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1 Introduction
The theory of iterative algorithms is a popular research topic of common interest in
two areas of nonlinear analysis and optimization. Applications of iterative algorithms
are found in a wide range of areas, including economics, image recovery, optimiza-
tion, signal processing and a lot of real world applications; see [–] and the refer-
ences therein. Many well-known problems can be studied by using algorithms which
are iterative in their nature. As an example, in computer tomography with limited data,
each piece of information implies the existence of a convex set Cm in which the re-
quired solution lies. The problem of finding a point in the intersection

⋂N
m=Cm, where

N ≥  is some positive integer, is then of crucial interest, and it cannot be usually
solved directly. Therefore, an iterative algorithm must be used to approximate such a
point.
The purpose of this paper is to investigate a hybrid projection algorithm for a pair of

generalized asymptotically quasi-φ-nonexpansive mappings. The organization of this pa-
per is as follows. In Section , we provide some necessary preliminaries. In Section , a
modified Halpern iterative algorithm is investigated. Strong convergence of the purposed
algorithm is obtained in a uniformly convex and uniformly smooth Banach space. Some
subresults are also deduced.

2 Preliminaries
Let E be a real Banach space, C be a nonempty subset of E and T : C → C be a nonlinear
mapping. The mapping T is said to be asymptotically regular on C if for any bounded
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subset K of C,

lim sup
n→∞

{∥∥Tn+x – Tnx
∥∥ : x ∈ K

}
= .

The mapping T is said to be closed if for any sequence {xn} ⊂ C such that limn→∞ xn = x
and limn→∞ Txn = y, then Tx = y. A point x ∈ C is a fixed point of T provided Tx = x.
In this paper, we use F(T) to denote the fixed point set of T and use → and ⇀ to denote
the strong convergence and weak convergence, respectively.
Recall that the mapping T is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [,∞) with
kn →  as n→ ∞ such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖, ∀x, y ∈ C,∀n≥ .

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
[] in . In uniformly convex Banach spaces, they proved that if C is nonempty
bounded closed and convex, then every asymptotically nonexpansive self-mapping T on
C has a fixed point. Further, the fixed point set of T is closed and convex. Since , a
host of authors have studied the weak and strong convergence of iterative algorithms for
such a class of mappings.
One of classical iterations is the Halpern iteration [] which generates a sequence in

the following manner:

∀x ∈ C, xn+ = αnu + ( – αn)Txn, ∀n≥ , (.)

where {αn} is a sequence in the interval (, ) and u ∈ C is a fixed element.
Since , the Halpern iteration has been studied extensively by many authors; see, for

example, [–]. It is well known that the following two restrictions
(C) limn→∞ αn = ;
(C)

∑∞
n= αn =∞

are necessary if the Halpern iterative sequence is strongly convergent for all nonexpansive
self-mappings defined on C. To improve the rate of convergence of the Halpern iterative
sequence, we cannot rely only on the iteration itself. Hybrid projection methods recently
have been applied to solve the problem.
Martinez-Yanes andXu [] considered the hybrid projection algorithm for a single non-

expansivemapping in aHilbert space. Strong convergence theorems are established under
condition (C) only imposed on the control sequence. To bemore precise, they proved the
following theorem.

Theorem . Let H be a real Hilbert space, C be a closed convex subset of H and T : C →
C be a nonexpansive mapping such that F(T) 
= ∅. Assume that {αn} ⊂ (, ) is such that
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limn→∞ αn = . Then the sequence {xn} defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = αnx + ( – αn)Txn,

Cn = {z ∈ C : ‖yn – z‖ ≤ ‖xn – z‖ + αn(‖x‖ + 〈xn – x, z〉)},
Qn = {z ∈ C : 〈x – xn,xn – z〉 ≥ },
xn+ = PCn∩Qnx, ∀n≥ ,

(.)

converges strongly to PF(T)x.

Recently, some authors considered the problemof extendingTheoremMYX to a Banach
space. In this paper, we consider, in the framework of Banach spaces, the problem of mod-
ifying the Halpern iteration by hybrid projection algorithms such that strong convergence
is available under assumption (C) only. Before proceeding further, we give some defini-
tions and propositions in Banach spaces first.
LetE be aBanach spacewith the dualE∗.Wedenote by J the normalized dualitymapping

from E to E∗ defined by

Jx =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖ = ∥∥f ∗∥∥},

where 〈·, ·〉 denotes the generalized duality pairing.
ABanach space E is said to be strictly convex if ‖ x+y

 ‖ <  for all x, y ∈ Ewith ‖x‖ = ‖y‖ = 
and x 
= y. It is said to be uniformly convex if limn→∞ ‖xn – yn‖ =  for any two sequences
{xn} and {yn} in E such that ‖xn‖ = ‖yn‖ =  and limn→∞ ‖ xn+yn

 ‖ = . LetUE = {x ∈ E : ‖x‖ =
} be the unit sphere of E. Then the Banach space E is said to be smooth provided

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for each x, y ∈ UE . It is also said to be uniformly smooth if the limit (.) is attained
uniformly for x, y ∈ UE . It is well known that if E is uniformly smooth, then J is uniformly
norm-to-norm continuous on each bounded subset of E. It is also well known that E is
uniformly smooth if and only if E∗ is uniformly convex.
Recall that a Banach spaceE enjoys theKadec-Klee property if for any sequence {xn} ⊂ E,

and x ∈ E with xn ⇀ x, and ‖xn‖ → ‖x‖, then ‖xn – x‖ →  as n → ∞. For more details
on the Kadec-Klee property, the readers can refer to [] and the references therein. It is
well known that if E is a uniformly convex Banach space, then E enjoys the Kadec-Klee
property.
As we all know, if C is a nonempty closed convex subset of a Hilbert space H and

PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact ac-
tually characterizes Hilbert spaces and, consequently, it is not available in more general
Banach spaces. In this connection, Alber [] recently introduced a generalized projec-
tion operator �C in a Banach space E which is an analogue of the metric projection in
Hilbert spaces.
Next, we assume that E is a smooth Banach space. Consider the functional defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖ for x, y ∈ E. (.)
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Observe that, in a Hilbert space H , (.) is reduced to φ(x, y) = ‖x – y‖, x, y ∈ H . The
generalized projection �C : E → C is a map that assigns to an arbitrary point x ∈ E the
minimum point of the functional φ(x, y), that is, �Cx = x̄, where x̄ is the solution to the
minimization problem

φ(x̄,x) =min
y∈C φ(y,x).

Existence and uniqueness of the operator�C follows from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J ; see, for example, []. In Hilbert spaces,
�C = PC . It is obvious from the definition of a function φ that

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖y‖ + ‖x‖), ∀x, y ∈ E, (.)

φ(x, y) = φ(x, z) + φ(z, y) + 〈x – z, Jz – Jy〉, ∀x, y, z ∈ E. (.)

Remark . If E is a reflexive, strictly convex and smooth Banach space, then for x, y ∈ E,
φ(x, y) =  if and only if x = y. It is sufficient to show that if φ(x, y) = , then x = y. From
(.), we have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖ = ‖Jy‖. From the definition of
J , we have Jx = Jy. Therefore, we have x = y; for more details, see [] and the references
therein.

Let C be a nonempty closed convex subset of E and T be a mapping from C into itself.
A point p in C is said to be an asymptotic fixed point of T if C contains a sequence {xn}
which converges weakly to p such that limn→∞ ‖xn –Txn‖ = . The set of asymptotic fixed
points of T will be denoted by F̃(T). A mapping T from C into itself is said to be relatively
nonexpansive if F̃(T) = F(T) 
= ∅ and φ(p,Tx) ≤ φ(p,x) for all x ∈ C and p ∈ F(T). The
mapping T is said to be relatively asymptotically nonexpansive [] if F̃(T) = F(T) 
= ∅ and
there exists a sequence {kn} ⊂ [,∞) with kn →  as n→ ∞ such that φ(p,Tx) ≤ knφ(p,x)
for all x ∈ C, p ∈ F(T) and n≥ .
ThemappingT is said to be quasi-φ-nonexpansive [] if F(T) 
= ∅ and φ(p,Tx) ≤ φ(p,x)

for all x ∈ C and p ∈ F(T). T is said to be asymptotically quasi-φ-nonexpansive [] and
[] if F(T) 
= ∅ and there exists a sequence {kn} ⊂ [,∞) with kn →  as n→ ∞ such that
φ(p,Tx) ≤ knφ(p,x) for all x ∈ C, p ∈ F(T) and n≥ .

Remark . The class of asymptotically quasi-φ-nonexpansive mappings is more gen-
eral than the class of relatively asymptotically nonexpansive mappings which requires the
restriction F(T) = F̃(T).

Recently, Qin et al. [] further improved the above results by considering the so-called
shrinking projection method for a quasi-φ-nonexpansive mapping. To be more precise,
they proved the following theorem.

Theorem . Let C be a nonempty closed and convex subset of a uniformly convex
and uniformly smooth Banach space E, and let T : C → C be a closed and quasi-φ-
nonexpansivemapping such that F(T) 
= ∅. Let {xn} be a sequence generated in the following
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manner:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

x =�Cx,

yn = J–[αnJx + ( – αn)JTxn],

Cn+ = {z ∈ Cn : φ(z, yn) ≤ αnφ(z,x) + ( – αn)φ(z,xn)},
xn+ =�Cn+x.

(.)

Assume that the control sequence satisfies the restriction limn→∞ αn = . Then {xn} con-
verges strongly to �F(T)x.

Recently, Qin et al. [] introduced a class of generalized asymptotically quasi-φ-
nonexpansive mappings. Recall that a mapping T is said to be generalized asymptoti-
cally quasi-φ-nonexpansive if F(T) 
= ∅ and there exist a sequence {μn} ⊂ [,∞) with
μn →  as n → ∞ and a sequence {νn} ⊂ [,∞) with νn →  as n → ∞ such that
φ(p,Tx) ≤ μnφ(p,x) + νn for all x ∈ C, p ∈ F(T) and n≥ .
In E is a Hilbert space, the mapping T is reduced to a generalized asymptotically quasi-

nonexpansive mapping, which was considered by Agarwal et al. [], Shahzad and Zegeye
[] and Lan []. Next, we give examples of the mapping.
Let E =R

 and C = [, ]. Define the following mapping T : C → C by

Tx =

⎧⎨
⎩


x, x ∈ [,  ],

, x ∈ (  , ].

Then T is a generalized asymptotically φ-nonexpansive mapping with the fixed point
set {}. We also have the following

φ
(
Tnx,Tny

)
=

∣∣Tnx – Tny
∣∣ = 

n
|x – y| ≤ |x – y| = φ(x, y), ∀x, y ∈

[
,




]
,

φ
(
Tnx,Tny

)
=

∣∣Tnx – Tny
∣∣ = ≤ |x – y| = φ(x, y), ∀x, y ∈

(


, 

]

and

φ
(
Tnx,Tny

)
=

∣∣Tnx – Tny
∣∣

=
∣∣∣∣ n x – 

∣∣∣∣

≤
(


n

|x – y| + 
n

|y|
)

≤
(

|x – y| + 
n

)

≤ |x – y| + ξn

= φ(x, y) + ξn, ∀x ∈
[
,




]
,∀y ∈

(


, 

]
,
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where ξn = 
n +


n– . Hence, we have

φ
(
Tnx,Tny

) ≤ φ(x, y) + ξn, ∀x, y ∈ [, ].

This shows that T a generalized asymptotically φ-nonexpansive mapping instead of an
asymptotically φ-nonexpansive mapping.
Let E = l with the norm ‖ · ‖ defined by ‖x‖ =

√∑∞
i= xi and

C =
{
x = (x,x, . . . ,xn, . . .)|x ≤ ,xi ∈R, i = , , . . .

}
.

Define T : C → C by

Tx = (, x, , . . .), ∀x ∈ C.

Then T is generalized asymptotically quasi-φ-nonexpansive but not asymptotically quasi-
φ-nonexpansive; for more details, see Lan [] and the references therein.
In this paper, motivated by the above results, we investigate a hybrid projection algo-

rithm for a pair of generalized asymptotically quasi-φ-nonexpansive mappings. Strong
convergence of the purposed algorithm is obtained in a uniformly convex and smooth
Banach space. The results presented in this paper mainly improve the corresponding re-
sults in Wu and Hao [], Cho et al. [], Martinez-Yanes and Xu [], Plubtieng and
Ungchittrakool [], Qin et al. [] and Qin and Su [].
In order to give our main results, we need the following lemmas.

Lemma . [] Let C be a nonempty closed convex subset of a smooth Banach space E
and x ∈ E. Then x =�Cx if and only if

〈x – y, Jx – Jx〉 ≥ , ∀y ∈ C.

Lemma . [] Let E be a reflexive, strictly convex and smooth Banach space, C be a
nonempty closed convex subset of E and x ∈ E. Then

φ(y,�Cx) + φ(�Cx,x)≤ φ(y,x), ∀y ∈ C.

Lemma . [] Let E be a uniformly convex Banach space and Br() be a closed ball of X.
Then there exists a continuous strictly increasing convex function g : [,∞)→ [,∞) with
g() =  such that

‖λx +μy + γ z‖ ≤ λ‖x‖ +μ‖y‖ + γ ‖z‖ – λμg
(‖x – y‖)

for all x, y, z ∈ Br() and λ,μ,γ ∈ [, ] with λ +μ + γ = .

Lemma . [] Let E be a uniformly convex and smooth Banach space, and let {xn}
and {yn} be two sequences of E. If φ(xn, yn) →  and either {xn} or {yn} is bounded, then
xn – yn → .

http://www.fixedpointtheoryandapplications.com/content/2013/1/279
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3 Main results
Theorem . Let E be a uniformly convex and uniformly smooth Banach space. Let C be a
nonempty closed and convex subset of E. Let T : C → C be a closed and generalized asymp-
totically quasi-φ-nonexpansive mapping with a sequence {en} ⊂ [,∞) such that en → 
as n → ∞ and a sequence {μn} ⊂ [,∞), where νn →  as n → ∞. Let S : C → C be
a closed and generalized asymptotically quasi-φ-nonexpansive mapping with a sequence
{fn} ⊂ [,∞) such that fn →  as n → ∞ and a sequence {νn} ⊂ [,∞), where νn →  as
n → ∞. Assume that T and S are asymptotically regular on C and F = F(T) ∩ F(S) is
nonempty and bounded. Let {xn} be a sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

x =�Cx,

zn = J–(βnJxn + γnJTnxn + δnJSnxn),

yn = J–(αnJx + ( – αn)Jzn),

Cn+ = {z ∈ Cn : φ(z, yn) ≤ φ(z,xn) + αn(‖x‖ + 〈z, Jxn – Jx〉) + (kn – )Mn + ξn},
xn+ =�Cn+x,

where kn =max{en, fn}, ξn =max{μn,νn},Mn = sup{φ(z,xn) : z ∈F} for each n ≥  and {αn},
{βn}, {γn} and {δn} are real sequences in (, ) such that
(a) βn + γn + δn = ;
(b) limn→∞ αn = limn→∞ βn = ;
(c) lim infn→∞ γnδn > .

Then the sequence {xn} converges strongly to �Fx, where �F is the generalized projection
from C onto F .

Proof First, we show that F is closed and convex. Since T and S are closed, we can easily
conclude that F(T) and F(S) are also closed. This proves that F is closed. Next, we prove
the convexity of F . Let p,p ∈ F(T), and p = tp + ( – t)p, where t ∈ (, ). We see that
p = Tp. Indeed, we see from the definition of T that

φ
(
p,Tnp

) ≤ knφ(p,p) + ξn (.)

and

φ
(
p,Tnp

) ≤ knφ(p,p) + ξn. (.)

In view of (.), we obtain that

φ
(
p,Tnp

)
= φ(p,p) + φ

(
p,Tnp

)
+ 

〈
p – p, Jp – JTnp

〉
(.)

and

φ
(
p,Tnp

)
= φ(p,p) + φ

(
p,Tnp

)
+ 

〈
p – p, Jp – JTnp

〉
. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/279


Zhao and Ji Fixed Point Theory and Applications 2013, 2013:279 Page 8 of 16
http://www.fixedpointtheoryandapplications.com/content/2013/1/279

Combining (.), (.), (.) with (.) yields that

φ
(
p,Tnp

) ≤ (kn – )φ(p,p) + 
〈
p – p, Jp – JTnp

〉
+ ξn (.)

and

φ
(
p,Tnp

) ≤ (kn – )φ(p,p) + 
〈
p – p, Jp – JTnp

〉
+ ξn. (.)

Multiplying t and ( – t) on the both sides of (.) and (.), respectively, yields that

lim
n→∞φ

(
p,Tnp

)
= .

By Lemma ., we see that Tnp → p as n → ∞. Hence TTnp = Tn+p → p as n → ∞. In
view of the closedness ofT , we can obtain that p ∈ F(T). This shows that F(T) is convex. In
the way, we can obtain that F(S) is also convex. This completes the proof that F is closed
and convex.
Now, we show that Cn is closed and convex for each n ≥ . It is obvious that C = C is

closed and convex. Suppose that Ch is closed and convex for some h ∈ N. For z ∈ Ch, we
see that

φ(z, yh) ≤ φ(z,xh) + αh
(‖x‖ + 〈z, Jxh – Jx〉

)
+ (kh – )Mh + ξh

is equivalent to

〈z, Jxh – Jyh〉 + αh〈z, Jx – Jxh〉 ≤ ‖xh‖ – ‖yh‖ + αh‖x‖ + (kh – )Mh + ξh.

It is not hard to see that Ch+ is closed and convex. Then, for each n ≥ , Cn is closed and
convex. This shows that �Cn+x is well defined.
Next, we prove thatF ⊂ Cn for each n≥ .F ⊂ C = C is obvious. Suppose thatF ⊂ Ch

for some h ∈N. Then, ∀w ∈F ⊂ Ch, we find from Lemma . that

φ(w, zh) = φ
(
w, J–

(
βhJxh + γhJThxh + δhJShxh

))
= ‖w‖ – 

〈
w,βhJxh + γhJThxh + δhJShxh

〉
+

∥∥βhJxh + γhJThxh + δhJShxh
∥∥

≤ ‖w‖ – βh〈w, Jxh〉 – γh
〈
w, JThxh

〉
– δh

〈
w, JShxh

〉
+ βh‖xh‖ + γh

∥∥Thxh
∥∥ + δh

∥∥Shxh∥∥

= βhφ(w,xh) + γhφ
(
w,Thxh

)
+ δhφ

(
w,Shxh

)
≤ βhφ(w,xh) + γhkhφ(w,xh) + γhξn + δhkhφ(w,xh) + δhξh

≤ φ(w,xh) + (kh – )φ(w,xh) + ξh.

It follows that

φ(w, yh) = φ
(
w, J–

(
αhJx + ( – αh)Jzh

))
= ‖w‖ – 

〈
w,αhJx + ( – αh)JThxh

〉
+

∥∥αhJx + ( – αh)Jzh
∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/279
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≤ ‖w‖ – αh〈w, Jx〉 – ( – αh)〈w, Jzh〉 + αh‖x‖ + ( – αh)‖zh‖

= αhφ(w,x) + ( – αh)φ(w, zh)

≤ αhφ(w,x) + ( – αh)φ(w,xh) + (kh – )( – αh)φ(w,xh) + ξh

≤ φ(w,xh) + αh
(
φ(w,x) – φ(w,xh)

)
+ (kh – )( – αh)φ(w,xh) + ξh

≤ φ(w,xh) + αh
(‖x‖ + 〈w, Jxh – Jx〉

)
+ (kh – )Mh + ξh.

This shows that w ∈ Ch+. This implies that F ⊂ Cn. In view of xn =�Cnx, we see that

〈xn – z, Jx – Jxn〉 ≥ , ∀z ∈ Cn.

By F ⊂ Cn, we find that

〈xn –w, Jx – Jxn〉 ≥ , ∀w ∈F . (.)

From Lemma ., we see that

φ(xn,x) = φ(�Cnx,x) ≤ φ(w,x) – φ(w,xn) ≤ φ(w,x)

for each w ∈F ⊂ Cn. Therefore, the sequence φ(xn,x) is bounded. This implies that {xn}
is bounded. On the other hand, in view of xn = �Cnx and xn+ = �Cn+x ∈ Cn+ ⊂ Cn, we
have

φ(xn,x)≤ φ(xn+,x), ∀n≥ .

Therefore, {φ(xn,x)} is nondecreasing. It follows that the limit of {φ(xn,x)} exists. By the
construction of Cn, we have that Cm ⊂ Cn and xm = �Cmx ∈ Cn for any positive integer
m ≥ n. It follows that

φ(xm,xn) = φ(xm,�Cnx)

≤ φ(xm,x) – φ(�Cnx,x)

= φ(xm,x) – φ(xn,x). (.)

Letting m,n → ∞ in (.), we see that φ(xm,xn) → . It follows from Lemma . that
xm – xn →  as m,n → ∞. Hence, {xn} is a Cauchy sequence. Since E is a Banach space
and C is closed and convex, we can assume that

lim
n→∞xn = p ∈ C. (.)

Now, we are in a position to show p ∈ F(T)∩ F(S). By taking m = n + , we obtain that

lim
n→∞φ(xn+,xn) = . (.)

In view of Lemma ., we see that

lim
n→∞‖xn+ – xn‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/279
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Since xn+ ∈ Cn+, we obtain that

φ(xn+, yn) ≤ φ(xn+,xn) + αn
(‖x‖ + 〈z, Jxn – Jx〉

)
+ (kn – )Mn + ξn.

In view of condition (b), we find from (.) that

lim
n→∞φ(xn+, yn) = . (.)

This in turn implies from Lemma . that

lim
n→∞‖xn+ – yn‖ = . (.)

Note that

‖xn – yn‖ ≤ ‖xn – xn+‖ + ‖xn+ – yn‖.

Combining (.) with (.) yields that

lim
n→∞‖xn – yn‖ = . (.)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞‖Jxn – Jyn‖ = . (.)

On the other hand, we have Jyn – Jzn = αn(Jx – Jzn). In view of condition (a), we see that

lim
n→∞‖Jyn – Jzn‖ = . (.)

Note that

‖Jxn – Jzn‖ ≤ ‖Jxn – Jyn‖ + ‖Jyn – Jzn‖.

Combining (.) with (.), we arrive at

lim
n→∞‖Jxn – Jzn‖ = . (.)

Since J– is also uniformly norm-to-norm continuous on bounded sets, we obtain that

lim
n→∞‖xn – zn‖ = . (.)

Since E is a uniformly smoothBanach space, we know thatE∗ is a uniformly convexBanach
space. Let r = supn≥{‖xn‖,‖Tnxn‖,‖Snxn‖}. From Lemma ., we have

φ(w, zn)

= φ
(
w, J–

(
βnJxn + γnJTnxn + δnJSnxn

))

http://www.fixedpointtheoryandapplications.com/content/2013/1/279
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= ‖w‖ – 
〈
w,βnJxn + γnJTnxn + δnJSnxn

〉
+

∥∥βnJxn + γnJTnxn + δnJSnxn
∥∥

≤ ‖w‖ – βn〈w, Jxn〉 – γn
〈
w, JTnxn

〉
– δn

〈
w, JSnxn

〉
+ βn‖xn‖ + γn

∥∥Tnxn
∥∥ + δn

∥∥Snxn∥∥ – γnδng
(∥∥JTnxn – JSnxn

∥∥)
≤ βnφ(w,xn) + γnφ

(
w,Tnxn

)
+ δnφ

(
w,Snxn

)
– γnδng

(∥∥JTnxn – JSnxn
∥∥)

≤ βnφ(w,xn) + γnknφ(w,xn) + δnknφ(w,xn) – γnδng
(∥∥JTnxn – JSnxn

∥∥)
+ ξn

≤ φ(w,xn) + (kn – )φ(w,xn) – γnδng
(∥∥JTnxn – JSnxn

∥∥)
+ ξn.

It follows that

γnδng
(∥∥JTnxn – JSnxn

∥∥) ≤ φ(w,xn) – φ(w, zn) + (kn – )φ(w,xn) + ξn. (.)

On the other hand, we have

φ(w,xn) – φ(w, zn) = ‖xn‖ – ‖zn‖ – 〈w, Jxn – Jzn〉
≤ ‖xn – zn‖

(‖xn‖ + ‖zn‖
)
+ ‖w‖‖Jxn – Jzn‖.

It follows from (.) and (.) that

φ(w,xn) – φ(w, zn) →  as n → ∞. (.)

In view of the assumption lim infn→∞ γnδn > , we find from (.) that

lim
n→∞ g

(∥∥JTnxn – JSnxn
∥∥)

= .

It follows from the property of g that

lim
n→∞

∥∥JTnxn – JSnxn
∥∥ = . (.)

Since J– is also uniformly norm-to-norm continuous on bounded sets, we arrive at

lim
n→∞

∥∥Tnxn – Snxn
∥∥ = . (.)

On the other hand, we have

φ
(
Tnxn,Snxn

)
=

∥∥Tnxn
∥∥ – 

〈
Tnxn, JSnxn

〉
+

∥∥Snxn∥∥

=
∥∥Tnxn

∥∥ – 
〈
Tnxn, JTnxn

〉
+ 

〈
Tnxn, JTnxn – JSnxn

〉
+

∥∥Snxn∥∥

≤ ∥∥Snxn∥∥ –
∥∥Tnxn

∥∥ + 
∥∥Tnxn

∥∥∥∥JTnxn – JSnxn
∥∥

≤ (∥∥Snxn∥∥ +
∥∥Tnxn

∥∥)∥∥Snxn – Tnxn
∥∥ + 

∥∥Tnxn
∥∥∥∥JTnxn – JSnxn

∥∥.
From (.) and (.), we arrive at

lim
n→∞φ

(
Tnxn,Snxn

)
= . (.)
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On the other hand, we have

φ
(
Tnxn, zn

)
= φ

(
Tnxn, J–

(
βnJxn + γnJTnxn + δnJSnxn

))
=

∥∥Tnxn
∥∥ – 

〈
Tnxn,βnJxn + γnJTnxn + δnJSnxn

〉
+

∥∥βnJxn + γnJTnxn + δnJSnxn
∥∥

≤ ∥∥Tnxn
∥∥ – βn

〈
Tnxn, Jxn

〉
– γn

〈
Tnxn, JTnxn

〉
– δn

〈
Tnxn, JSnxn

〉
+ βn‖xn‖ + γn

∥∥Tnxn
∥∥ + δn

∥∥Snxn∥∥

≤ βnφ
(
Tnxn,xn

)
+ δnφ

(
Tnxn,Snxn

)
.

In view of restriction (a), we find (.) that

lim
n→∞φ

(
Tnxn, zn

)
= . (.)

It follows from Lemma . that

lim
n→∞

∥∥Tnxn – zn
∥∥ = . (.)

Note that

∥∥Tnxn – p
∥∥ ≤ ∥∥Tnxn – zn

∥∥ + ‖zn – xn‖ + ‖xn – p‖.

In view of (.), (.) and (.), we find that

lim
n→∞

∥∥Tnxn – p
∥∥ = . (.)

On the other hand, we have

∥∥Tn+xn – p
∥∥ ≤ ∥∥Tn+xn – Tnxn

∥∥ +
∥∥Tnxn – p

∥∥.
Since T is asymptotically regular, we obtain that

lim
n→∞

∥∥Tn+xn – p
∥∥ = .

That is, TTnxn → p as n → ∞. From the closedness of T , we see that p ∈ F(T). In the
same way, we can also obtain that p ∈ F(S). This shows that p ∈F .
Finally, we show that p =�Fx. Taking the limit as n→ ∞ in (.), we obtain that

〈p –w, Jx – Jp〉 ≥ , ∀w ∈F ,

and hence p =�Fx by Lemma .. This completes the proof. �

Remark . Theorem . includes Theorem . in Section  as a special case. The frame-
work of the space can be applicable to Lp, where p ≥ . More precisely, Lp is min{p, }-
uniformly smooth and uniformly convex for every p≥ .

In the framework of Hilbert spaces, we find the following.
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Corollary . Let E be a Hilbert space. Let C be a nonempty closed and convex subset of E.
Let T : C → C be a closed and generalized asymptotically quasi-nonexpansive mapping
with a sequence {en} ⊂ [,∞) such that en →  as n → ∞ and a sequence {μn} ⊂ [,∞),
where νn →  as n → ∞. Let S : C → C be a closed and generalized asymptotically quasi-
nonexpansive mapping with a sequence {fn} ⊂ [,∞) such that fn →  as n → ∞ and a
sequence {νn} ⊂ [,∞), where νn →  as n → ∞. Assume that T and S are asymptoti-
cally regular on C and F = F(T) ∩ F(S) is nonempty and bounded. Let {xn} be a sequence
generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

x = PCx,

zn = βnxn + γnTnxn + δnJSnxn,

yn = αnx + ( – αn)zn,

Cn+ = {z ∈ Cn : ‖z – yn‖ ≤ ‖z – xn‖ + αn(‖x‖ + 〈z,xn – x〉) + (kn – )Mn + ξn},
xn+ = PCn+x,

where kn = max{en, fn}, ξn = max{μn,νn}, Mn = sup{‖z – xn‖ : z ∈ F} for each n ≥  and
{αn}, {βn}, {γn} and {δn} are real sequences in (, ) such that
(a) βn + γn + δn = ;
(b) limn→∞ αn = limn→∞ βn = ;
(c) lim infn→∞ γnδn > .

Then the sequence {xn} converges strongly to PFx, where PF is the metric projection from
C onto F .

For the class of asymptotically quasi-φ-nonexpansive mappings, we find from Theo-
rem . the following.

Corollary . Let E be a uniformly convex and uniformly smooth Banach space. Let C be
a nonempty closed and convex subset of E. Let T : C → C be a closed and asymptotically
quasi-φ-nonexpansive mapping with a sequence {en} ⊂ [,∞) such that en →  as n → ∞.
Let S : C → C be a closed and asymptotically quasi-φ-nonexpansive mapping with a se-
quence {fn} ⊂ [,∞) such that fn →  as n → ∞. Assume that T and S are asymptotically
regular on C and F = F(T) ∩ F(S) is nonempty and bounded. Let {xn} be a sequence gen-
erated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

x =�Cx,

zn = J–(βnJxn + γnJTnxn + δnJSnxn),

yn = J–(αnJx + ( – αn)Jzn),

Cn+ = {z ∈ Cn : φ(z, yn) ≤ φ(z,xn) + αn(‖x‖ + 〈z, Jxn – Jx〉) + (kn – )Mn},
xn+ =�Cn+x,
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where kn = max{en, fn}, Mn = sup{φ(z,xn) : z ∈ F} for each n ≥  and {αn}, {βn}, {γn} and
{δn} are real sequences in (, ) such that
(a) βn + γn + δn = ;
(b) limn→∞ αn = limn→∞ βn = ;
(c) lim infn→∞ γnδn > .

Then the sequence {xn} converges strongly to �Fx, where �F is the generalized projection
from C onto F .

If both T and S are quasi-φ-nonexpansive, we find from Theorem . the following.

Corollary . Let E be a uniformly convex and uniformly smooth Banach space. Let C be
a nonempty closed and convex subset of E. Let T : C → C be a closed quasi-φ-nonexpansive
mapping, and S : C → C be a closed quasi-φ-nonexpansivemappingwith a nonempty com-
mon fixed point set. Let {xn} be a sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

x =�Cx,

zn = J–(βnJxn + γnJTxn + δnJSxn),

yn = J–(αnJx + ( – αn)Jzn),

Cn+ = {z ∈ Cn : φ(z, yn) ≤ φ(z,xn) + αn(‖x‖ + 〈z, Jxn – Jx〉)},
xn+ =�Cn+x,

where {αn}, {βn}, {γn} and {δn} are real sequences in (, ) such that
(a) βn + γn + δn = ;
(b) limn→∞ αn = limn→∞ βn = ;
(c) lim infn→∞ γnδn > .

Then the sequence {xn} converges strongly to �Fx, where �F is the generalized projection
from C onto F .

Putting βn =  and T = S, we find from Corollary . the following.

Corollary . Let E be a uniformly convex and uniformly smooth Banach space. Let C be
a nonempty closed and convex subset of E. Let T : C → C be a closed quasi-φ-nonexpansive
mapping with a nonempty fixed point set. Let {xn} be a sequence generated in the following
manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

x =�Cx,

yn = J–(αnJx + ( – αn)JTxn),

Cn+ = {z ∈ Cn : φ(z, yn) ≤ φ(z,xn) + αn(‖x‖ + 〈z, Jxn – Jx〉)},
xn+ =�Cn+x,
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where {αn} is a real sequence in (, ) such that limn→∞ αn = . Then the sequence {xn}
converges strongly to �Fx, where �F(T) is the generalized projection from C onto F(T).

Remark . Corollary . is a Banach version of Theorem . in Section . The sets ofQn

are also relaxed.
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