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Abstract

We introduce the notion of ordered cyclic weakly (1, @, L, A, B)-contractive mappings,
and we establish some fixed and common fixed point results for this class of
mappings in complete ordered b-metric spaces. Our results extend several known
results from the context of ordered metric spaces to the setting of ordered b-metric
spaces. They are also cyclic variants of some very recent results in ordered b-metric
spaces with even weaker contractive conditions. Some examples support our results
and show that the obtained extensions are proper. Moreover, an application to
integral equations is given here to illustrate the usability of the obtained results.
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1 Introduction and preliminaries
The Banach contraction principle is a very popular tool for solving problems in nonlinear
analysis. One of the interesting generalizations of this basic principle was given by Kirk et

al. [1] in 2003 by introducing the following notion of cyclic representation.

Definition 1 [1] Let A and B be non-empty subsets of a metric space (X,d) and T: A U
B — AUB.Then T is called a cyclic map if T(A) € Band T(B) C A.

The following interesting theorem for a cyclic map was given in [1].

Theorem 1 Let A and B be nonempty closed subsets of a complete metric space (X, d).
Suppose that T : AU B — AU B is a cyclic map such that

d(Tx, Ty) < kd(x,y)

forall x € A and y € B, where k € [0,1) is a constant. Then T has a unique fixed point u
andu e ANB.

It should be noted that cyclic contractions (unlike Banach-type contractions) need not
be continuous, which is an important gain of this approach. Following the work of Kirk et
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al., several authors proved many fixed point results for cyclic mappings, satisfying various
(nonlinear) contractive conditions.

Berinde initiated in [2] the concept of almost contractions and obtained several interest-
ing fixed point theorems. This has been a subject of intense study since then, see, e.g., [3—
7]. Some authors used related notions as ‘condition (B)’ (Babu et al. [8]) and ‘almost gener-
alized contractive condition’ for two maps (Ciri¢ et al. [9]), and for four maps (Aghajani et
al. [10]). See also a note by Pacurar [11]. Here, we recall one of the respective definitions.

Definition 2 [9] Let f and g be two self-mappings on a metric space (X, d). They are said
to satisfy almost generalized contractive condition, if there exist a constant § € (0,1) and
some L > 0 such that

d(fx,gy) < 8max{d(x,y),d(x,fx),d(y,gy), w}

2
+ Lmin{d(x,fx), d()’»g)’); d(x’gy)’d(%fx)}

forall x,y € X.
Khan et al. [12] introduced the concept of an altering distance function as follows.

Definition 3 [12] A function ¢ : [0, +00) — [0, +00) is called an altering distance function
if the following properties hold:

1. ¢ is continuous and non-decreasing.

2. ¢()=0ifand onlyift=0.

So far, many authors have studied fixed point theorems, which are based on altering
distance functions.

The concept of a b-metric space was introduced by Bakhtin in [13], and later used by
Czerwikin [14,15]. After that, several interesting results about the existence of fixed points
for single-valued and multi-valued operators in b-metric spaces have been obtained (see,
e.g., [16—28]). Recently, Hussain and Shah [29] obtained some results on KKM mappings
in cone b-metric spaces.

Consistent with [15] and [28], the following definitions and results will be needed in the
sequel.

Definition 4 [15] Let X be a (nonempty) set, and let s > 1 be a given real number. A func-
tiond: X x X — R* is a b-metric if for all x, 7,z € X, the following conditions hold:

(b1) d(x,y)=0iffx=y,
(ba2) d(x,y) =d(y,x),
(b3) d(x,2) <sld(x,y) +d(y,2)].

In this case, the pair (X, d) is called a b-metric space.

It should be noted that the class of b-metric spaces is effectively larger than the class of
metric spaces, since a b-metric is a metric if (and only if) s = 1. Here, we present an easy
example to show that in general, a b-metric need not necessarily be a metric (see also [28,
p.264]).
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Examplel Let (X, p) bea metric space and d(x,y) = (o(x,y))”, where p > 1 isareal number.
Then d is a b-metric with s = 2?71, Condition (b3) follows easily from the convexity of the
function f(x) = &” (x > 0).

The notions of b-convergent and b-Cauchy sequences, as well as of b-complete b-metric
spaces are introduced in an obvious way (see, e.g., [18]).

It should be noted that in general, a b-metric function d(x, y) for s > 1 need not be jointly
continuous in both variables. The following example (corrected from [22]) illustrates this
fact.

Example 2 Let X = NU {oo}, and let d : X x X — R be defined by

0, ifm=n,
L _ 11" ifone of m, n is even and the other is even or oo,
dmmn)=3 " "
5, if one of m, n is odd and the other is odd (and m # n) or oo,
2, otherwise.

Then considering all possible cases, it can be checked that for all m, n,p € X, we have
5
d(m,p) < E(d(m,n) +d(n,p)).
Thus, (X, d) is a b-metric space (with s = 5/2). Let x,, = 2u for each n € N. Then
1
d(2n,00)= — — 0 asn— 0o,
2n

that is, x, — 00, but d(x,,,1) =2 4 5 =d(00,1) as n — oo.

Aghajani et al. [16] proved the following simple lemma about the b-convergent se-
quences.

Lemma 1 Let (X,d) be a b-metric space with s > 1, and suppose that {x,} and {y,}
b-converge to x, y, respectively. Then we have

1
—d(x,y) <liminfd(x,,y,) < limsupd(x,,y,) < s*d(x,y).

s? n—00

In particular, if x = y, then lim,_, o d(x,,, ) = 0. Moreover, for each z € X, we have

1
-d(x,z) < liminfd(x,,z) < limsupd(x,,z) < sd(x,z).
N n—00 n—00

The existence of fixed points for mappings in partially ordered metric spaces was first
investigated in 2004 by Ran and Reurings [30], and then by Nieto and Lopez [31]. After-
wards, this area was a field of intensive study of many authors.

Shatanawi and Postolache proved in [32] the following common fixed point results for
cyclic contractions in the framework of ordered metric spaces.
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Theorem 2 [32] Let (X, <X,d) be a complete ordered metric space, and let A, B be closed
nonempty subsets of X with X = AUB. Let f,g : X — X be two mappings, which are (A, B)-
weakly increasing (see further Definition 6). Assume that

(@) AU B s a cyclic representation of X w.r.t. the pair (f,g), i.e., f(A) C B and g(B) C A;
(b) thereexist0 < § < 1and an altering distance function  such that for any two comparable
elements x,y € X with x € A and y € B, we have

¥ (d(fx,gy)) < 8y (maX{d(x,y),d(x,fx), d(y,gy), %(d(x,gy) +d(y, fx)) })

(c) f org is continuous, or
(c') the space (X, X,d) is regular.

Then f and g have a common fixed point.

Here, the ordered metric space (X, <,d) is called regular if for any non-decreasing se-
quence {x,} in X such that x, — x € X, as n — 00, one has x,, <x forall » € N.

By an ordered b-metric space, we mean a triple (X, <,d), where (X, <) is a partially or-
dered set, and (X,d) is a b-metric space. Fixed points in such spaces were studied, e.g,
by Aghajani et al. [16] and Roshan et al. [27]. In the last mentioned paper, the following
common fixed point results for contractions in ordered b-metric spaces were proved.

Theorem 3 [27] Let (X, <, d) be a complete ordered b-metric space, andletf,g: X — X be
two weakly increasing mappings. Suppose that there exist two altering distance functions
¥, ¢ and a constant L > 0 such that the inequality

v (s*d(fr.gy) < ¥ (Ms(x,y)) — o(Mi(x,)) + LYy (N (x, )
holds for all comparable x,y € X, where

d(x, d(y,
M;(x,y) = max{d(x,y), d(x,fx),d(y,gy), W }

and

N(x,y) = min{d(y,gy), d(x,gy), d(y, fx)}.

Ifeither [f or g is continuous), or the space (X, X, d) is regular, then f and g have a common
fixed point.

In this paper, we introduce the notion of ordered cyclic weakly (v, ¢, L, A, B)-contrac-
tions and then derive fixed point and common fixed point theorems for these cyclic con-
tractions in the setup of complete ordered b-metric spaces. Our results extend some fixed
point theorems from the framework of ordered metric spaces, in particular Theorem 2.
On the other hand, they are cyclic variants of Theorem 3 with even weaker contractive
conditions.

We show by examples that the obtained extensions are proper. Moreover, an application
to integral equations is given here to illustrate the usability of the obtained results.
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2 Common fixed point results
In this section, we introduce the notion of ordered cyclic weakly (v, ¢, L, A, B)-contractive

pair of self-mappings and prove our main results.

Definition 5 Let (X, <,d) be an ordered b-metric space, let f,g : X — X be two mappings,
and let A and B be nonempty closed subsets of X. The pair (f,g) is called an ordered cyclic
weakly (¥, ¢, L, A, B)-contraction if
(1) X =AUB isa cyclic representation of X w.r.t. the pair (f,g); that is, fA € B and
gBCA;
(2) there exist two altering distance functions ¥, ¢ and a constant L > 0, such that for
arbitrary comparable elements x,y € X with x € A and y € B, we have

¥ (s*d(fx, g) < ¥ (Mi(x,9)) - 0(Mi(x,9)) + L (N(x,9)), .1)
where

M) = max{d(x,yx s ), dly, ), 22O } (22)
and

N(x,y) = min{d(y,gy), d(x,gy), d(y.fx)}. (2.3)

Definition 6 [32] Let (X, <) be a partially ordered set, and let A and B be closed subsets
of X with X =AU B. Let f,g : X — X be two mappings. The pair (f,g) is said to be (4, B)-
weakly increasing if fx < gfx for all x € A and gy < fgy for all y € B.

Theorem 4 Let (X, <X,d) be a complete ordered b-metric space, and let A and B be closed
subsets of X. Let f,g : X — X be two (A, B)-weakly increasing mappings with respect to <.
Suppose that

(a) the pair (f,g) is an ordered cyclic weakly (¥, ¢, L, A, B)-contraction;

(b) f or g is continuous.
Then f and g have a common fixed point u € AN B.

Proof Let us divide the proof into two parts.
First part. We prove that u € A N B is a fixed point of f if and only if u is a fixed point
of g. Suppose that u is a fixed point of f. As u < u and u € A N B, by (2.1), we have

) (szd(u,gu)) =y (szd(fu,gu))
<y (max{d(u,fu), d(u,gu), %(d(u,gu) + d(u,fu)) })

-@ (max{d(u,fu), d(u,gu), %(d(u,gu) + d(u,fu)) })
+ Lmin{d(u,gu),d(u,fu)}

=y (d(u,gu)) — ¢ (d(u,gu))
<y (sd(u,gu)) - ¢(d(u,gu)).
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It follows that ¢(d(u, gu)) = 0. Therefore, d(u, gu) = 0, and hence gu = u. Similarly, we can
show that if « is a fixed point of g, then u is a fixed point of f.

Second part (construction of a sequence by iterative technique).

Letxy € A, and let x; = fx,. Since fA C B, we have x; € B. Also, let x, = gx;. Since gB C A,
we have x, € A. Continuing this process, we can construct a sequence {x,} in X such that
Xonsl = fXon, Xonra = GXons1, Xon € A and x4 € B. Since f and g are (A, B)-weakly increasing,
we have

x1 = fxo < gfxo =%y = gx1 X fgxm =x3 < -+
= X1 = fXon X GfXon = Kopas X0
If x5, = X441, for some n € N, then xy, = fx,,. Thus, xy, is a fixed point of f. By the first
part of proof, we conclude that x,, is also a fixed point of g. Similarly, if x5,,4,1 = %242, for
some # € N, then xy,,,1 = g%2,41. Thus, x2,41 is a fixed point of g. By the first part of proof,
we conclude that x5, is also a fixed point of f. Therefore, we assume that x,, # x,,,; for all

n € N. Now, we complete the proof in the following steps.
Step 1. We will prove that

lim d(x,,%,41) = 0.
n—00
As x5, and x,,,,1 are comparable and x,, € A and x5, € B, by (2.1), we have

14 (d(x2n+l: x2n+2)) <y (Szd(xZnH’ x2n+2))
= 1# (Szd(fo;'nngMH))

< U (M (%2 %2n01)) — @ (M2 X201)) + LY (N (2, %2041))

where

Ms(xZn’xZnJrl) = max{d(mexZer): d(xZn:fx2n)) d(x2n+1)gx2n+l);

A(fXons Xons1) + A(X2 8X2041) }
2s

d(x2m x2n+2)
2s

= max{d(xz,,, Xon41)s A(X2415 X242)5

< max { d(xZn: x2n+1): d(x2n+l; x2n+2)1

s[d(%2n, %2041) + A(Xops1, X2n42)]
2s

= max{d(xz,,, X2141) A(X2415 x2n+2)},

and

N(x2nr x2n+1) = min{d(x2n+1,gx2n+l)r d(x2n+lrfx2n)r d(mengnJrl) }

= min{d(xZVH—lv x2n+2)) d(x2n+1) x2n+1)r d(me x2n+2) } =0.
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Hence, we have

Y (d2ni1, %2n12)) < W (max{d(Xou, %241) d(X2ni1, X2ni2) })

- (p(max{d(xbn x2n+1)r d(x2n+1r x2n+2)})' (24)

If

max{d(xZW x2n+1)r d(x2n+1r x2n+2) } = d(x2n+1, x2n+2))

then (2.4) becomes

w(d(x2n+l»x2n+2)) = w(d(x2n+l:x2n+2)) - @(d(x2n+lrx2n+2))
< w(d(x2n+lr x2n+2)),

which gives a contradiction. So,

max{d(xZn’ x2n+1)¢ d(x2n+lr x2n+2) } = d(x2m x2n+1);

and hence, (2.4) becomes

1ﬁ(d(x2n+l:952n+2)) = l[’(d(xZn’xZ;le)) - (p(d(mebul))
< w(d(xbu x2n+1))- (25)

Similarly, we can show that

1p(('i(xZ;Hl:xZn)) < I//(d(~7c2;'1¢‘762r1—1))- (26)

By (2.5) and (2.6), we get that {d(x,,%,.1) : # € N} is a non-increasing sequence of positive
numbers. Hence, there is » > 0 such that

lim d(x,,%,.1) = 7.

n—00

Letting n — oo in (2.5), we get
Y(r) =¥ (r) - o),
which implies that ¢(r) = 0, and hence r = 0. So, we have
nlingo A(xy,%,41) = 0. (2.7)

Step 2. We will prove that {x,} is a b-Cauchy sequence. Because of (2.7), it is sufficient
to show that {x,,} is a b-Cauchy sequence. Suppose on the contrary, i.e., that {xy,} is not
a b-Cauchy sequence. Then there exists ¢ > 0, for which we can find two subsequences
{%2m,;} and {x3,,} of {x2,} such that #; is the smallest index, for which

n>my > i, dXom; o) > €. (2.8)

Page 7 of 18
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This means that
AXom;» Kom—2) < €. (2.9)
From (2.8) and using the triangular inequality, we get
& < d(Xomy Xan;) < 84Xy Xam;1) + SA K21, Xom,)-
Using (2.7) and taking the upper limit as i — oo, we get

< limsup d(%2m;+1,%2s,)- (2.10)
i—o00

£

s
On the other hand, we have

d(meprVI,'—l) = Sd(me,';me—Z) + Sd(me—Zﬁ x2ni—1)~

Using (2.7), (2.9) and taking the upper limit as i — 0o, we get

lim sup d(x;, X2n;-1) < €. (2.11)

I— 00

Again, using the triangular inequality, we have

AKomy Xon,) < SAKom» Xon—2) + SA(Kp,—25 X2n;)

< SA(Xomgs Xomg—2) + S AXomy—2s Xay1) + S AX2m;—1, X2m,)
and
AXom; 1, Xom-1) < SAXom, 415 %om,) + SAKom;» Kom;—1)-

Taking the upper limit as i — oo in the above inequalities, and using (2.7), (2.9) and (2.11),

we get
lim sup d(Xom;» X2n;) < €8 (2.12)
i>o00
and
lim sup d(%2,;41, ¥2,-1) < es?. (2.13)
i—>o00

Since x,,,; and x;,,_; are comparable and x,,,, € A and x,,_1 € B, using (2.1) we have

w(SZd(x2mi+lrx2n,‘)) = w(szd(fxzm,v,gxznﬂ))
=< w(MS(mei:xZni—l)) - w(Ms(x2m17x2ni—l))

+ L (N (%2 ¥21)) (2.14)

Page 8 of 18
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where

M(X2m; Xop;-1) = max{d(mei’me—l); A2y Xom;+1)s A(Xom—1, X2,

d(me,"ert,') + d(xzmi+1»x2nf-1) } (2.15)
2s
and
N(me,vr x2n,v—1) = min{d(me—b Xon; )r d(xZVn,vr x2n,v): d(xZni—lr x2m,'+1) } . (216)
Taking the upper limit in (2.15) and using (2.7) and (2.11)-(2.13), we get
lim sup M(%2,;, X2,1) = max { lim sup d (%2, %21;-1), 0, 0,
i—o00 i—00
limsup;_, o d(®om; X2u;) + limsup,_, o A(X2;+15 X2;-1)
2s
{ s + s> }
< max| s, =é&s
2s
Hence, we have
lim sup M (X2, X2,-1) < €8, (2.17)
I—00
and, from (2.16),
lim supN(mei,xgnt_l) =0. (218)

i—00

Now, taking the upper limit as i — oo in (2.14) and using (2.10), (2.17) and (2.18), we
have

Yes) =y <s2 g) < <52 lim sup d(X2;+1, xZni)>

i—o00

<y <lim supMs(xgmi,xz,,L._l)> - (lim inst(xgmL.,xz,,i_l)>

i—00 =00

< v(es) ~ @ (lim inf My (xan220,1)),
=00

which implies that @(liminfi_, .o M(x2;,%24,-1)) = 0. By (2.15), it follows that
liminf;_, o d(X2m,> ¥2;) = 0, which is in contradiction with (2.8). Hence {x,} is a b-Cauchy
sequence in X.

Step 3 (existence of a common fixed point).

As {x,} is a b-Cauchy sequence in X which is a b-complete b-metric space, there exists
u € X such that x,, — u as n — 00, and

lim x4 = lim fxy, = u.
n— 00 n— 00

Page9of 18
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Now, without loss of generality, we may assume that f is continuous. Using the triangular
inequality, we get

d(u, fu) < sd(u, fxa,) + sd(fxon, fur).
Letting n — 00, we get
d(u, fu) <s lim d(u,fxs,) +s lim d(fx,,,fu) = 0.

Hence, we have fu = u. Thus, u is a fixed point of f and, since A and B are closed subsets
of X, u € A N B. By the first part of proof, we conclude that « is also a fixed point of g.
O

The assumption of continuity of one of the mappings f or g in Theorem 4 can be replaced
by another condition, which is often used in similar situations. Namely, we shall use the
notion of a regular ordered b-metric space, which is defined analogously to the case of the
standard metric (see the paragraph following Theorem 2).

Theorem 5 Let the hypotheses of Theorem 4 be satisfied, except that condition (b) is re-
placed by the assumption

(b') the space (X, =,d) is regular.

Then f and g have a common fixed point in X.

Proof Repeating the proof of Theorem 4, we construct an increasing sequence {x,} in
X such that x, — u for some u € X. As A and B are closed subsets of X, we have u €

A N B. Using the assumption (b’) on X, we have x, < u for all n € N. Now, we show that
fu =gu = u. By (2.1), we have

U (s*d (a1, gu)) = ¥ ($*d(fxan, gut))
< Y (M (von, 1)) — @ (M (62, 1)) + Ly (N (22, 1)), (2.19)

where

Moo 1) = max{d(xm, 1), d o, fo), ot gu, 2810+ A2, 1) }

2s
_ max{d(xzm ) o), A, gu), 228 ;sd(’“z””’ 2 } (2:20)
and
N(x2nr I/l) = mln{d(u,gu); d(u,fon): d(xZn;gu)}
= mln{d(uxgu)) d(u) x2n+1)1 d(Xngu) } . (2'21)
Letting n — oo in (2.20) and (2.21) and using Lemma 1, we get
d ]
lim sup M;(xo,, u) < max{d(u,gu), % } =d(u,gu), (2.22)
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and N (x,,,u) — 0. Now, taking the upper limit as # — oo in (2.19) and using Lemma 1
and (2.22), we get

v (sd(u,gu)) = ¢ (széd(u,gu)) < 1,0(52 lim sup d(x2n+1,gu)>

n—0o0

<y <lim sup M;(xo,, u)) —@ (lim inf M(xo,,, u))
n—00

n—00

= v (selan,gu)) - ¢ (Timinf M, (53, 1))

It follows that g(liminf,_, .o M;(x2,, #)) = 0, and hence, by (2.20), that d(u, gu) = 0. Thus, u
is a fixed point of g. On the other hand, similar to the first part of the proof of Theorem 4,
we can show that fu = u. Hence, u is a common fixed point of f and g. O

3 Consequences and examples
As consequences, we have the following results.

By putting A = B = X in Theorems 4 and 5, we obtain improvements of the main results
(Theorems 5 and 6) of Roshan et al. [27], i.e., of Theorem 3 of the present paper (note that
we have s? instead of s* in the contractive condition).

Taking ¢ = (1 -8)¥, 0 <8 <1 in Theorems 4 and 5, we get the following.

Corollary 1 Let (X, <,d) be a complete ordered b-metric space, and let A and B be closed
subsets of X. Let f,g : X — X be two (A, B)-weakly increasing mappings with respect to <.
Suppose that

(@) X =AU B isa cyclic representation of X w.r.t. the pair (f,g);
(b) there exist 0 <8 <1, L > 0 and an altering distance function \ such that for any com-
parable elements x,y € X with x € A and y € B, we have

¥ (s2d(fx,g)) < 8 (My(x,9)) + Ly (N(x,9)), G.1)

where Ms(x,y) and N(x,y) are given by (2.2) and (2.3), respectively;
(c) f orgis continuous, or
(c') the space (X, X,d) is regular.

Then f and g have a common fixed point u € AN B.

Taking s =1 and L = 0 in Corollary 1, we obtain Theorems 2.1 and 2.2 of Shatanawi and
Postolache [32] (Theorem 2 in this paper).
Taking v (¢) = ¢ for ¢ € [0, +00) in Corollary 1, we get the following.

Corollary 2 Let (X, <,d) be a complete ordered b-metric space. Let A and B be nonempty
closed subsets of X, and let f,g : X — X be two (A, B)-weakly increasing mappings with
respect to < such that f(A) C B and g(B) C A. Suppose that there exist § € (0,1) and L > 0
such that

8 d(x, d(fx.
d(fx,gy) < ) max{d(x,y), d(x,fx), d(y, ), W }

+ = min{d(y, ), de.g9),d(y, o)
N
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for all comparable elements x,y € X with x € A and y € B. If either f or g is continuous, or
the space (X, X,d) is regular, then f and g have a common fixed point.

Putting f = g in Theorems 4 and 5, the following corollary is obtained which extends
and improves Theorems 3 and 4 in [27].

Corollary 3 Let (X, X,d) be a complete ordered b-metric space, and let A and B be closed
subsets of X. Let f : X — X be a mapping such that f is non-decreasing with respect to <.
Assume the following:

(@) AU B isa cyclic representation of X w.rt. f, that is, fA C B, fB C A;
(b) there exist two altering distance functions ¥, ¢, and L > 0 such that

v (sd(fx fy)) < ¥ (Ms(x,9)) — o(Ms(x,)) + L (N(x,)) (3.2)

for all comparable x,y € X with x € A and y € B, where

dx, ) + d0y,
Mi(x,y) = maX{d(x,y), d(x, fx), d(y, ), W }

and

N(x,y) = min{d(x,fx),d(x,fy),d(y,fx)}.

(c) f is continuous, or

(c') thespace (X, =<,d) is regular.

If there exists xy € X such that xy < fxo, then f has a fixed point.
Again, taking ¢ = (1 -8)v¥, 0 <§ <1 in Corollary 3, we get the following.

Corollary 4 Let (X, <,d) be a complete ordered b-metric space, let and A and B be closed
subsets of X. Let f : X — X be a non-decreasing map with respect to <. Suppose that

(a) X =AUB isa cyclic representation of X w.r.t. f;
(b) there exist 0 <8 <1, L > 0 and an altering distance function \ such that for any com-
parable elements x,y € X with x € A and y € B, we have

¥ (s2d(fx, ) < 89 (My(x,)) + LY (N (x,)), (33)

where M(x,y) and N(x,y) are given in Corollary 3;
(c) f is continuous, or
(c') the space (X, <,d) is regular.

Then f has a fixed point u € AN B.

Remark1 (Common) fixed points of the given mappings in Theorems 4 and 5 and Corol-
laries 3 and 4 need not be unique (see further Example 4). However, it is easy to show that
they must be unique in the case that the respective sets of (common) fixed points are well
ordered (recall that a subset W of a partially ordered set is said to be well ordered if every
two elements of W are comparable).
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We illustrate our results with the following two examples.

Example 3 Consider the b-metric space (X, d) given in Example 2, ordered by natural
ordering and a mapping f : X — X given as

8n, ifnel,
fi=

0o, ifn=o0.

IfA={n:neN}U{oo}and B = {8n:n € N} U{oo}, then AU B is a cyclic representation of
X with respect to f. Take ¥ : [0, +00) — [0, +00) given as ¥/ (t) = /£, § = 5/4+/2 (< 1) and
L > 0 arbitrary. In order to check the contractive condition (3.3), consider the following
cases.

Ifx,y € N, then

2 2
5) d(8x, 8y)) = >
x Yy

v (sSd(fs.fy) =¥ ((5 2.8

¥

5
= mw(d(x’y)) = ‘Sw(Ms(x’y)) +L¢(N(x’y))

and (3.3) holds. If x = 0o and y is an even integer, then

521
22.8 y

V(S fy) = w((§)2d<oo, sy)> _

< % (dw,9) < 59 (M(5,9) + Ly (N(x, ).

Finally, if x = co and y is an odd integer, then d(x, y) = 5 and (3.3) trivially holds.
Hence, all the conditions of Corollary 4 are satisfied. Obviously, f has a (unique) fixed
point 0o, belonging to A N B.

We now present an example showing that there are situations where our results can be
used to conclude about the existence of (common) fixed points, while some other known
results cannot be applied.

Example 4 Let X ={0,1,2,3,4} be equipped with the following partial order:
=:={(0,0),(1,1),(1,2),(2,2),(3,2),(3,3), (4,2), (4, 4)}.

Define a b-metricd : X x X — R* by

0, ifx=y,
dx,y) =
x+y)? ifxdy.

It is easy to see that (X,d) is a b-complete b-metric space with s = 49/25. Set A =
{0,1,2,3,4} and B = {0, 2}, and define self-maps f and g by

f_01234 {01 2 3 4
o222 2 Mo 22 4 3)
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It is easy to see that f and g are (4, B)-weakly increasing mappings with respect to <, and
that f and g are continuous. Also, AUB = X, f(A) C Band g(B) C A.

Define ¥ : [0,00) — [0,00) by ¥() = /t. One can easily check that the pair (f,g) sat-
isfies the requirements of Corollary 1, with any § and L > 0, as the left-hand side of the
contractive condition (3.1) is equal to O for all comparable x, y such that x € A and y € B.
Hence, f and g have a common fixed point. Indeed, 0 and 2 are two common fixed points
of f and g. (Note that the ordered set ({0, 2}, <) is not well ordered).

However, take x =1 € A and y = 0 € B (which are not comparable). Then

¥ (s°d(f1,80)) = v/s%(2 + 0)2 = 25> 3

>38+L-0 =38y (M(1,0)) + Ly (N(1,0)),

where 0 < <1and L > 0 are arbitrary, since

M,(1,0) = max{d(l,O),d(1,2),d(0,0), W} =32

2s
and
N(1,0) = min{d(0,0),d(1,0),d(0,2)} = 0.
Hence, this result cannot be applied in the context of b-metric spaces without order.
4 Application to existence of solutions of integral equations
Integral equations like (4.1) have been studied in many papers (see, e.g., [22, 33] and
the references therein). In this section, we look for a nonnegative solution to (4.1) in

X =C([0, T],R).
Consider the integral equation

T
u(t) = / G(t,9)f (s,u(s)) ds forallte[0,T], (4.1)

0
where T>0,f:[0,T] x R— Rand G: [0, T] x [0, T] — [0, 00) are continuous functions.
Let X = C([0, T]) be the set of real continuous functions on [0, T]. We endow X with the

b-metric

D(u,v) = max (u(t) - v(t))2 forall u,v e X.
te(0,T]

Clearly, (X, D) is a complete b-metric space (with the parameter s’ = 2). We endow X with
the partial order < given by

x=<y <= «x(t)<y) forallte[0,T].

Clearly, the space (X, X, D) is regular.
Let o, B € X and «, By € R such that

ap <alt) < Bt)<Bo foralltel0,T). 4.2)
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Assume that for all £ € [0, T], we have

T
a(t) < /(; G(,5)f (s, B(s)) ds (4.3)

and

T
pO = [ Glesy(s.al)ds (3.4)
0
Let for all s € [0, T], f(s, -) be a decreasing function, that is,
xyeR, x>y = f(s,x) <f(s,y). (4.5)

Assume that y > 0 is such that

T 2
4y ( max / G(t,s) ds) <1 (4.6)
0

te(0,T]

Define a mapping 7 : X — X by
T
Tu(t) = / G(t,s)f (s,u(s))ds forallte[0,T].
0

Suppose that for all s € [0, 7] and for all comparable x, y € X with (x(s) < Bo and y(s) > ag)
or (x(s) = ap and y(s) < Bo),

0 <f(s,%(s)) —f (s,(5))

< (V maX{ () = y(5) |, [a(s) = Tx(s) >, [3(s) = Tts)|*,

lx(s) — T y(s)|% + |y(s) — Tx(s)|? }) 7' (4.7)

4

Theorem 6 Under the assumptions (4.2)-(4.7), the integral equation (4.1) has a solution
intheset{ue C([0,T)):ax <u<p}.

Proof Define closed subsets of X, A; and A, by

Ai={ueX:u<xp} and Ay={ueX:u>al
Consider the mapping 7 : X — X defined above. We will prove that

T(A)) CA; and T(Ay) CA;. (4.8)
Suppose that u € A, that is,

u(s) < B(s) forallse[0,T].

Page 150f 18
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Applying, condition (4.5), since G(t,s) > 0 for all ¢, s € [0, T], we obtain that
G(t,s)f(s, u(s)) > G(t,s)f(s, ,B(S)) forall ¢,s € [0, T].

The above inequality with condition (4.3) implies that

T T
/ G(t,s)f(s, u(s)) ds > / G(t,s)f(s, ﬂ(s)) ds > a(t)
0 0

for all ¢ € [0, T]. Thus, we have T u € A,.
Similarly, let u# € A,, that is,

u(s) > a(s) forallse[0,T].
Using condition (4.5), since G(t,s) > 0 for all £,s € [0, T], we obtain that
G(t,s)f(s, u(s)) < G(t,s)f(s,ot(s)) for all ¢,s € [0, T].

The above inequality with condition (4.4) implies that

T T
/ G(t, s)f(s, u(s)) ds < / G(t,s)f(s,ot(s)) ds < B(t)
0 0

for all ¢ € [0, T]. Hence, we have Tu € A;. Thus, (4.8) holds.
Now, let (i,v) € A1 x A,, thatis, forall £ € [0, T],

u(t) < B(8), v(t) > a(t).
This implies from condition (4.2) that for all ¢ € [0, T],
u(t) < Po, v(t) > ao.

Also, if x <y, then by (4.7), we have

T
Ty(t) —Tx(t) = ./0 G(t,s)[f(s,y(s)) —f(s,x(s))] ds>0

for all ¢ € [0, T]. That is, Tx < Ty. Hence, T is increasing.
Now, by the conditions (4.6) and (4.7), we have for all ¢ € [0, 7] and for all
comparable x € A; and y € A,,

(Tx(e) - Ty(e))’

= </OT(;(E,S)[f(S,x(s)) —f(5,56))] ds)

2

< (/()T G(t,9)[f (5,%(5)) = f (5, %(5)) ] ds)2

T
< (/ G(t,S)(J/ maX{ |x(s) - y(s)[*,
0

2
’

x(s) = Tx(s)[",

y(s) = Ty(s)
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5(5) = TY(5)12 + y(5) = T2 D y )
4 S

T
< (/ G(t,s)()/ max{ max [x(s) - y(s)|*, max |x(s) - Tx(s)|",
0 s€[0,T1] 5€[0,T]
2
max [3(5) = Ty(s)[,
2 ) f ,
maxge(o,7)%(s) — T¥(s)|” + maxsejo,ry|y(s) — Tx(s)|” | 2 N
4
T 2
=y </ G(t,s) ds) max{'D(x,y),D(x’ T%), D, T), D(x, Ty)zz/D(y, Tx) }
0
which implies that
D(x, D(y,
D(TxTy) < % max{D(x,y),D(x, Tx), D, Ty), (% Ty)2+S/ o Tx)}

with § = 4y (maxc(o,7] foT G(t,s)ds)* < 1.

Now, all the conditions of Corollary 2 (with 7 = g = f and L = 0) hold, and 7 has a fixed

point z in

A1NAy = {u € C([O, T]) co(t) < u(t) < B(¢), forall £ € [0, T]}.

That is, z € A1 N A, is the solution to (4.1). O
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