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Abstract

Motivated by Abdeljawad (Fixed Point Theory Appl. 2013:19, 2013), we establish some
common fixed point theorems for three and four self-mappings satisfying generalized
Meir-Keeler e-contraction in metric spaces. As a consequence, the results of Rao and
Rao (Indian J. Pure Appl. Math. 16(1):1249-1262, 1985), Jungck (Int. J. Math. Math. Sci.
9(4):771-779, 1986), and Abdeljawad itself are generalized, extended and improved.
Sufficient examples are given to support our main results.
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1 Introduction and preliminaries
The Meir-Keeler contractive condition [1] is one of the interesting aspects to study met-
rical fixed point theory, that is, for given € > 0, there exists a § > 0 such that

€e<dxy)<e+s = dxfy)<e. 1)

This contraction has further been generalized and studied by various authors (see [2—
15]). Very recently, Abdeljawad [16] (see also [17]) established some fixed point results for
a-contractive-type maps (due to Samet et al. [18]) to Meir-Keeler versions for single and
a pair of maps. In this article, we prove some common fixed point theorems for three and
four self-mappings satisfying generalized Meir-Keeler a-contractions. Thus, we provide
an affirmative answer to the question of Abdeljawad (see [16], Remark 17).

Let us recall some definitions, which we will use in our main results.

Definition 1.1 (¢f [16,18]) Letf,g:X — X beself-mappingsofaset X,andleta : X x X —
[0, 00) be a mapping, then the mapping f is called «-admissible if

xvyeX, axy=1 = alfxf) =1
and the pair (f, g) is called ¢-admissible if
xyeX, axy)>1 = oalx,gy)>1 and oalgrfy)>1

Definition 1.2 (c¢f [19, 20]) Let f and g (f # g) be two self-mappings defined on a metric
space (X, d), then f is called g-absorbing if there exists some real number R > 0 such that
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d(gx, gfx) < Rd(fx, gx) for all x in X. Analogously, g will be called f-absorbing if there exists
some real number R > 0 such that d(fx, fgx) < Rd(fx, gx) for all x in X. The pair of self-maps
(f>2) will be called absorbing if it is both g-absorbing as well as f-absorbing. In particular,
if we take g to be the identity map on X, then f is trivially /-absorbing. Similarly, I is also
f-absorbing in respect to f.

Definition 1.3 (¢f. [21]) Two self-mappings f and g of a metric space (X, d) are called
reciprocally continuous if and only if fgx,, — ft and gfx,, — gt whenever {x,} is a sequence
in X such that lim,,_, o0 fx, = lim,_, - g%, = t for some t € X.

2 Main results
We begin with the following definitions.

Definition 2.1 Let f,g, T : X — X be three self-mappings of a non-empty set X, and let
a: T(X) x T(X) — [0,00) be a mapping, then the pair (f,g) is called «-admissible with
respect to T (in short, (f,g) is @r-admissible) if for all x,y € X,

a(Tx, Ty) > 1 implies that «(fr,gy) >1 and o(gx,fy) > 1. (2)

Definition 2.2 Let f,g,S,T : X — X be four self-mappings of a non-empty set X, and
let o : S(X) U T(X) x S(X) U T(X) — [0,00) be a mapping, then the pair (f,g) is called
a-admissible with respect to S and T (in short, (f,g) is as,7-admissible) if for all x,y € X,

a(Sx, Ty) >1 or a(Tx,Sy)>1
3)
implies that «(fx,gy) >1 and «(gx,fy) > 1.

Clearly, if S = T = I (identity map), then the definitions above imply Definition 1.1.

In order to extend and improve the result contained in [16] for three self-mappings,
we now introduce the concept of generalized Meir-Keeler ar-contractive mappings as
follows.

Definition 2.3 Let (X,d) be a metric space, and f,g, T : X — X are self-mappings. Then
we say that the pair (f,g) is a generalized Meir-Keeler ar-contractive pair of type ms (M3,

respectively) if given an € > 0, there exists a § > 0 such that

€ <ms(x,y) (Mg(x, ¥), respectively) <€+$6
(4)
implies that  «(Tx, Ty)d(fx,gy) <€,

where

o) = (T ), [T + (T3, 0), ST )+ o]

and

Ms(x,y) = max{d(Tx, Ty), d(Tx, fx), d(Ty, gy), %[d(Tx,gy) + d(Ty,fx)] }
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Definition 2.4 Let f, g, and T be three self-mappings on a metric space (X,d) such that
Ff(X) U g(X) C T(X). If for a point x € X, there exists a sequence {x,} such that Txy,,; =
Sxon, Thonsa = @¥on1, 1 =0,1,2,...,then O(f,g, T,x0) = {Tx, : n =1,2,...} is called the orbit
for (f,g, T) atxy. The space (X, d) is called (f, g, T')-orbitally complete at x, iff every Cauchy
sequence in O(f, g, T, %) converges to a point in X. X is called (f,g, T)-orbitally complete
if it is so at every x € X.

Our first result is the following.

Theorem 2.1 Let (X,d) be an (f,g, T)-orbitally complete metric space. Suppose that (f,g)
is generalized Meir-Keeler ar-contractive pair of type ms and satisfies the following condi-
tions:
(i) (f,g) is ar-admissible;

(ii) there exists xo € X such that a(Txo, fxo) > 1;

(iii) om the (f,g, T)-orbit of xo, we have a(Tx,, Tx;) > 1 for all n even and j > n odd.
Then {Tx,} is a Cauchy sequence. Moreover, if

(iv) a(Txy, Txp) > 1 for all n, and Tx, — x implies that o(Tx,, Tx) > 1 for all n;

(v) one of the pairs (f, T) and (g, T) is absorbing as well as reciprocal continuous.
Then f, g, and T have a common fixed point.

Proof Letxg € X such that «(Txy, fxo) > 1. Define the sequences {x,} and {Tx,} in X given
by the rule

Txons1 = fXons Txops2 = g%, n=0,1,2,....
Since (f, g) is ar-admissible, we have

a(Txo,fxo) = a(Txo, Tx1) >1 —  affxo,gx1) >1 and «a(gxo,fx1) >1,
which gives

o(Txy, Txo) > 1.
Again by (i), we have

a(Tx, Txp) =1 = affx,gxp) >1 and  a(gr,fxa) > 1,
which gives

o(Txy, Txs) > 1.
Inductively, we have

a(Txy, Txy) =1, n=0,1,2,.... (5)
The fact that (f, g) is generalized Meir-Keeler ar-contractive implies that

a(Tx, Ty)d(fx,fy) < ms(x,y) foreachx,ye X,x#y. (6)
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Now, to obtain a common fixed point of f, g, and T, we take the following steps.

Step 1: We show that there exists a point z € X such that Tx,, — z as n — oo. For this,
first, we claim that {Tx,} is a Cauchy sequence. Two cases arise: either Tx, = Tx,,; for
some n or Tx, # Tx,,, for each n.

Case I: Suppose that Tx, = Tx,,; for some n. We first assume that # is even, i.e., Tx,,, =
Txom+1 but Txo,1 # Tomsa, then by (6),

d(Tx2m+lt Tx2m+2) = d(fomrngmﬂ)

< o (Txm> T2 1) AfX2m> §X2m1)
1
< max{d(szm, Txom+1), 3 [d(Txam, foom) + A(Txomi1, §%2me1) ]»
1
5 [d(Tmerngerl) + d(TmeJrl;fom)]
1 1
= max{ 0, Ed(Tx2m+l! Tx2m+2)r Ed(Tme: Tx2m+2)
1
= Ed(Tx2m+11 Tx2m+2)r
which is a contradiction. Hence Tx3,41 = Txo42. By proceeding in this way, we obtain
Txomsk = Txo,, for all k € N. Similar is the case when # is odd. Thus, we conclude that

{Tx,} is a Cauchy sequence.
Case II: Suppose that Tx, # Tx,,; for all integers n. Applying (6), we have

d(Tme Tx2n+1) = d(ngn—lex2n)

< o(Txon, Tx2n-1)A (X2, &X20-1)
1
< maX{d(szn, Txyn1), 5 [d(Txan, fron) + A(Txon1,8%201)],
1
5 [d(szmgxzn—1) + d(szn—hfon)] }
1
= maX{d(szm Txz41), 3 [d(Txon, Toni1) + (T, Tion) ),
1
3 [d(Txan, Toon) + d(Txon-1, Tioni) ]
= d( TxZn—l; Tx2n)'
Similarly, it can be shown that
d(Tx2n+1: Tx2n+2) < d(TxZn, Tx2n+1)'
Thus, {d(Tx,, Tx,.1)} is strictly decreasing sequence of positive real numbers, and, there-
fore, converges to a limit » > 0. If possible, suppose that 7 > 0. Then given § > 0, there

exists a positive integer N = N(8) such that

r < d(Txoy, Tx2p41) = A(fxon, @%on-1) <r+8 (forallm > N), (7)
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where d(Txy,, Txyu41) < m(xa,, %2,41). So by Egs. (5) and (6), we have

A(fxon @oni) < (Tx2, Th241)A(fX2, 8X2pi1) < 7
that is, d(Tx2,.+1, TX2,42) < 7, which is a contradiction. Hence

lim d(Tx,, T%,.1) = O. (8)

n—00

We now show that {Tx,} is a Cauchy sequence.

Suppose that it is not. Then there exists an € > 0 such that for each positive integer
m, n with m > n > N, we have d(Tx,,, Tx,) > 2¢. Choose a number §, 0 < § < ¢ for which
contractive condition (4) is satisfied. Since d(T%x,, Tx,,1) — 0, there exists integer N = N(§)
such that d(Tx;, Tx;,1) < % for all i > N. With this choice of N, pick m, n with m >n >N
such that

d(Tx,, Tx,) > 2€ > € + 6, 9)

in which it is clear that m — n > 6. Otherwise, we have

5
A(Txm, Tx,) < Zd(Txnﬂ‘; Txpsis1) <8 <€+6,
i=0

which contradicts (9). Also from (9), it follows that
8
d(Tx,, Txye1) > € + 3"
Without loss of generality, we may assume that # is even. Suppose that

1)
d(Tx,, Tx,,-1) < € + 3
then
d(Txm Txm) = d(Txm Txm—l) + d(Txm—ly Txm)
1) 1)
<e+| =)+ =
3 6
<€+6,

which is a contradiction to (9). So we have

8
d(Tx,, Tx,,-1) > € + <§>

Similarly, suppose that

8
d(Tx,, Tx;,—2) < € + (g),

Page 5 of 16
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then
d( Txn; Txm) = d(Txnr Txm—Z) + d(Txm—Z» Txm—l) + d(Txm—l: Txm)
8 8 8
<e+ |- )+l =)+ =
3 6 3
<€+,

which is a contradiction to (9). So we have

)
d(Tx,, Tx;,_0) > € + <§>

Thus, there exists the smallest odd integer j > # such that

8
A(Tx,, Txj) > € + (§>, (10)
and hence,
)
A(Txy, Txj_o) < € + <§>
Now,
d(Tx,, TJC]) <d(Tx,, ij_z) + d(ij_z, ij_l) + d(Tx/_l, T?Cl)
) ) )
<e+|=)+l=)+|=
3 6 6
()
=e+|— ).
3
Thus, there exists an odd integer j € (1, m) such that

€+ <§) <d(Tx,, Txj) <€ + (23—8> (11)

Since we have

€ < d(Tx,, Txy) < m3(xy, %))

= max{d(Tx,,, Tx)), %[d(Tx,,,fxn) +d(Txj, g%7) |,
%[d(Txn,ng) +d(Tx;, fxn) | }

<d(Tx,, Tx;) + <%>

<€+,
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So, using (4) and assumption (iii), we get
A(fxn, gx;) < a(Txy, Tx))d(fx,, gx)) < €,
that is, d(Tx,.1, Tx;.1) < €. But then

d(Txnr Tx}) = d(Txm Txn+1) + d(Tan; ij+1) + d(ij+1’ Tx})

1) ) 1)
<l=)+e+|=)=€+|=)
6 6 3
which contradicts (11). Therefore, {Tx,} is a Cauchy sequence. Since X is (f, g, T')-orbitally
complete, so there exists a point z € X such that Tx, — z as n — 0o. Consequently,
fxon — z and gxoy — 2.
Step 2: We show that z is common fixed point of (f,g, T). In view of assumption (v),

without loss of generality, let the pair (f, T') be absorbing and reciprocal continuous. Then
the reciprocal continuity of f and T  implies that

lim fIxy, =fz and lim Tfx,, = Tz.
n—00 n—00
Since T is f-absorbing, so there exists an R > 0 such that

A(fxon, fTx2u) < Rd(fxo,, Txy).

Letting n — oo, we get fTxy, — z. Similarly, since f is T-absorbing, so we have
d(Tme fo2n) =< Rd(fxzm szn)r

letting n — oo, we get Tfx,, — z. By the uniqueness of the limit, we have z = fz = Tz.
Now, suppose that z # gz, then by assumption (iv) and Eq. (6), we have

A(fxon, g2) < a(Txyy, T2)d(fxs4, g2)

< max{d(sz,,, Tz), % [d( T2, fiv20) + d(T2,g2)),
%[d(szn,gz) +d(Tz, fxon) ] }

Letting n — 00, we get d(z,gz) < %d(z, gz), which implies that z = gz. Thus, z is a common
fixed point of f, g, and T'. This completes the proof of the theorem. d

By putting f = g and T = I (identity map) in Theorem 2.1, we get the following result as
a corollary.

Corollary 2.1 Let (X,d) be an f-orbitally complete metric space, where f is a self-mapping
on X. Also, let a : X x X — [0,00) be a mapping. Assume the following:
(i) f is a-admissible;

(ii) there exists an xy € X such that o(xo,fxo) > 1;

Page 7 of 16
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(ili) for given € > 0, there exists a § > 0 such that

e<mxy)<e+d = alxy)d(fxfy)<e,

where my(x,y) = max{d(x,y), %[d(x,fx) + d(y,fy)], %[d(x,fy) + d(y,fx)] };

(iv) on the f-orbit of xo, we have a(x,,%;) > 1 for all n even and j > n odd.
Then, f has a fixed point in the f-orbit {x,} of xo, or f has a fixed point z and lim,,_, 5o X, = z.

Example 2.1 Let X = [0,2] be endowed with the standard metric d(x,y) = |x — y| for all
%,y € X. Define f : X — X by

0 ifxe{0,}},
fe=q1 ifxe(0,5) (3}
3 ifxe(3,2].

Then f is not a Meir-Keeler contraction. To see this consider € = %, x = i, and y = %,
then for any § > 0, we have € < m;(x,y) < € + 8, but d(fx,fy) = d(0, %) = % > €. However, f is
a generalized Meir-Keeler a-contraction, where o : X x X — [0, 00) is defined by

1 ifx,yel,2],
a(x,y) = >
0, otherwise.

Clearly, f has two fixed points, namely x =0 and x = % Notice that oc(%, 0)=0<1.

For the uniqueness of the fixed point of a generalized Meir-Keeler «-contractive map-
ping, we will consider the following hypothesis.
(H) For all fixed points x and y of (f,g, T'), we have a(Tx, Ty) > 1.

Theorem 2.2 Adding condition (H) to the hypotheses of Theorem 2.1 (resp., Corollary 2.1),
we obtain the uniqueness of the common fixed point of f, g, and T.

Proof Let z be the common fixed point obtained as Tx, — z and u is another common
fixed point. Then, (6) and condition (H) yield to

d(z,u) = d(fz,gu)
< o(Tz, Tu)d(fz,gu)

1 1
< max{d(Tz, Tu), 5 [d(Tz fz) + d(Tu,gu)), 3 [d(Tz gu) + d(Tu,fz)] }
=d(z,u).
Thus, we reach d(z, u) < d(z, u), and hence z = u. O

The following example illustrates Theorem 2.2.

Page 8 of 16
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Example 2.2 Let X = [2,20] and d be the usual metric on X. Define f,g, T : X — X as

follows:
3 ifxel[2,4], 2 ifxe[2,3),
fx= gx = and
2 ifx>4, 3 ifx>3,
3 ifx=3,
Tx=12 ifxe(2,20]-{3,4},
2 ifx=4.

In this example the mappings f, g, and T do not satisfy the general Meir-Keeler contrac-
tive condition. To see this, consider € = %, x =3 and y € [2,3), then for any § > 0, we have
€ <mx,y) <€ +36,but d(fx,gy) =d(3,2) =1 > €. However, f, g, and T satisfy the general-
ized Meir-Keeler o-contractive condition (4) with the mapping & : T(X) x T(X) — [0, 00)
defined by

2 ifu,ve{2,3},
o(u,v) =
0, otherwise.

Also, all the hypotheses of Theorem 2.1 with condition (H) are satisfied, and clearly x = 3
is our unique common fixed point. Indeed, hypothesis (ii) is satisfied with x, = 3, and
here Tx, = 3 is a sequence, for which hypotheses (iii) and (iv) are satisfied. Also in view of
the sequence x,, = 3, here both pairs (f, T) and (g, T) are reciprocal continuous as well as
absorbing. Notice that x = 3 is the point of discontinuity of the mappings g and T

Theorem 2.3 The conclusion of Theorem 2.1 remains true if the assumption (v) of Theo-
rem 2.1 is replaced by one of the following conditions:

(a) d(gx, Ty) < max{d(y,gx),d(y, Tx)} for all x,y € X with right-hand side positive.

(b) d(fx, Ty) < max{d(y, Tx),d(y,fx)} for all x,y € X with right-hand side positive.

Proof In view of Theorem 2.1, we have that {T%,} is a Cauchy sequence, and Tx, — z € X
as n — 00, and, consequently, fx,, and gx,,,1 also converge to z as n — oo.

Clearly, Tx, # z for infinitely many n. We can as well assume that T, # z for all n.

If (a) holds, then

d(gx2n+l: TZ) = max{d(z:gx2n+l)r d(Z, Tx2n+l)}'

Letting n — 00, we get d(z, Tz) < 0, i.e., Tz = z. If (b) holds, then also 7z = z.
Now, suppose that z # gz. Since Txy,, # Tx2,,1, 0 by assumption (iv) and Eq. (6), we have

A(fxon, g2) < a(Txop, T2)d(fx20, g2)
1
< max{d(Txgn, Tz), 3 [d(Txon, fr2n) + d(T2,82) ],
1
5 [A(Tx20,82) + d(TZ, fix2n)| }

letting n — 00, we get d(z,gz) < 1d(z,gz), which implies that z = gz.
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Now, let fz # z = Tz, then again by the process above, we have

d(fzxgx2n+1) = a(Tx2n+1; Tz)d(fZ;gx2n+1)

1
< max{d( 1z, Txyp41), 5 [d(TZ!fZ) + d(Tx2n+l’gx2n+l)]:

1
E [d(TngxZnJrl) +d(Txops1, Z)] }r

letting n — oo, we get d(fz,z) < %d(z, fz), which implies that fz = z. Thus, z is the common
fixed point of f, g, and T. O

The following example demonstrates Theorem 2.3.

Example 2.3 Let X = [0,1] and d be the usual metric on X. Define f,g, T : X — X as

follows:
0 ifxel0,1], § ifxef0, 3],
fx: % ifxe(%,%), gx: X ifxe(%)%)) and
Ioifxe[d,1], 0 ifxe[}1],
%C ifx € [0, 7],
Tx = % 1fx€(i,%),
% 1fxe[%,1]

Here the mappings f, g, and T satisfy all the conditions of Theorem 2.3 with the mapping
a:T(X) x T(X)— [0,00) defined by

w11 TVl plx (5]

0, otherwise.

Clearly, none of the pairs (f, T) and (g, T) are reciprocal continuous. To see this con-
sider the sequence x, = % + %, then lim,_, o fx, = lim,—, oo Tx, = %, but limy,_, 0 fT%, =
lim,,ﬁoof(% + ﬁ) = % Z0 =f(i). Therefore, (f, T) is not reciprocal continuous. To see
that (g, T) is not reciprocal continuous, one can consider the sequence y, = % + % Here,
the involved mappings satisfy condition (a) of Theorem 2.3, and they have the unique

common fixed x = 0.
Remark 2.1 Theorem 2.3 generalizes and extends Theorem 1.2 of Rao and Rao [22].

Theorem 2.4 Theorem 2.1 remains true if we replace ms(x,y) by Ms(x,y) and condition
(iv) by the following (iv'):

(iv') a(Txy,, Txys1) =1 for all n and Tx, — x implies that a(Tx,, Tx) > K for all n, where
K>1.
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Proof The proof of z = fz = Tz follows from Theorem 2.1. Now, suppose that z # gz, then
by the help of condition (iv’), we have

d(fxon 82) < K™ a(Txop, T2)A(fx2n, 82) < K™ M3 (%2, 2)

=K max{d(Tx2,,, Tz), d(Txon, fX2n), d(Tz, g2),
1
2 [d(sz,q,gz) + d(Tz,fxg,,)] }

By letting n — oo, we conclude that d(z, gz) < K~'d(z,gz) < d(z,gz),and hence z = gz. Thus,
z is a common fixed point of f, g, and T. |

Example 2.2 above also satisfies Theorem 2.4.
Remark 2.2 Theorem 2.4 generalizes and extends Theorem 1.3 of Rao and Rao [22].

By taking T = I (identity map) in Theorem 2.4, we derive the following result as a corol-

lary.

Corollary 2.2 Let (X,d) be an (f,g)-orbitally complete metric space, where f, g are self-
mappings of X. Also, let o : X x X — [0,00) be a mapping. Assume the following:

(i) (f,g) is a-admissible, and there exists an xo € X such that a(xo,fxo) > 1;

(ii) for given € > 0, there exists a § > 0 such that

€ <Mx,y)<e+68 impliesthat o(x,y)d(fx,gy)<e,

where
Mx,y) = {d<x,y), s, 29), 5[5, ) + A0 o] };

(iii) om the (f,g)-orbit of xo, we have o(x,,%;) > 1 for all n even and j > n odd;
(iv) a(®n, x44e1) > 1 for n, and x, — x implies that a(x,,x) > K for all n, where K > 1.
Then, the pair (f,g) has a common fixed point provided it is absorbing as well as reciprocal

continuous.
Remark 2.3 Corollary 2.2 improves Theorem 8 contained in [16].
The next result is a common fixed point theorem for four self-mappings.

Theorem 2.5 Let f, g, S, and T be four self-mappings on a complete metric space (X, d)
such that f(X) C T(X) and g(X) C S(X), and they satisfy the following conditions:
(i) the pair (f,g) is as r-admissible;
(ii) there exists a point xg € X such that a(Sxg, fxo) > 1;
(iii) for given € > 0, there exists a § > 0 such that

€ <myxy)<e+d = oaSx, Ty)d(fx,gy) <e, (12)
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where
ma(x,y) = max{d(Sx, Ty), d(fx, Sx), d(gy, Ty), %[d(fx, Ty) + d(gy, Sx)] };

(iv) there exists a sequence {x,} in X such that a(Sx,, Tx;) > 1 for all n even and j > n
odd,;
Thenf, g, S, and T have a common fixed point provided both the pair (f,S) and (g, T) are
absorbing as well as reciprocal continuous.

Proof Let xp € X such that «(Sxo, fxg) > 1. Define sequences {x,} and {y,} in X as
Yon :fx2n = Tx2n+1; Yon+l = 8&X2n+1 = Sx2n+2~

This can be done since f(X) € T'(X) and g(X) C S(X).
Since (f, g) is as,r-admissible, we have

a(Sxo,fxo) = a(Sx0, Tx1) >1 =  o«lfxg,gx1) >1 and oa(gro,fx1) > 1,
which gives
a(Txy, Sx) = 1=a(yo,y) > 1.
Again by (i), we have
a(Tx1,S%) >1 =  offx,gx)>1 and  a(gx,fr) >1,
which gives
a(Sxg, Txs) = a(y1,92) > 1.
Inductively, we obtain
aWmyn1) =1, n=0,12,..., (13)

that is, & (Sx,+1, T%,.42) > 1, when 7 is odd and «(Tx,,.1, Sx,..2) > 1 when # is even.

By assumption (iii), we have

a(Sx, Ty)d(fx, gy) < ma(x,y). (14)

Now, we claim that {y,} is a Cauchy sequence.
Case I: If y, = y,,1 for some n. We first assume that # is odd, i.e., y2,141 = Y2ms2 and
suppose that yo,.42 # ¥am+3, then by applying (13) and (14), we get

d(y2m+2:y2m+3) = d(fx2m+2)gx2m+3)

<« (Sx2m+2: Tx2m+3)d(fx2m+27gx2m+3)
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< max { d(5x2m+2: Tx2m+3); d(fx2m+2: Sx2m+2)1 d(gx2m+31 Tx2m+3)¢
1
5 [d(fx2m+2¢ Tx2m+3) + d(gx2m+3¢ Sx2m+2)]
= maX{d()/Zmﬂ:yZmﬂ): AY2m+2s Yoms1)s AY2me2, Yam3)s
[d(y2m+2;y2m+2) + d(y2m+3’y2m+l)] }

d(y2m+2:y2m+3);

N N =

a contradiction. Hence y5,,,42 = Y2m+3. By proceeding in this manner, we obtain ¥,k =
Yams1 for all k > 1. Similarly, when we assume # as even, then we obtain y;,,,k = y2,, for all
k >1, and so {y,} is a Cauchy sequence.

Case II: If y, # y,41 for each n. Applying (13) and (14), we get

d(yzn,y2n+1) = d(fomngVHI)

< a(Sxap, Tx2n+1)d(fx2mgx2n+l)
< max{d(stVn Tx2n+1): d(fom SxZn): d(gx2n+1; Tx2n+1),
1
5 [d(fom Tx2n+l) + d(gx2n+lx SxZn)]
= max {d()/Zn—lyyZn): d(yZmyZn—l)r d(y2n+17y2n),
1
5 [d(y2n;y2n) + d(y2n+1vy2n—l)] }
= d(y2n—1:y2n)~
Similarly, we obtain d(y2,-1, Y21) < d(¥2n-2,Y2n-1)- Thus, {d(¥,, yu+1)} is a strictly decreasing
sequence of positive numbers, and, therefore, tends to a limit » > 0. If possible, suppose

that r > 0. Then given § > 0, there exists a positive integer N such that for each n > N, we

have

r < dYam Yoni1) = A(Txopi1, SXops2) <7 + 6, (15)
where d(Sx2,12, Tx2y41) < Ma(X242,%2,41)- Then by applying (14), we have

A(fxans2, §%2ne1) < @(Sxans2, Txons1)A(fx2042, §X2011) < T,
that is, d(¥242, Y2n+1) < ¥, which is a contradiction, and hence,

im d(y,, Y1) = 0. (16)

n—00

Now, we show that {y,} is a Cauchy sequence. Suppose that it is not, then there exists an
€ > 0 such that for each integer N, there exist integers m > n > N such that d(y,,, y.) > 2€.

Page 13 0of 16
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Choose a number §, 0 < § < €, for which contractive condition (12) is satisfied. By virtue of
(16), there exists an integer N such that d(y;,y:,1) < % for all i > N. With this choice of N,
pick integers m > n > N such that

AW Yu) > 2€ >68 + €, 17)

in which it is clear that m — n > 6. Also from (17), it follows that d(y,,, yus1) > € + %
If not, then

d()/m;yn) =< d()Im,ynJrl) + d()/wrl;yn)
(5)+(5)
<e+| =)+ =) <2
3 6

which is a contradiction. Without loss of generality, we can assume that # is even. From
(17), there exists the smallest odd integer j > n such that

)
d(yn;y]) > €+ <§>, (18)
and hence d(y,,yj—2) <€ + % So we have

AWn ) < AWnryj-2) + AWj-2,¥j-1) + AYj-1,¥))
8 8 )
<e+|=)+|{=)+(=
3 6 6
(5)
=e+|— |-
3
Thus, there exists an odd integer j € (1, m) such that
3 28
€+ <§> <dWynyj) <€+ (;) (19)
Therefore, we have

€< d(ymyj) =d(Tx 1, ij+1) = m4(xj+1xxn+1)

= max{d(sxjﬂr Txn+1): d(ij+1’5xj+l)r d(gxnﬂr Txn+l);
1
5 [d(ij+1: Txn+1) + d(gxn+1: ij+1)] }
1
= max{d(y]',yn), d(yjﬂ,yj), d(ynJrl;yn), E [d(’}/j+11yn) + d(ywrl)yj)] }
8
<dj,ya) + 3 <€+6,
so that by (12) and assumption (iv), we get

d(ij+17gxn+1) = a(ijﬂ’ Txn+1)d(ij+1:gxn+l) <€,
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i.e., d(Yus1,Yj+1) < €. But then
d(yn:yj) <dWu Y1) + d(ynﬂ;yjﬂ) + d()/jﬂ»yj)
(6)+<+(5)
<l =)+e+|=
6 6
(5)
=e+|(=),
3

which contradicts (19). Therefore, {y,} is a Cauchy sequence. By the completeness of X,
there exists a z € X such that y, — z as n — oo and, consequentially, fx2,,, Tx2,+1, @211
and Sx,,.0 — zas n — o0.

Since the pair (f, S) is reciprocal continuous and absorbing, so by reciprocal continuity,
we have fSx,, — fz and Sfx,, — Sz as n — oo. By absorbing property, there is an R > 0
such that d(fxa,, fSx2,) < Rd(fx2,, Sx2,) and d(Sxoy, Sfxa,) < Rd(fxa,, Sxa,), which letting
n — 0o gives fSxy, — z and Sfx,, — z. Thus, we have z = fz = Sz. Similarly, the absorbing
and reciprocal continuity of the pair (g, T) provides us z = gz = Tz. Thus, z is a common
fixed point of f, g, S, and T. O

Theorem 2.6 Adding the condition (H-2): For all common fixed points x and y of f, g, S,
and T, a(Sx, Ty) > 1, to the hypotheses of Theorem 2.5, the uniqueness of the fixed point is
obtained.

Remark 2.4 Theorem 2.6 generalizes, extends and improves the results of Jungck (The-
orem 3.1, [8]), Cho et al. (Theorem 3.2, [4]) and Rao and Rao [22].
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