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Abstract
In this paper we utilize the notion of �-distance in the sense of Saadati et al. (Math.
Comput. Model. 52:797-801, 2010) to construct and prove some fixed and coupled
fixed point theorems in a complete G-metric space for a nonlinear contraction. Also,
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1 Introduction
The concept of G-metric space was introduced by Mustafa and Sims []. After that, many
authors constructed fixed point theorems inG-metric spaces. In [] and [], commonfixed
points results for mappings which satisfy the generalized (ϕ,ψ)-weak contraction are ob-
tained. In [], the author proves a common fixed point theorem for two self-mappings
verifying a contractive condition of integral type in G-metric spaces. In [, ] and [],
tripled coincidence point results for a mixed monotone mapping in G-metric spaces are
established; also see []. Some common fixed point results for two self-mappings, one of
them being a generalized weakly G-contraction of type A and B with respect to the other
mapping, are stated in []. Fixed point theorems for mappings with a contractive iterate
at a point are formulated in [] and in []. Papers [] and [] refer to common fixed
point theorems for single-valued and multi-valued mappings which satisfy contractive
conditions on G-metric spaces. In [] and [], theorems from G-metric spaces are used
to obtain several results on complete D-metric spaces. Various contractive conditions on
G-metric spaces which lead to fixed point results are stated in []. Paper [] deals with
the existence of fixed point results in G-metric spaces. In [], common fixed point theo-
rems with φ-maps on G-cone metric spaces are established. In [], a general fixed point
theorem for mappings satisfying an φ-implicit relation is proved. Paper [] states fixed
point theorems for mappings satisfying φ-maps in G-metric spaces. Mohamed Jleli and
Bessem Samet [] in their nice paper pointed out that the quasi-metric spaces play a ma-
jor role to construct some known fixed point theorems in a G-metric space. For other
recent results in G-metric spaces, please see [–].
The coupled fixed point is one of the most interesting subjects in metric spaces. The

notion of coupled fixed point was introduced by Bhaskar and Lakshmikantham [], and
the notion of coincidence coupled fixed point was introduced by Lakshmikantham and
Ćirić []. In recent years many authors established many nice coupled and coincidence
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coupled fixed point theorems inmetric spaces, partial metric spaces andG-metric spaces.
For some works on this subject, we refer the reader to [–].

2 Preliminaries
It is fundamental to recall the definition of G-metric spaces.

Definition . ([]) Let X be a nonempty set. G : X ×X ×X → X is called G-metric if the
following axioms are fulfilled:
() G(x, y, z) =  if x = y = z (the coincidence);
() G(x,x, y) >  for all x, y ∈ X , x �= y;
() G(x,x, z) ≤G(x, y, z) for each triple (x, y, z) from X ×X ×X with z �= y;
() G(x, y, z) =G(p{x, y, z}) for each permutation of {x, y, z} (the symmetry);
() G(x, y, z) ≤G(x,a,a) +G(a, y, z) for each x, y, z and a in X (the rectangle inequality).

Definition . ([]) Consider X to be a G-metric space and (xn) to be a sequence in G.
() (xn) is called a G-Cauchy sequence if for each ε > , there is a positive integer n so

that for all m,n, l ≥ n, G(xn,xm,xl) < ε.
() (xn) is said to be G-convergent to x ∈ X if for each ε > , there is a positive integer n

such that G(xm,xn,x) < ε for eachm,n≥ n.

Now, we recall the definitions of coupled and coincidence coupled fixed points.

Definition . ([]) Consider X to be a nonempty set. The pair (x, y) ∈ X ×X is called a
coupled fixed point of the mapping F : X ×X → X if

F(x, y) = x, F(y,x) = y.

Definition . ([]) Let X be a nonempty set. The element (x, y) ∈ X × X is a coupled
coincidence point of mappings F : X ×X → X and g : X → X if

F(x, y) = gx, F(y,x) = gy.

In , Saadati et al. [] utilized the notion of G-metric spaces to introduce the con-
cept of �-distance. Moreover, Saadati et al. [] constructed some fixed point theorem in
G-metric spaces by using the notion of �-distance.

Definition . ([]) Consider (X,G) to be a G-metric space and � : X × X × X →
[, +∞). � is called an �-distance on X if it satisfies the three conditions as follows:
() �(x, y, z) ≤ �(x,a,a) +�(a, y, z) for all x, y, z, a from X .
() For each x, y from X , �(x, y, ·),�(x, ·, y) : X → [, +∞) are lower semi-continuous.
() For each ε > , there is δ > , so that �(x,a,a)≤ δ and �(a, y, z) ≤ δ imply

G(x, y, z) ≤ ε.

The following lemma is very useful in this paper.

Lemma . ([, ]) Let X be a metric space endowed with metric G, and let � be an
�-distance on X. (xn), (yn) are sequences in X, (αn) and (βn) are sequences in [, +∞), with
limn→+∞ αn = limn→+∞ βn = . If x, y, z and a ∈ X, then
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() If �(y,xn,xn) ≤ αn and �(xn, y, z) ≤ βn, for n ∈N, then G(y, y, z) < ε, and, by
consequence, y = z.

() Inequalities �(yn,xn,xn) ≤ αn and �(xn, ym, z) ≤ βn, for m > n, imply
G(yn, ym, z) → , hence yn → z.

() If �(xn,xm,xl) ≤ αn for l,m,n ∈N with n≤m ≤ l, then (xn) is a G-Cauchy sequence.
() If �(xn,a,a)≤ αn, n ∈ N, then (xn) is a G-Cauchy sequence.

The following two sets are very useful to build our nonlinear contraction in this paper:


 =
{
ϕ : [, +∞)→ [, +∞)|ϕ is continuous, increasing,ϕ(t) =  if and only if t = 

}
,

� =
{
ψ : [, +∞)→ [, +∞)|ψ is lower semi-continuous,

ψ(t) =  if and only if t = 
}
.

For some works on fixed point theorems based on the above sets, see, for example, [, ,
–, , –, –].
In the present paper, we utilize the concept of �-distance and the sets 
, � to estab-

lish some fixed and coupled fixed point theorems. Also, we introduce an example as an
application of our results.

3 Main results
In the first part of the section, we introduce and prove the following fixed point theorem.

Theorem . Let (X,G) be a G-metric space and � be an �-distance on X . Consider ϕ ∈

, ψ ∈ � and T : X → X such that

ϕ�(Tx,Ty,Tz) ≤ ϕ�(x, y, z) –ψ�(x, y, z) ()

holds for each (x, y, z) ∈ X ×X ×X.
Suppose that if u �= Tu, then

inf
{
�(x,Tx,u) : x ∈ X

}
> .

Then T has a unique fixed point.

Proof Let x ∈ X and xn+ = Txn for each n ∈ N. If there is n ∈ N for which xn+ = xn, then
xn is a fixed point of T .
In the following, we assume xn+ �= xn for each n ∈N.
First we shall prove that limn→+∞ �(xn,xn+,xn+) = .
For n ∈N, n≥ , we have

ϕ�(xn,xn+,xn+) = ϕ�(Txn–,Txn,Txn)

≤ ϕ�(xn–,xn,xn) –ψ�(xn–,xn,xn)

≤ ϕ�(xn–,xn,xn). ()

ϕ is a nondecreasing function, hence�(xn,xn+,xn+) ≤ �(xn–,xn,xn), n≥ . It follows that
(�(xn,xn+,xn+)) is a nondecreasing sequence, therefore there exists limn→+∞ �(xn,xn+,
xn+) = r ≥ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/275
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Taking n → +∞ in inequality () and using the continuity of ϕ and the lower semi-
continuity of ψ , we get

ϕr ≤ ϕr – lim inf
n→+∞ ψ�(xn–,xn,xn) ≤ ϕr –ψr,

imposing ψr = , that is, r = .
Analogously, it can be proved that limn→+∞ �(xn+,xn,xn) =  and also that

lim
n→+∞�(xn,xn,xn+) = .

The next step is to prove that limm,n→+∞ �(xn,xm,xm) = ,m > n.
By reductio ad absurdum, suppose the contrary. Hence, there exist ε >  and two se-

quences (nk) and (mk) such that

�(xnk ,xmk ,xmk ) ≥ ε, �(xnk ,xmk–,xmk–) < ε, mk > nk .

As limn→+∞ �(xn,xn+,xn+) = , it follows

ε ≤ �(xnk ,xmk ,xmk ) ≤ �(xnk ,xmk–,xmk–) +�(xmk–,xmk ,xmk )

< ε +�(xmk–,xmk ,xmk ) → ε as k → +∞.

Therefore, limk→+∞ �(xnk ,xmk ,xmk ) = ε.
On the other hand,

ε ≤ �(xnk ,xmk ,xmk )≤ �(xnk ,xnk+,xnk+) +�(xnk+,xmk ,xmk )

≤ �(xnk ,xnk+,xnk+) +�(xnk+,xmk+,xmk+) +�(xmk+,xmk ,xmk ). ()

The contraction condition () yields

ϕ�(xnk+,xmk+,xmk+) ≤ ϕ�(xnk ,xmk ,xmk ) –ψ�(xnk ,xmk ,xmk )

≤ ϕ�(xnk ,xmk ,xmk ),

so �(xnk+,xmk+,xmk+) ≤ �(xnk ,xmk ,xmk ), and relation () becomes

ε ≤ �(xnk ,xnk+,xnk+) +�(xnk+,xmk+,xmk+) +�(xmk+,xmk ,xmk )

≤ �(xnk ,xnk+,xnk+) +�(xnk ,xmk ,xmk ) +�(xmk+,xmk ,xmk ).

Letting k → +∞, we get limk→+∞ �(xnk+,xmk+,xmk+) = ε.
Having in mind the continuity of ϕ and the lower semi-continuity of ψ , we obtain

ϕε ≤ ϕε – lim inf
k→+∞

�(xnk ,xmk ,xmk )≤ ϕε –ψε,

which is impossible, since ε > .
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It follows that limm,n→+∞ �(xn,xm,xm) = ,m > n.
In a similar manner, it can be proved that limm,n→+∞ �(xn,xn,xm) = ,m > n.
Consider now l >m > n, l,m,n ∈N. Since

�(xn,xm,xl) ≤ �(xn,xm,xm) +�(xm,xm,xl)→ 

as l,m,n → +∞, we conclude that liml,m,n→+∞ �(xn,xm,xl) = . By Lemma ., (xn) is a
G-Cauchy sequence in the G-complete space (X,G), so it converges to u ∈ X.
Suppose u �= Tu. Consider ε > . As (xn) is a Cauchy sequence, there is n ∈ N such that

�(xn,xm,xl) < ε, ∀n,m, l ≥ n.

Thus

lim inf
l→+∞

�(xn,xm,xl) ≤ lim inf
l→+∞

ε = ε, ∀n,m ≥ n.

From the lower semi-continuity of � in its third variables, we have

�(xn,xm,u) ≤ lim inf
l→+∞

�(xn,xm,xl) ≤ ε, ∀n,m ≥ n. ()

Considering m = n +  in inequality (), we get

�(xn,xn+,u) ≤ ε.

On the other hand, we have

 < inf
{
�(x,Tx,u) : x ∈ X

}

≤ inf
{
�(xn,xn+,u) : n≥ n

}
< ε,

which contradicts the hypotheses.
Therefore, u = Tu and hence u is a fixed point of T .
We shall deal now with the uniqueness of the fixed point of T .
Suppose that there are u and v in X fixed points of the mapping T .
It follows that

ϕ�(v,u,u) = ϕ�(Tv,Tu,Tu) ≤ ϕ�(v,u,u) –ψ�(v,u,u),

which is possible only for ψ�(v,u,u) = , that is, �(v,u,u) = .
Similarly, it can be proved that �(u, v,u) = .
According to the definition of an�-distance,�(v,u,u) =  and�(u, v,u) =  imply u = v.

Hence, T has a unique fixed point. �

Haghi et al. [] in their interesting paper showed that some common fixed point the-
orems can be obtained from the known fixed point theorems; for other interesting article
by Haghi et al., please see []. By using the same method of Haghi et al. [], we get the
following result.
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Theorem . Let (X,G) be a G-metric space and � be an �-distance on X . Consider ϕ ∈

, ψ ∈ � and T ,S : X → X such that

ϕ�(Tx,Ty,Tz) ≤ ϕ�(Sx,Sy,Sz) –ψ�(Sx,Sy,Sz)

holds for each (x, y, z) ∈ X ×X ×X.
Suppose the following hypotheses:
() TX ⊆ SX .
() If Su �= Tu, then

inf
{
�(Sx,Tx,Su) : x ∈ X

}
> .

Then T and S have a unique common fixed point.

As consequent results of Theorem . and Theorem ., we have the following.

Corollary . Let (X,G) be a G-metric space and � be an �-distance on X. Consider
ψ ∈ � and T : X → X such that

�(Tx,Ty,Tz) ≤ �(x, y, z) –ψ�(x, y, z)

holds for each (x, y, z) ∈ X ×X ×X.
Suppose that if u �= Tu, then

inf
{
�(x,Tx,u) : x ∈ X

}
> .

Then T has a unique fixed point.

Corollary . Let (X,G) be a G-metric space and � be an �-distance on X . Consider
ψ ∈ � and T ,S : X → X such that

�(Tx,Ty,Tz) ≤ �(Sx,Sy,Sz) –ψ�(Sx,Sy,Sz)

holds for each (x, y, z) ∈ X ×X ×X.
Suppose the following hypotheses:
() TX ⊆ SX .
() If Su �= Tu, then

inf
{
�(Sx,Tx,Su) : x ∈ X

}
> .

Then T and S have a unique common fixed point.

In the second part of the section, we introduce and prove the following coincidence
coupled fixed point theorem.

Theorem . Consider (X,G) to be a G-metric space endowed with an �-distance
called �. Let F : X × X → X and g : X → X be two mappings with the properties

http://www.fixedpointtheoryandapplications.com/content/2013/1/275


Shatanawi and Pitea Fixed Point Theory and Applications 2013, 2013:275 Page 7 of 16
http://www.fixedpointtheoryandapplications.com/content/2013/1/275

F(X × X) ⊆ gX, and gX is a complete subspace of X with respect to the topology induced
by G.
Suppose that there exist ϕ ∈ 
 and ψ ∈ � such that

ϕ
(
�

(
F(x, y),F

(
x∗, y∗),F(

z, z∗)) +�
(
F(y,x),F

(
y∗,x∗),F(

z∗, z
)))

≤ ϕ
(
�

(
gx, gx∗, gz

)
+�

(
gy, gy∗, gz∗)) –ψ

(
�

(
gx, gx∗, gz

)
+�

(
gy, gy∗, gz∗)) ()

for each (x, y), (x∗, y∗), (z, z∗) ∈ X ×X.
Additionally, suppose that if F(u, v) �= gu or F(v,u) �= gv, then

inf
{
�

(
gx,F(x, y), gu

)
+�

(
gy,F(y,x), gv

)
: x, y ∈ X

}
> .

Then F and g have a unique coupled coincidence point (u, v), with F(u, v) = gu = gv =
F(v,u).

Proof Let (x, y) ∈ X × X. Having in mind that F(X × X) ⊆ gX, for each n ∈ N, there is a
pair (xn+, yn+) ∈ X ×X such that

gxn+ = F(xn, yn), gyn+ = F(yn,xn).

First, we prove that

lim
n→+∞�(gxn, gxn+, gxn+) =  and lim

n→+∞�(gyn, gyn+, gyn+) = .

Using inequality (), we get

ϕ
(
�(gxn, gxn+, gxn+) +�(gyn, gyn+, gyn+)

)

= ϕ
(
�

(
F(xn–, yn–),F(xn, yn),F(xn, yn)

)

+�
(
F(yn–,xn–),F(yn,xn),F(yn,xn)

))

≤ ϕ
(
�(gxn–, gxn, gxn) +�(gyn–, gyn, gyn)

)

–ψ
(
�(gxn–, gxn, gxn) +�(gyn–, gyn, gyn)

)

≤ ϕ
(
�(gxn–, gxn, gxn) +�(gyn–, gyn, gyn)

)
. ()

Since ϕ is a nondecreasing function, we obtain

�(gxn, gxn+, gxn+) +�(gyn, gyn+, gyn+)

≤ �(gxn–, gxn, gxn) +�(gyn–, gyn, gyn), n ∈N,n≥ ,

that is, (�(gxn, gxn+, gxn+) + �(gyn, gyn+, gyn+)) is a nondecreasing sequence. Denote by
r ≥  its limit.
Letting n → +∞ in relation (), the continuity of ϕ and the lower semi-continuity of ψ

imply

ϕr ≤ ϕr – lim inf
n→+∞ ψ

(
�(gxn, gxn+, gxn+) +�(gyn, gyn+, gyn+)

) ≤ ϕr –ψr,

which forces ϕr = , that is, r = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/275


Shatanawi and Pitea Fixed Point Theory and Applications 2013, 2013:275 Page 8 of 16
http://www.fixedpointtheoryandapplications.com/content/2013/1/275

Since � takes nonnegative values,

lim
n→+∞�(gxn, gxn+, gxn+) =  and lim

n→+∞�(gyn, gyn+, gyn+) = .

A similar procedure leads us to

lim
n→+∞�(gxn+, gxn, gxn) = , lim

n→+∞�(gyn+, gyn, gyn) = ;

lim
n→+∞�(gxn, gxn, gxn+) = , lim

n→+∞�(gyn, gyn, gyn+) = .

Now, our purpose is to show that

lim
m,n→+∞�(gxn, gxm, gxm) =  and lim

m,n→+∞�(gxn, gxm, gxm) = , m > n.

Supposing the contrary, there exist ε >  and two subsequences (nk) and (mk) for which

�(gxnk , gxmk , gxmk ) +�(gynk , gymk , gymk ) ≥ ε,

�(gxnk , gxmk–, gxmk–) +�(gynk , gymk–, gymk–) < ε, mk > nk .

We obtain

ε ≤ �(gxnk , gxmk , gxmk ) +�(gynk , gymk , gymk )

≤ �(gxnk , gxmk–, gxmk–) +�(gynk , gymk–, gymk–)

+�(gxmk–, gxmk , gxmk ) +�(gymk–, gymk , gymk )

< ε +�(gxmk–, gxmk , gxmk ) +�(gymk–, gymk , gymk ).

As k → +∞ and limn→+∞(�(gxn, gxn+, gxn+) +�(gyn, gyn+, gyn+)) = , we get

lim
k→+∞

(
�(gxnk , gxmk , gxmk ) +�(gynk , gymk , gymk )

)
= .

Also, using the properties of �, we have

ε ≤ �(gxnk , gxmk , gxmk ) +�(gynk , gymk , gymk )

≤ �(gxnk , gxnk+, gxnk+) +�(gxnk+, gxmk , gxmk )

+�(gynk , gynk+, gynk+) +�(gynk+, gymk , gymk )

≤ �(gxnk , gxnk+, gxnk+) +�(gxnk+, gxmk+, gxmk+)

+�(gxmk+, gxmk , gxmk ) +�(gynk , gynk+, gynk+)

+�(gynk+, gymk+, gymk+) +�(gymk+, gymk , gymk ). ()

Taking advantage of the contraction condition, it follows

ϕ
(
�(gxnk+, gxmk+, gxmk+) +�(gynk+, gymk+, gymk+)

)

≤ ϕ
(
�(gxnk , gxmk , gxmk ) +�(gynk , gymk , gymk )

)
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–ψ
(
�(gxnk , gxmk , gxmk ) +�(gynk , gymk , gymk )

)

≤ ϕ
(
�(gxnk , gxmk , gxmk ) +�(gynk , gymk , gymk )

)
.

Hence

�(gxnk+, gxmk+, gxmk+) +�(gynk+, gymk+, gymk+)

≤ �(gxnk , gxmk , gxmk ) +�(gynk , gymk , gymk ),

and relation () becomes

ε ≤ �(gxnk , gxnk+, gxnk+) +�(gxnk+, gxmk+, gxmk+)

+�(gxmk+, gxmk , gxmk ) +�(gynk , gynk+, gynk+)

+�(gynk+, gymk+, gymk+) +�(gymk+, gymk , gymk )

≤ �(gxnk , gxnk+, gxnk+) +�(gxnk , gxmk , gxmk )

+�(gxmk+, gxmk , gxmk ) +�(gynk , gynk+, gynk+)

+�(gynk , gymk , gymk ) +�(gymk+, gymk , gymk ).

For k → +∞, limk→+∞(�(gxnk+, gxmk+, gxmk+) +�(gynk+, gymk+, gymk+)) = ε.
The properties of ϕ, ψ lead us to

ϕε = lim
k→+∞

ϕ
(
�(gxnk+, gxmk+, gxmk+) +�(gynk+, gymk+, gymk+)

)

≤ ϕε – lim inf
k→+∞

ψ
(
�(gxnk , gxmk , gxmk ) +�(gynk , gymk , gymk )

) ≤ ϕε –ψε.

Since ε > , we obtain a contradiction. Therefore, limm,n→+∞ �(gxn, gxm, gxm) =  and
limm,n→+∞ �(gyn, gym, gym) = ,m > n.
Analogously, it can be proved that limm,n→+∞ �(gxn, gxn, gxm) =  and also

lim
m,n→+∞�(gyn, gyn, gym) = , m > n.

Consider l >m > n. Then

�(gxn, gxm, gxl) ≤ �(gxn, gxm, gxm) +�(gxm, gxm, gxl) →  as n,m, l → +∞.

By Lemma ., we get limn,m,l→+∞ �(gxn, gxm, gxl) = , l > m > n. Hence, (gxn) is a
G-Cauchy sequence in gX, which is complete. Similarly, (gyn) converges in gX. Let
gu = limn→+∞ gxn and gv = limn→+∞ gyn, u, v ∈ X.
Let us show now that (u, v) is a coupled coincidence point of F and g . In that respect,

consider ε > . Since (gxn) is a Cauchy sequence, then there exists n ∈ N such that for
each n,m, l ≥ n, �(gxn, gxm, gxl) < ε. The properties of lower semi-continuity of � imply

�(gxn, gxm, gu) ≤ lim inf
p→+∞ �(gxn, gxm, gxp) ≤ ε, ()

�(gyn, gym, gv)≤ lim inf
p→+∞ �(gyn, gym, gyp)≤ ε. ()
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Considering m = n +  in () and (), we obtain

�
(
gxn,F(xn, yn), gu

)
+�

(
gyn,F(yn,xn), gv

) ≤ ε.

On the other hand, we get

 < inf
{
�

(
gx,F(x, y), gu

)
+�

(
gy,F(y,x), gv

)
: x, y ∈ X

}

≤ inf
{
�

(
gxn,F(xn, yn), gu

)
+�

(
gyn,F(yn,xn), gv

)
: n≥ n

} ≤ ε,

which is a contradiction.
Therefore, F(u, v) = gu and F(v,u) = gv.
In the following, we refer to the uniqueness of the coupled coincidence point of F and g .
Consider (u, v) and (u∗, v∗) to be two coupled coincidence points of F and g .
By using the contraction condition, we obtain

ϕ
(
�

(
gu∗, gu, gu

)
+�

(
gv∗, gv, gv

))

= ϕ
(
�

(
F
(
u∗, v∗),F(u, v),F(u, v)) +�

(
F
(
v∗,u∗),F(v,u),F(v,u)))

≤ ϕ
(
�

(
gu∗, gu, gu

)
+�

(
gv∗, gv, gv

))
–ψ

(
�

(
gu∗, gu, gu

)
+�

(
gv∗, gv, gv

))

≤ ϕ
(
�

(
gu∗, gu, gu

)
+�

(
gv∗, gv, gv

))
,

which leads us toψ(�(gu∗, gu, gu)+�(gv∗, gv, gv)) = , or�(gu∗, gu, gu) = �(gv∗, gv, gv) = .
In a similar manner, we prove that �(gu, gu∗, gu) = �(gv, gv∗, gv) = .
Lemma . implies that gu = gu∗ and gv = gv∗.
Having in mind that gu = F(u, v) and gv = F(v,u), we get

ϕ
(
�(gu, gv, gv) +�(gv, gu, gv)

)

= ϕ
(
�

(
F(u, v),F(v,u),F(v,u)

)
+�

(
F(v,u),F(u, v),F(u, v)

))

≤ ϕ
(
�(gu, gv, gv) +�(gv, gu, gv)

)
–ψ

(
�(gu, gv, gv) +�(gv, gu, gv)

)
,

hence ψ(�(gu, gv, gv) +�(gv, gu, gv)) = , or �(gu, gv, gv) =  and �(gv, gu, gv) = . Apply-
ing Lemma ., it follows that gu = gv. �

Taking g = IdX , the identity mapping, in Theorem . we obtain a theorem of coupled
fixed points.

Corollary . Consider (X,G) to be a complete G-metric space endowed with an �-dis-
tance called �. Let F : X ×X → X be a mapping.
Suppose that there exist ϕ ∈ 
 and ψ ∈ � such that

ϕ
(
�

(
F(x, y),F

(
x∗, y∗),F(

z, z∗)) +�
(
F(y,x),F

(
y∗,x∗),F(

z∗, z
)))

≤ ϕ
(
�

(
x,x∗, z

)
+�

(
y, y∗, z∗)) –ψ

(
�

(
x,x∗, z

)
+�

(
y, y∗, z∗))

holds for each (x, y), (x∗, y∗), (z, z∗) ∈ X ×X.
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Additionally, suppose that if F(u, v) �= u or F(v,u) �= v, then

inf
{
�

(
x,F(x, y),u

)
+�

(
y,F(y,x), v

)
: x, y ∈ X

}
> .

Then F and g have a unique coupled coincidence point (u, v),with F(u, v) = u = v = F(v,u).

Taking ϕ = i[,+∞), the identity function, in Theorem . and Corollary ., we get the
following results.

Corollary . Consider (X,G) to be a G-metric space endowed with an �-distance
called�. Let F : X×X → X and g : X → X be twomappings with the properties F(X×X) ⊆
gX, and gX is a complete subspace of X with respect to the topology induced by G.
Suppose that there exists ψ ∈ � such that

�
(
F(x, y),F

(
x∗, y∗),F(

z, z∗)) +�
(
F(y,x),F

(
y∗,x∗),F(

z∗, z
))

≤ �
(
gx, gx∗, gz

)
+�

(
gy, gy∗, gz∗) –ψ

(
�

(
gx, gx∗, gz

)
+�

(
gy, gy∗, gz∗))

holds for each (x, y), (x∗, y∗), (z, z∗) ∈ X ×X.
Additionally, suppose that if F(u, v) �= gu or F(v,u) �= gv, then

inf
{
�

(
gx,F(x, y), gu

)
+�

(
gy,F(y,x), gv

)
: x, y ∈ X

}
> .

Then F and g have a unique coupled coincidence point (u, v), with F(u, v) = gu = gv =
F(v,u).

Corollary . Consider (X,G) to be a complete G-metric space endowed with an �-dis-
tance called �. Let F : X ×X → X be a mapping.
Suppose that there exist ϕ ∈ 
 and ψ ∈ � such that

�
(
F(x, y),F

(
x∗, y∗),F(

z, z∗)) +�
(
F(y,x),F

(
y∗,x∗),F(

z∗, z
))

≤ �
(
x,x∗, z

)
+�

(
y, y∗, z∗) –ψ

(
�

(
x,x∗, z

)
+�

(
y, y∗, z∗))

holds for each (x, y), (x∗, y∗), (z, z∗) ∈ X ×X.
Additionally, suppose that if F(u, v) �= u or F(v,u) �= v, then

inf
{
�

(
x,F(x, y),u

)
+�

(
y,F(y,x), v

)
: x, y ∈ X

}
> .

Then F and g have a unique coupled coincidence point (u, v),with F(u, v) = u = v = F(v,u).

Corollary . Consider (X,G) to be a G-metric space endowed with an �-distance
called�. Let F : X×X → X and g : X → X be twomappings with the properties F(X×X) ⊆
gX, and gX is a complete subspace of X with respect to the topology induced by G.
Suppose that there exists k ∈ [, ) such that

�
(
F(x, y),F

(
x∗, y∗),F(

z, z∗)) +�
(
F(y,x),F

(
y∗,x∗),F(

z∗, z
))

≤ k
(
�

(
gx, gx∗, gz

)
+�

(
gy, gy∗, gz∗))

holds for each (x, y), (x∗, y∗), (z, z∗) ∈ X ×X.
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Additionally, suppose that if F(u, v) �= gu or F(v,u) �= gv, then

inf
{
�

(
gx,F(x, y), gu

)
+�

(
gy,F(y,x), gv

)
: x, y ∈ X

}
> .

Then F and g have a unique coupled coincidence point (u, v), with F(u, v) = gu = gv =
F(v,u).

Proof The proof follows from Corollary . by defining ψ : [, +∞)→ [, +∞) via ψ(t) =
( – k)t. �

Corollary . Consider (X,G) to be a complete G-metric space endowed with an �-
distance called �. Let F : X ×X → X be a mapping.
Suppose that there exists k ∈ [, ) such that

�
(
F(x, y),F

(
x∗, y∗),F(

z, z∗)) +�
(
F(y,x),F

(
y∗,x∗),F(

z∗, z
))

≤ k
(
�

(
x,x∗, z

)
+�

(
y, y∗, z∗))

holds for each (x, y), (x∗, y∗), (z, z∗) ∈ X ×X.
Additionally, suppose that if F(u, v) �= u or F(v,u) �= v, then

inf
{
�

(
x,F(x, y),u

)
+�

(
y,F(y,x), v

)
: x, y ∈ X

}
> .

Then F and g have a unique coupled coincidence point (u, v),with F(u, v) = u = v = F(v,u).

Proof The proof follows from Corollary . by defining ψ : [, +∞) → [, +∞) via ψ(t) =
( – k)t. �

The following example supports our results.

Example . Take X = {, , , , . . .}. Define G : X ×X ×X → [, +∞) by the formula

G(x, y, z) =

⎧⎨
⎩
 if x = y = z;

x + y + z if x �= y, or x �= z, or y �= z.

Define

� : X ×X ×X → X, �(x, y, z) = x + max{y, z}

and

T : X → X, Tx =

⎧⎨
⎩
 if x = , ;

x –  if x≥ .

Also, define ϕ : [, +∞) → [, +∞) via ϕ(t) = t and ψ : [, +∞) → [, +∞) via ψ(t) = t.
Then:
() (X,G) is a complete G-metric space.
() ϕ ∈ 
 and ψ ∈ � .
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() � is an �-distance function.
() If u �= Tu, then

inf
{
�(x,Tx,u) : x ∈ X

}
> .

() The following inequality:

ϕ�(Tx,Ty,Tz) ≤ ϕ�(x, y, z) –ψ�(x, y, z)

holds for all x, y, z ∈ X .

Proof The proofs of () and () are clear. To prove part (), consider x, y, z,a ∈ X. Since

x + max{y, z} ≤ x + a + a + max{y, z},

we get

�(x, y, z) ≤ �(x,a,a) +�(a, y, z).

This finishes the proof of the first item of the definition of �-distance.
To prove the second item of the definition of �-distance, let x, y ∈ X and (zn) be any

sequence in X converging to z with respect to the topology induced byG in X. Thus zn = z
for all n ∈N except finitely many terms. Therefore

x + max{y, zn} → x + max{y,x} as n→ +∞.

So, �(x, y, zn) → �(x, y, z) and hence �(x, y, ·) : X → [, +∞) is lower semi-continuous.
Similarly, we can show that �(x, ·, z) : X → [, +∞) is lower semi-continuous.
To prove the last item of the definition of �-distance, consider ε > . Take δ = ε

 . Given
x, y, z ∈ X such that �(x,a,a) ≤ δ and �(a, y, z) ≤ δ, by the definition of a G-metric space,
we have

G(x, y, z) ≤ G(x,a,a) +G(a, y, z)

≤ x + a + a + y + z

≤ x + a + a + max{y, z}
= �(x,a,a) +�(a, y, z)

≤ ε.

This completes the proof of an �-distance.
To prove part (), given u ∈ X such that u �= Tu, then u �= . Note that

inf
{
�(x,Tx,u) : x ∈ X

}

≥ inf{x + u+ : x ∈ X}
≥ u > .

To prove part (), given x, y, z ∈ X, we divide the proof into the following four cases.
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Case : x = y = z = . Here, �(x, y, z) =  and �(Tx,Ty,Tz) = . Thus

ϕ�(Tx,Ty,Tz) ≤ ϕ�(x, y, z) –ψ�(x, y, z).

Case : x >  and y = z = . Here, �(x, y, z) = x and �(Tx,Ty,Tz) = x – . Since (x – ) ≤
x – x, we have

ϕ�(Tx,Ty,Tz) ≤ ϕ�(x, y, z) –ψ�(x, y, z).

Case : x =  and y or z are not equal to .Without loss of generality, wemay assume that
y≥ z. Thus y �= .Here,�(x, y, z) = y and�(Tx,Ty,Tz) = (y–). Since (y–) ≤ y –y,
we have

ϕ�(Tx,Ty,Tz) ≤ ϕ�(x, y, z) –ψ�(x, y, z).

Case : x, y, z are all different from . Without loss of generality, we assume that y ≥ z.
Then �(x, y, z) = x + y and �(Tx,Ty,Tz) = x –  + (y – ). Since (x – ) ≤ x – x and
(y – ) ≤ y – y, we have

ϕ�(Tx,Ty,Tz) =
[
x –  + (y – )

]

= (x – ) + (x – )(y – ) + (y – )

≤ x – x + xy + y – y

= (x + y) – (x + y)

= ϕ�(x, y, z) –ψ�(x, y, z).

Note that Example . satisfies all the hypotheses of Theorem .. Thus T has a unique
fixed point. Here,  is the unique fixed point of T . �
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18. Öztürk, M, Başarir, M: On some common fixed point theorems with φ-maps on G-cone metric spaces. Bull. Math.
Anal. Appl. 3, 121-133 (2011)

19. Popa, V, Patriciu, AM: A general fixed point theorem for mappings satisfying an φ-implicit relation in complete
G-metric spaces. Gazi Univ. J. Sci. 25(2), 403-408 (2012)

20. Shatanawi, W: Fixed point theory for contractive mappings satisfying 
-maps in G-metric spaces. Fixed Point Theory
Appl. 2010, Article ID 181650 (2010)

21. Jleli, M, Samet, B: Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012, ID 210 (2012)
22. Chandok, S, Mustafa, Z, Postolache, M: Coupled common fixed point theorems for mixed g-monotone mappings in

partially ordered G-metric spaces. U. Politeh. Buch. Ser. A (in printing)
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