).
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Consequently, ¥(s,¢) < 0, which is contradiction with ¢ > 0. Hence the result is

proved. O

Now, using Lemma 2.1, we will show that {x,} is a Cauchy sequence in Y. Fix € > 0. By

Lemma 2.1, we can find ng € N such that r, g > ng with r — g = 1(mod m)

Ay x,) < % (2.10)
Since limd(x,,, x,,..1) = 0, we can also find #; € N such that
€
Ay K1) < —— (2.11)
2m

for any n > n;.
Assume that r,s > max{ng,n,} and s > r. Then there exists k € {1,2,...,m} such that

s—r=k(modm). Hence s — r + t = 1(mod m) for t = m — k + 1. So, we have
A(xps x5) < A, X51j) + AKXy Xsijo1) + -+ - + d (X1, X5). (2.12)
Using (2.10), (2.11) and (2.12), we obtain

d(x,,xs)§§+jxi§§+mxﬁ=e. (2.13)
Hence {x,} is a Cauchy sequence in Y. Since Y is closed in X, then Y is also complete and
there exists x € Y such that limx,, = x.

Now, we will prove that x is a fixed point of 7.

As Y =J, A; is a cyclic representation of Y with respect to T, the sequence {x,} has
infinite terms in each A; for i = {1,2,...,m}. Suppose that x € A;, Tx € A;;; and we take a

subsequence {x,, } of {x,} with x,, € A;. By using the contractive condition, we can obtain
M(d(xnk+11 Tx)) = :u/(d(Txnkr Tx))

2
— v (den,, Tx), d(, Ty, )

< M(l [d(xnk! Tx) + d(x, Tx,,k)])

_ M(% [d(xnk, Tx) + d(x,xnku)])

—1/f (d(xnk» Tx): d(x) xnk+1)) .
Letting n — oo and using the continuity of u and lower semi-continuity of i, we have
1
w(d(x, Tx)) < M(id(x, Tx)) - ¥ (d(x, Tx),0),

which is a contradiction unless d(x, Tx) = 0. Hence « is a fixed point of 7.

Now, we will prove the uniqueness of the fixed point.
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Suppose thatx; and x; (x; # x;) are two fixed points of 7. Using the contractive condition
and the continuity of © and lower semi continuity of i, we have

w(dx1,%2)) = w(d(Try, Txz))

e
(3

(A, %)) = ¥ (d(x1, %2), d(x2, %1))
(d(xl:xZ))

[d(x1, Txy) + d(xs, Txl)]) =¥ (d(x1, Tx), d(x, Ty ))

[\3|P—‘

[d(x1,%2) + d(xz,ﬁﬁ)]) — Y (d(x1, %), d(%2,%1))

l\J|'—‘

which is a contradiction unless x; = x,. Hence the main result is proved. O

If u(a) = a, then we have the following result.

Corrollary 2.1 Let (X,d) be a complete metric space, m € N, A1, A,, ..., A,, be non-empty
closed subsets of X and Y = J;", A;. Suppose that T: Y — Y is an operator such that

(1) U™, Ai is a cyclic representation of Y with respect to T;

(2) d(Tx, Ty) < Ld(x, T) + d(y, T)] - ¥ (d(x, ), d(y, )
forany x € Aj, y € Ai1, i =1,2,...,m, where A1 = Ay and W € V. Then T has a fixed
pointz € (|, Ai.

If Y (a,b) = (% —k)(a + b), where k € [0, %), we have the following result.

Corrollary 2.2 Let (X, d) be a complete metric space, m € N, A1, Ay, ..., A,, be non-empty
closed subsets of X and Y = J!", A;. Suppose that T: Y — Y is an operator such that

(1) U, A; is a cyclic representation of Y with respect to T;

(2) there exists k € [0, %) such that d(Tx, Ty) < kld(x, Ty) + d(y, Tx)]
foranyx € A;,y € Ajn1,i=1,2,...,m, where A,,1 = A1. Then T has a fixed point z € ﬂ?zlAi.

3 Applications
Other consequences of our results, for mappings involving contractions of integral type,
are given in the following. In this respect, denote by A the set of functions w: [0,00) —
[0, o0) satisfying the following hypotheses:

(h1) w is a Lebesgue-integrable mapping on each compact of [0, 00);

(h2) for any € > 0, we have [; uu(£) > 0.

Corrollary 3.1 Let (X,d) be a complete metric space, m € N, A1, A,, ..., A, be non-empty
closed subsets of X and Y = J;", A;. Suppose that T: Y — Y is an operator such that

(1) U, A; is a cyclic representation of Y with respect to T;

(2) there exists k € [0, %) such that

d(Tx,Ty) d(x,Ty)+d(y, Tx)
/ a(s)ds < k/ a(s)ds
0 0

foranyx e A,y €Ai1,i=12,...,m,where A1 = Ayand o € A. Then T has a fixed point
PAS ﬂ?:lAi'
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If we take A; = X, i =1,2,...,m, we obtain the following result.

Corrollary 3.2 Let (X,d) be a complete metric space and T: X — X be a mapping such
that

d(Tx,Ty) d(x, Ty)+d(y, Tx)
/ a(s)ds < k/ a(s)ds,
0 0

foranyxy e X, k € [0, %) and a € A. Then T has a fixed point z € [\, A;.

Example 3.1 Let X be a subset in R endowed with the usual metric. Suppose A; = [0,1],
Ay =0, %] and Y = U?:1Az’- Define T: Y — Y such that Tx = g for all x € Y. It is clear
that | J2, A, is a cyclic representation of Y with respect to T'. Furthermore, if 11: [0, 00) —
[0,00) is given as wu(t) =t and ¥ : [0, 00)% > [0,00) is given by ¥ (x,y) = %(x + %), then
Y ew.

Now, we prove that T satisfies the inequality of Chatterjea-type cyclic weakly contrac-
tion, i.e., u(d(Tx, Ty)) < u(% [d(x, Ty) + d(y, Tx)]) — ¥ (d(x, Ty), d(y, Tx)). To see this fact, we
examine three cases.

Case 1. Suppose that x > y. Then

u(d(Tx, Ty)) = u(‘;—“ - %D -2 (3.1)

and

M(% [dx, Ty) +d(y, Tx)]) — ¥ (d(x, Ty), d(y, Tx))

1 y x y x
(a5 +b-3{]) v (- 3Hp-3)
1 y x 1 y x
_2[x_5 +y_5]_7[x_5+y_5]
5 y x
I X 3.2
14Hx 5171 SH (32)
Ify < £, then
x=y 5[ v %
5 T 14 5 5
3
—;(x—y)
Hence, the given inequality is satisfied
Ify>’5—c,then
x=y 5[ Y, %
5 T 14 5 5
2
—§(x+y)

Hence the given inequality is satisfied.
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Case 2. Suppose that % <x <y. Then from (3.1) and (3.2), we have

xy 5[y %
5 T 14 5 5

;M+w.

Hence the given inequality is satisfied.
Case 3. Finally, suppose that % > x. Then from (3.1) and (3.2), we have

p(d(Tx, T9)) = “(\E _ %D v

and

x-y 5[y, %
5 T 14 5 5

;@+ﬁ.

Hence the given inequality is satisfied.
Therefore, all the conditions of Theorem 2.1 are satisfied, and so T has a fixed point
(whichisz=0 ¢ ﬂ?zlA,-).
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