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Abstract
In this paper, we first give a new fixed point theorem for generalized Ćirić
quasi-contraction maps in generalized metric spaces. Then we derive a common
fixed point result for quasi-contractive type maps. Some examples are given to
support our results. Our results extend and improve some fixed point and common
fixed point theorems in the literature.
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1 Introduction and preliminaries
The well-known Banach fixed point theorem asserts that if (X,d) is a complete metric
space and T : X → X is a map such that

d(Tx,Ty) ≤ cd(x, y) for each x, y ∈ X,

where  ≤ c < , then T has a unique fixed point x̄ ∈ X and for any x ∈ X, the sequence
{Tnx} converges to x̄.
In recent years, a number of generalizations of the above Banach contraction principle

have appeared. Of all these, the following generalization of Ćirić [] stands at the top.

Theorem . Let (X,d) be a complete metric space. Let T : X → X be a Ćirić quasi-
contraction map, that is, there exists c <  such that

d(Tx,Ty) ≤ cmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}

for any x, y ∈ X. Then T has a unique fixed point x̄ ∈ X and for any x ∈ X, the sequence
{Tnx} converges to x̄.

For other generalizations of the above theorem, see [] and the references therein.

2 Main results
Let X be a nonempty set and let d : X × X → [,∞] be a mapping. If d satisfies all of the
usual conditions of a metric except that the value of d may be infinity, we say that (X,d) is
a generalized metric space.
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We now introduce the concept of a generalized Ćirić quasi-contractionmap in general-
ized metric spaces.

Definition . Let (X,d) be a generalized metric space. The self-map T : X → X is said
to be a generalized Ćirić quasi-contraction if

d(Tx,Ty) ≤ α
(
d(x, y)

)
max

{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}

for any x, y ∈ X, where α : [,∞] → [, ) is a mapping.

As the following simple example due to Sastry and Naidu [] shows, Theorem . is not
true for generalized Ćirić quasi-contraction maps even if we suppose α is continuous and
increasing.

Example . Let X = [,∞) with the usual metric, T : X → X be given by Tx = x. Define
α : [,∞)→ [, ) by α(t) = t

+t . Then, clearly, α is continuous and increasing, and

|Tx – Ty| ≤ α
(|x – y|)max

{|x – y|, |x – Tx|, |y – Ty|, |x – Ty|, |y – Tx|}

for each x, y ∈ X, but T has no fixed point.

Now, a natural question is what further conditions are to be imposed on T or α to guar-
antee the existence of a fixed point for T? For some partial answers to this question and
application of quasi-contractionmaps to variational inequalities, see [] and the references
therein.
Now, we are ready to state our main result.

Theorem . Let (X,d) be a complete generalized metric space. Let T : X → X be a gen-
eralized Ćirić quasi-contraction map such that α satisfies

lim sup
t→r

α(t) <  for each r ∈ [,∞).

Assume that there exists an x ∈ X with the bounded orbit, that is, the sequence {Tnx} is
bounded. Furthermore, suppose that d(x,Tx) < ∞ for each x ∈ X. Then T has a fixed point
x̄ ∈ X and limn→∞ Tnx = x̄. Moreover, if ȳ is a fixed point of T , then either d(x̄, ȳ) = ∞ or
x̄ = ȳ.

Proof If for some n ∈ N, Tn–x = Tnx = T(Tn–x), then Tnx = Tn–x for n ≥ n.
Thus, Tn–x is a fixed point of T , the sequence {Tnx} is convergent to Tn–x, and we
are finished (note that Tnx = Tn–x for each n ≥ n). So, we may assume that Tn–x �=
Tnx for each n ∈N. Now, we show that there exists  < c <  such that

α
(
d
(
Tn–x,Tnx

))
< c for each n = , , , , . . . . (.)

On the contrary, assume that

lim
k→∞

α
(
d
(
Tnk–x,Tnkx

))
= 
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for some subsequence {α(d(Tnk–x,Tnkx))} of {α(d(Tn–x,Tnx))}. Since by our as-
sumption the sequence {d(Tn–x,Tnx)} is bounded, then the subsequence {d(Tnk–x,
Tnkx)} is bounded too, and so, by passing to subsequences if necessary, we may as-
sume that it is convergent. Let r = limk→∞ d(Tnk–x,Tnkx). Then from (.), we have
lim supt→r α(t) = , a contradiction. Thus, (.) holds.
Now, we show that {Tnx} is a Cauchy sequence. To prove the claim, we first show by

induction that for each n≥ ,

d
(
Tn–x,Tnx

) ≤ Kcn–, (.)

where K is a bound for the bounded sequence {d(x,Tnx)}n. If n =  then, we get

d
(
Tx,Tx

) ≤ α
(
d(x,Tx)

)
max

{
d(x,Tx),d

(
Tx,Tx

)
,d

(
x,Tx

)}

= α
(
d(x,Tx)

)
max

{
d(x,Tx),d

(
x,Tx

)} ≤ Kc.

Thus, (.) holds for n = . Suppose that (.) holds for each k < n, and we show that it
holds for k = n. Since T is a generalized Ćirić quasi-contraction map, then we have

d
(
Tn–x,Tnx

) ≤ α
(
Tn–x,Tn–x

)
u≤ cu,

where

u ∈ {
d
(
Tn–x,Tn–x

)
,d

(
Tn–x,Tnx

)}
.

It is trivial that (.) holds if u = d(Tn–x,Tn–x). Now, suppose that u = d(Tn–x,Tnx).
In this case, we have

d
(
Tn–x,Tnx

) ≤ cu,

where

u ∈ {
d
(
Tn–x,Tn–x

)
,d

(
Tn–x,Tn–x

)
,

d
(
Tn–x,Tn–x

)
,d

(
Tn–x,Tnx

)
,d

(
Tn–x,Tnx

)}
.

Again, it is trivial that (.) holds if u = d(Tn–x,Tnx) or u = d(Tn–x,Tn–x). If u =
d(Tn–x,Tn–x), then

d
(
Tn–x,Tnx

) ≤ cd
(
Tn–x,Tn–x

)
.

By the assumption of induction,

d
(
Tn–x,Tn–x

) ≤ Kcn–.

Hence,

d
(
Tn–x,Tnx

) ≤ Kcn ≤ Kcn–.
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If u = d(Tn–x,Tn–x), then

d
(
Tn–x,Tnx

) ≤ cd
(
Tn–x,Tn–x

)
.

If u = d(Tn–x,Tnx), then

d
(
Tn–x,Tnx

) ≤ cd
(
Tn–x,Tnx

)
.

Therefore, by continuing this process, we see that (.) holds for each n ≥ . From (.),
we deduce that {Tnx} is a Cauchy sequence and since (X,d) is a generalized complete
metric space, then there exists an x̄ ∈ X such that limn→∞ Tnx = x̄. Now, we show that x̄
is a fixed point of T . To show the claim, we first show that there exists  < k <  such that
α(d(x̄,Tnx)) < k for each n ∈ N. On the contrary, assume that limj→∞ α(d(x̄,Tnjx)) =
 for some subsequence nj. Since limj→∞ d(x̄,Tnjx) = , then from the above, we get
lim supt→+ α(t) = , a contradiction. Since T is a generalized Ćirić quasi-contraction, then
we have

d
(
Tx̄,Tn+x

)

≤ α
(
d
(
x̄,Tnx

))
max

{
d
(
x̄,Tnx

)
,d(x̄,Tx̄),

d
(
Tnx,Tn+x

)
,d

(
x̄,Tn+x

)
,d

(
Tnx,Tx̄

)}

≤ kmax
{
d
(
x̄,Tnx

)
,d(x̄,Tx̄),d

(
Tnx,Tn+x

)
,d

(
x̄,Tn+x

)
,d

(
Tnx,Tx̄

)}
.

Then we have

d(Tx̄, x̄) = lim sup
n→∞

d
(
Tx̄,Tn+x

) ≤ k lim sup
n→∞

d
(
Tx̄,Tnx

)
= kd(Tx̄, x̄),

which yields d(Tx̄, x̄) = , and so x̄ = Tx̄ (note that  < k <  and d(Tx̄, x̄) < ∞ by our as-
sumptions). Now, let us assume that x̄ and ȳ are fixed points of T such that d(x̄, ȳ) < ∞.
Then

d(x̄, ȳ) = d(Tx̄,Tȳ)

≤ α
(
d(x̄, ȳ)

)
max

{
d(x̄, ȳ),d(x̄,Tx̄),d(ȳ,Tȳ),d(x̄,Tȳ),d(ȳ,Tx̄)

}

= α
(
d(x̄, ȳ)

)
d(x̄, ȳ),

and so x̄ = ȳ (note that α(d(x̄, ȳ)) < ). �

The following example shows that in the statement of Theorem ., the condition
d(x,Tx) < ∞ for each x ∈ X is necessary.

Example . Let X = {,∞}, d(, ) = d(∞,∞) =  and let d(,∞) = ∞. Let T : X → X
be given by T = ∞ and T∞ = . Then

d(Tx,Ty) ≤ 

d(x, y) ≤ 


max

{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}

for each x, y ∈ X, but T is fixed point free.
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Example . Let X = [,∞], d(x, y) = |x – y| for each x, y ∈ [,∞), d(x,∞) = ∞ for each
x ∈ [,∞) and let d(∞,∞) = . Then (X,d) is a complete generalized metric space. Let
T : X → X be given by Tx = x for each x ∈ [,∞) and T∞ = ∞. Define α : [,∞]→ [, )
by α(t) = t

+t for each t ∈ [,∞) and α(∞) = 
 . Then we have

|Tx – Ty| ≤ α
(|x – y|)max

{|x – y|, |x – Tx|, |y – Ty|, |x – Ty|, |y – Tx|},

and d(x,Tx) < ∞ for each x, y ∈ X. Thus, all of the assumptions of Theorem . are satis-
fied, and so T has a unique fixed point (x = ∞ is a unique fixed point of T ). But we cannot
invoke the above mentioned theorem of Ćirić to show the existence of a fixed point for T .

To prove the following common fixed point result, we use the technique in [].

Corollary . Let (X,d) be a complete metric space and let the self-maps T and S satisfy
the contractive condition

d(Tx,Ty)

≤ α
(
d(Sx,Sy)

)
max

{
d(Sx,Sy),d(Sx,Tx),d(Sy,Ty),d(Sx,Ty),d(Sy,Tx)

}

for each x, y ∈ X, where α satisfies lim supt→r+ α(t) <  for each r ∈ [,∞). If TX ⊆ SX and
SX is a complete subset of X, then T and S have a unique coincidence point in X.Moreover,
if T and S are weakly compatible (i.e., they commute at their coincidence points), then T
and S have a unique common fixed point.

Proof It is well known that there exists E ⊆ X such that SE = SX and S : E → X is one-to-
one. Now, define a map U : SE → SE by U(Sx) = Tx. Since S is one-to-one on E, U is well
defined. Note that

d
(
U(Sx),U(Sy)

)

=U(Tx,Ty)

≤ α
(
d(Sx,Sy)

)
max

{
d(Sx,Sy),d(Sx,Tx),d(Sy,Ty),d(Sx,Ty),d(Sy,Tx)

}

for all Sx,Sy ∈ SE. Since SE = SX is complete, by using Theorem ., there exists x̄ ∈ X
such that U(Sx̄) = Sx̄. Then Tx̄ = Sx̄, and so T and S have a coincidence point, which is
also unique. Since Tx̄ = Sx̄ and T and S commute, then we have

T(Tx̄) = Tx̄ = TSx̄ = STx̄ = Sx̄ = S(Sx̄).

Thus, Tx̄ = Sx̄ is also a coincidence point of T and S. By the uniqueness of a coincidence
point of T and S, we get Tx̄ = Sx̄ = x̄. �
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