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1 Introduction
Iterative algorithms have been studied bymany authors. The applications of iterative algo-
rithms are found in a wide range of areas, including economics, image recovery and signal
processing. Many well-known problems can be studied by using algorithms which are it-
erative in their nature; see [–] and the references therein. As an example, in computer
tomography with limited data, each piece of information implies the existence of a convex
set, in which the required solution lies. The problem of finding a point in the intersection
of these convex subsets is then of crucial interest, and it cannot be usually solved directly.
Therefore, an iterative algorithm must be used to approximate such a point.
Mann iteration, introduced by Mann [], is an efficient tool to study fixed point prob-

lems of asymptotical nonexpansive mappings. However, Mann iteration is only weak con-
vergence in infinite-dimensional spaces; see [] and the references therein. The impor-
tance of strong convergence is underlined in [], where a convex function f is minimized
via the proximal-point algorithm: it is shown that the rate of convergence of the value se-
quence {f (xn)} is better when {xn} converges strongly than when it converges weakly. Such
properties have a direct impact when the process is executed directly in the underlying
infinite-dimensional space. To obtain strong convergence of Mann iteration, projection
methods, which were first introduced by Haugazeau [], have been considered for modi-
fying Mann iteration to obtain strong convergence. The advantage of projection methods
is that strong convergence of iterative sequences can be guaranteed without any compact
assumptions.
The organization of this paper is as follows. In Section ,we provide somenecessary con-

cepts and lemmas. In Section , fixed point problems of generalized asymptotically quasi-
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φ-nonexpansive mappings and solutions of a Ky Fan inequality are investigated. A strong
convergence theorem is established in a Banach space.

2 Preliminaries
Recall that the normalized duality mapping J from E to E* is defined by

Jx =
{
f * ∈ E* :

〈
x, f *

〉
= ‖x‖ = ∥∥f *∥∥},

where 〈·, ·〉 denotes the generalized duality pairing. Let UE = {x ∈ E : ‖x‖ = } be the unit
sphere of E. Then the Banach space E is said to be smooth iff

lim
t→

‖x + ty‖ – ‖x‖
t

exists for each x, y ∈UE . It is also said to be uniformly smooth iff the above limit is attained
uniformly for x, y ∈ UE . It is well known that if E is uniformly smooth, then J is uniformly
norm-to-norm continuous on each bounded subset of E. It is also well known that E is
uniformly smooth if and only if E* is uniformly convex. Recall that E is said to be strictly
convex iff ‖ x+y

 ‖ <  for all x, y ∈ E with ‖x‖ = ‖y‖ =  and x �= y. It is said to be uniformly
convex iff limn→∞ ‖xn – yn‖ =  for any two sequences {xn} and {yn} in E such that ‖xn‖ =
‖yn‖ =  and limn→∞ ‖ xn+yn

 ‖ = . Recall that E enjoys the Kadec-Klee property if for any
sequence {xn} ⊂ E, and x ∈ E with xn ⇀ x, and ‖xn‖ → ‖x‖, then ‖xn – x‖ →  as n → ∞.
For more details on the Kadec-Klee property, readers can refer to [] and the references
therein. It is well known that if E is a uniformly convex Banach space, then E enjoys the
Kadec-Klee property.
Next, we assume that E is a smooth Banach space. Consider the functional defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E.

Observe that in a Hilbert spaceH , the equality is reduced to φ(x, y) = ‖x– y‖, x, y ∈H . As
we all know, if C is a nonempty closed convex subset of a Hilbert spaceH and PC :H → C
is the metric projection of H onto C, then PC is nonexpansive. This fact actually charac-
terizes Hilbert spaces and, consequently, it is not available in more general Banach spaces.
In this connection, Alber [] recently introduced a generalized projection operator �C

in a Banach space E which is an analogue of the metric projection PC in Hilbert spaces.
Recall that the generalized projection �C : E → C is a map that assigns to an arbitrary
point x ∈ E the minimum point of the functional φ(x, y), that is, �Cx = x̄, where x̄ is the
solution to the minimization problem

φ(x̄,x) =min
y∈C φ(y,x).

Existence and uniqueness of the operator �C follow from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J ; see, for example, []. In Hilbert spaces,
�C = PC . It is obvious from the definition of a function φ that

φ(x, y) = φ(x, z) + φ(z, y) + 〈x – z, Jz – Jy〉, (.)
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and

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖y‖ + ‖x‖), ∀x, y ∈ E. (.)

Remark . If E is a reflexive, strictly convex and smooth Banach space, then φ(x, y) = 
if and only if x = y; for more details, see [] and the reference therein.

Let C be a nonempty subset of E and T : C → C be a mapping. In this paper, we use
F(T) to denote the fixed point set of T . T is said to be asymptotically regular on C if for
any bounded subset K of C,

lim sup
n→∞

{∥∥Tn+x – Tnx
∥∥ : x ∈ K

}
= .

T is said to be closed if for any sequence {xn} ⊂ C such that limn→∞ xn = x and
limn→∞ Txn = y, then Tx = y. In this paper, we use → and ⇀ to denote strong con-
vergence and weak convergence, respectively. Recall that a point p in C is said to be an
asymptotic fixed point of T iff C contains a sequence {xn} which converges weakly to p
so that limn→∞ ‖xn –Txn‖ = . The set of asymptotic fixed points of T will be denoted by
F̃(T).
Recall that T is said to be relatively nonexpansive iff

F̃(T) = F(T) �= ∅, φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,∀p ∈ F(T).

Recall that T is said to be relatively asymptotically nonexpansive iff

F̃(T) = F(T) �= ∅, φ
(
p,Tnx

) ≤ ( +μn)φ(p,x), ∀x ∈ C,∀p ∈ F(T),∀n≥ ,

where {μn} ⊂ [,∞) is a sequence such that μn →  as n→ ∞.
Recall that a mapping T is said to be quasi-φ-nonexpansive iff

F(T) �= ∅, φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,∀p ∈ F(T).

Recall that amappingT is said to be asymptotically quasi-φ-nonexpansive iff there exists
a sequence {μn} ⊂ [,∞) with μn →  as n→ ∞ such that

F(T) �= ∅, φ
(
p,Tnx

) ≤ ( +μn)φ(p,x), ∀x ∈ C,∀p ∈ F(T),∀n≥ .

Remark . The class of asymptotically quasi-φ-nonexpansive mappings was considered
in Zhou et al. [] and Qin et al. []; see also [] and [].

Remark . The class of quasi-φ-nonexpansive mappings and the class of asymptoti-
cally quasi-φ-nonexpansive mappings are more general than the class of relatively nonex-
pansive mappings and the class of relatively asymptotically nonexpansive mappings [].
Quasi-φ-nonexpansive mappings and asymptotically quasi-φ-nonexpansive mappings do
not require the restriction F(T) = F̃(T).

http://www.fixedpointtheoryandapplications.com/content/2013/1/237


Song and Chen Fixed Point Theory and Applications 2013, 2013:237 Page 4 of 15
http://www.fixedpointtheoryandapplications.com/content/2013/1/237

Remark . The class of quasi-φ-nonexpansive mappings and the class of asymptotically
quasi-φ-nonexpansive mappings are generalizations of the class of quasi-nonexpansive
mappings and the class of asymptotically quasi-nonexpansivemappings in Banach spaces.

Recall that T is said to be generalized asymptotically quasi-φ-nonexpansive if F(T) �= ∅,
and there exists a sequence {μn} ⊂ [,∞) with μn →  as n → ∞ and a sequence {νn} ⊂
[,∞) with νn →  as n → ∞ such that φ(p,Tx) ≤ μnφ(p,x) + νn for all x ∈ C, p ∈ F(T)
and n≥ .

Remark . The class of generalized asymptotically quasi-φ-nonexpansivemappingswas
considered in Qin et al. []; see also [].

Let f be a bifunction from C ×C to R, where R denotes the set of real numbers, and let
A : C → E* be a mapping. Consider the following Ky Fan inequality which is known as a
generalized equilibrium problem. Find p ∈ C such that

f (p,q) + 〈Ap,q – p〉 ≥ , ∀q ∈ C. (.)

We use S(f ,A) to denote the solution set of inequality (.). That is,

S(f ) =
{
p ∈ C : f (p,q) + 〈Ap,q – p〉 ≥ ,∀q ∈ C

}
.

IfA = , then problem (.) is reduced to the following Ky Fan inequality which is known
as an equilibrium problem. Find p ∈ C such that

f (p,q) ≥ , ∀q ∈ C. (.)

We use S(f ) to denote the solution set of inequality (.). That is,

S(f ) =
{
p ∈ C : f (p,q) ≥ ,∀q ∈ C

}
.

If f = , then problem (.) is reduced to the classical variational inequality. Find p ∈ C
such that

〈Ap,q – p〉 ≥ , ∀q ∈ C. (.)

We use VI(C,A) to denote the solution set of inequality (.). That is,

VI(C,A) =
{
p ∈ C : 〈Ap,q – p〉 ≥ ,∀q ∈ C

}
.

Recall that a mapping A : C → E* is said to be α-inverse-strongly monotone if there
exists α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖.

For solving problem (.), let us assume that the nonlinear mapping A : C → E* is α-
inverse-strongly monotone and the bifunction f : C × C → R satisfies the following con-
ditions:

http://www.fixedpointtheoryandapplications.com/content/2013/1/237
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(A) F(x,x) = , ∀x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤ , ∀x, y ∈ C;
(A)

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y), ∀x, y, z ∈ C;

(A) for each x ∈ C, y �→ F(x, y) is convex and weakly lower semicontinuous.
Recently,many authors investigated the solutions of problems (.), (.) and (.) based

on iterative methods; see [–]. In this paper, we investigate generalized asymptoti-
cally quasi-φ-nonexpansive mappings and problem (.). A strong convergence theorem
for common solutions to a fixed point problem of generalized asymptotically quasi-φ-
nonexpansive mappings and problem (.) is established in a Banach space.
In order to state our main results, we need the following lemmas, which play an import

role in the paper.

Lemma . [] Let E be a smooth, strictly convex and reflexive Banach space and C be
a nonempty closed convex subset of E. Let A : C → E* be an α-inverse-strongly monotone
mapping and f be a bifunction satisfying conditions (A)-(A). Let r >  be any given num-
ber and x ∈ E be any given point. Then there exists p ∈ C such that

f (p,q) + 〈Ap,q – p〉 + 
r
〈q – p, Jp – Jx〉 ≥ , ∀q ∈ C.

Lemma . [] Let E be a smooth, strictly convex and reflexive Banach space and C be
a nonempty closed convex subset of E. Let A : C → E* be an α-inverse-strongly monotone
mapping and f be a bifunction satisfying conditions (A)-(A). Let r >  be any given num-
ber and x ∈ E define a mapping Kr : C → C as follows: for any x ∈ C,

Krx =
{
p ∈ C : f (p,q) + 〈Ap,q – p〉 + 

r
〈q – p, Jp – Jx〉 ≥ ,∀q ∈ C

}
.

Then the following conclusions hold:
() Kr is single-valued;
() Kr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈Krx –Kry, JKrx – JKry〉 ≤ 〈Srx – Sry, Jx – Jy〉;

() F(Kr) = S(f ,A);
() Kr is quasi-φ-nonexpansive;
()

φ(q,Krx) + φ(Krx,x)≤ φ(q,x), ∀q ∈ F(Kr);

() S(f ,A) is closed and convex.

Lemma . [] Let C be a nonempty closed convex subset of a smooth Banach space E
and x ∈ E. Then x = �Cx if and only if

〈x – y, Jx – Jx〉 ≥ , ∀y ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2013/1/237
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Lemma . [] Let E be a reflexive, strictly convex and smooth Banach space, C be a
nonempty closed convex subset of E and x ∈ E. Then

φ(y,�Cx) + φ(�Cx,x)≤ φ(y,x), ∀y ∈ C.

Lemma . [] Let E be a uniformly smooth and strictly convex Banach space which
also enjoys the Kadec-Klee property and C be a nonempty closed convex subset of E. Let
T : C → C be a closed generalized asymptotically quasi-φ-nonexpansive mapping. Then
F(T) is closed and convex.

Lemma . [] Let E be a smooth and uniformly convex Banach space and let r > .
Then there exists a strictly increasing, continuous and convex function g : [, r]→ R such
that g() =  and

∥∥tx + ( – t)y
∥∥ ≤ t‖x‖ + ( – t)‖y‖ – t( – t)g

(‖x – y‖)
for all x, y ∈ Br = {x ∈ E : ‖x‖ ≤ r} and t ∈ [, ].

3 Main results
Theorem . Let E be a uniformly smooth and strictly convex Banach space which also
enjoys the Kadec-Klee property and C be a nonempty closed convex subset of E. Let T : C →
C be a generalized asymptotically quasi-φ-nonexpansive mapping. Let f be a bifunction
from C × C to R satisfying (A)-(A) and A : C → E* be an α-inverse-strongly monotone
mapping. Assume that T is closed and asymptotically regular on C, and F(T) ∩ S(f ,A) is
nonempty and bounded. Let {xn} be a sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

x = �Cx,

yn = J–(( – αn)Jxn + αnJTnxn),

un ∈ C such that f (un,q) + 〈Aun + q – un〉 + 
rn 〈q – un, Jun – Jyn〉 ≥ , ∀q ∈ C,

Cn+ = {k ∈ Cn : φ(k,un) ≤ φ(k,xn) + (μn – )Wn + νn},
xn+ = �Cn+x,

where Wn = sup{φ(p,xn) : p ∈ F(T)∩ S(f ,A)}, {αn} is a real number sequence in (, ) such
that lim infn→∞ αn( –αn) >  and {rn} is a real number sequence such that lim infn→∞ rn >
. Then the sequence {xn} converges strongly to �F(T)∩S(f ,A)x, where �F(T)∩S(f ,A) is the gen-
eralized projection from E onto F(T)∩ S(f ,A).

Proof First, we proveCn is closed and convex so that the projection is well defined.We see
that C = C is closed and convex. Assume that Cm is closed and convex for some positive
integer m. For k ∈ Cm, we find that

φ(k,um) ≤ φ(k,xm) + (μm – )Wm + νm,

http://www.fixedpointtheoryandapplications.com/content/2013/1/237
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which is equivalent to

〈k, Jxm – Jum〉 ≤ ‖xm‖ – ‖um‖ + (μm – )Wm + νm.

It is easy to see that Cm+ is closed and convex. This proves that Cn is closed and convex
so that �Cn+x is well defined. Set un = Krnyn. It follows from Lemma . that Krn is quasi-
φ-nonexpansive.
Now, we are in a position to prove that F(T) ∩ S(f ,A) ⊂ Cn. Indeed, F(T) ∩ S(f ,A) ⊂

C = C is obvious. Assume that F(T)∩ S(f ,A) ⊂ Cm for some positive integerm. Then, for
∀e ∈ F(T)∩ S(f ,A) ⊂ Cm, we have

φ(e,um) = φ(e,Srmym)

≤ φ(e, ym)

= φ
(
e, J–

(
( – αm)Jxh + αmJTmxm

))
= ‖e‖ – 

〈
e, ( – αm)Jxm + αmJTmxm

〉
+

∥∥( – αm)Jxh + αmJTmxm
∥∥

≤ ‖e‖ – ( – αm)〈e, Jxm〉 – αm
〈
e, JTmxm

〉
+ ( – αm)‖xm‖ + αm

∥∥Tmxm
∥∥

= ( – αm)φ(e,xm) + αmφ
(
e,Tmxm

)
≤ ( – αm)φ(e,xm) + αmμmφ(e,xm) + αmνm

≤ φ(e,xm) + αm(μm – )φ(e,xm) + αmνm

≤ φ(e,xm) + (μm – )Wm + νm, (.)

which proves that e ∈ Cm+. This implies that F(T)∩ S(f ,A) ⊂ Cn. Notice that xn = �Cnx.
Wefind fromLemma. that 〈xn–z, Jx –Jxn〉 ≥  for any z ∈ Cn. Since F(T)∩S(f ,A) ⊂ Cn,
we therefore find that

〈xn –w, Jx – Jxn〉 ≥ , ∀w ∈ F(T)∩ S(f ). (.)

It follows from Lemma . that

φ(xn,x) ≤ φ(�F(T)∩S(f ,A)x,x) – φ(�F(T)∩S(f ,A)x,xn)

≤ φ(�F(T)∩S(f ,A)x,x).

This implies that the sequence {φ(xn,x)} is bounded. This in turn implies that the se-
quence {xn} is bounded. Since E is a uniform space, we find that E is reflexive. We may
assume, without loss of generality, that xn ⇀ x̂. Next, we prove that x̂ ∈ F(T) ∩ S(f ,A).
Since Cn is closed and convex, we find that x̂ ∈ Cn. This implies from xn = �Cnx that
φ(xn,x) ≤ φ(x̂,x). On the other hand, we see from the weakly lower semicontinuity of
the norm ‖ · ‖ that

φ(x̂,x) = ‖x̂‖ – 〈x̂, Jx〉 + ‖x‖

≤ lim inf
n→∞

(‖xn‖ – 〈xn, Jx〉 + ‖x‖
)

= lim inf
n→∞ φ(xn,x)

http://www.fixedpointtheoryandapplications.com/content/2013/1/237
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≤ lim sup
n→∞

φ(xn,x)

≤ φ(x̂,x),

which implies that limn→∞ φ(xn,x) = φ(x̂,x). Hence, we have limn→∞ ‖xn‖ = ‖x̂‖. Since
E enjoys the Kadec-Klee property, we find that xn → x̂ as n → ∞. In the light of xn =
�Cnx and xn+ = �Cn+x ∈ Cn+ ⊂ Cn, we find that φ(xn,x) ≤ φ(xn+,x). This shows that
{φ(xn,x)} is nondecreasing. We obtain that limn→∞ φ(xn,x) exists. It follows that

φ(xn+,xn) = φ(xn+,�Cnx)

≤ φ(xn+,x) – φ(�Cnx,x)

= φ(xn+,x) – φ(xn,x).

This implies that limn→∞ φ(xn+,xn) = . In view of xn+ = �Cn+x ∈ Cn+, we find that

φ(xn+,un) ≤ φ(xn+,xn) + (μn – )Wn + νn.

It follows that

lim
n→∞φ(xn+,un) = .

In view of (.), we see that limn→∞(‖xn+‖ – ‖un‖) = . This implies that limn→∞ ‖un‖ =
‖x̂‖. That is,

lim
n→∞‖Jun‖ = lim

n→∞‖un‖ = ‖Jx̄‖. (.)

This implies that {Jun} is bounded. Since both E and E* are uniform, we find that both E
and E* are reflexive.Wemay assume, without loss of generality, that Jun ⇀ u* ∈ E*. In view
of the reflexivity of E, we see that J(E) = E*. This shows that there exists an element u ∈ E
such that Ju = u*. It follows that

φ(xn+,un) = ‖xn+‖ – 〈xn+, Jun〉 + ‖un‖

= ‖xn+‖ – 〈xn+, Jun〉 + ‖Jun‖.

It follows that

 ≥ ‖x̂‖ – 
〈
x̂,u*

〉
+

∥∥u*∥∥

= ‖x̂‖ – 〈x̂, Ju〉 + ‖Ju‖

= ‖x̂‖ – 〈x̂, Ju〉 + ‖u‖

= φ(x̂,u).

That is, x̂ = u, which in turn implies that u* = Jx̂. It follows that Jun ⇀ Jx̂ ∈ E*. Since E is
uniformly smooth, we know that E* is uniformly convex. Therefore, E* enjoys the Kadec-
Klee property, we obtain that limn→∞ Jun = Jx̂. Since J– : E* → E is demicontinuous and
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E enjoys the Kadec-Klee property, we obtain that un → x̂ as n→ ∞. Note that

‖xn – un‖ ≤ ‖xn – x̂‖ + ‖x̂ – un‖.

It follows that

lim
n→∞‖xn – un‖ = lim

n→∞‖Jxn – Jun‖ = . (.)

Since E is uniformly smooth, we know that E* is uniformly convex. In the light of
Lemma ., we find that

φ(e,un) = φ(e,Srnyn)

≤ φ(e, yn)

= φ
(
e, J–

(
( – αn)Jxn + αnJTnxn

))
= ‖e‖ – 

〈
e, ( – αn)Jxn + αnJTnxn

〉
+

∥∥( – αn)Jxn + αnJTnxn
∥∥

≤ ‖e‖ – ( – αn)〈e, Jxn〉 – αn
〈
e, JTnxn

〉
+ ( – αn)‖xn‖

+ αn
∥∥Tnxn

∥∥ – αn( – αn)g
(∥∥Jxn – JTnxn

∥∥)
= ( – αn)φ(e,xn) + αnφ

(
e,Tnxn

)
– αn( – αn)g

(∥∥Jxn – JTnxn
∥∥)

≤ ( – αn)φ(e,xn) + αnμnφ(e,xn) + αnνn

– αn( – αn)g
(∥∥Jxn – JTnxn

∥∥)
≤ φ(e,xn) + αn(μn – )φ(e,xn) + αnνn

– αn( – αn)g
(∥∥Jxn – JTnxn

∥∥)
≤ φ(e,xn) + (μn – )Wn + νn – αn( – αn)g

(∥∥Jxn – JTnxn
∥∥)
.

It follows that

αn( – αn)g
(∥∥Jxn – JTnxn

∥∥) ≤ φ(e,xn) – φ(e,un) + (μn – )Wn + νn. (.)

Notice that

φ(e,xn) – φ(e,un) = ‖xn‖ – ‖un‖ – 〈e, Jxn – Jun〉
≤ ‖xn – un‖

(‖xn‖ + ‖un‖
)
+ ‖e‖‖Jxn – Jun‖.

We find from (.) that

lim
n→∞

(
φ(e,xn) – φ(e,un)

)
= .

In view of the restriction on the sequences, we find from (.) that limn→∞ g(‖Jxn –
JTnxn‖) = . Notice that

∥∥JTnxn – Jx̂
∥∥ ≤ ∥∥JTnxn – Jxn

∥∥ + ‖Jxn – Jx̂‖.
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It follows that

lim
n→∞

∥∥JTnxn – Jx̂
∥∥ = .

The demicontinuity of J– : E* → E implies that Tn
i xn ⇀ x̂. Note that

∣∣∥∥Tnxn
∥∥ – ‖x̂‖∣∣ = ∣∣∥∥JTnxn

∥∥ – ‖Jx̂‖∣∣ ≤ ∥∥JTnxn – Jx̂
∥∥.

This implies that limn→∞ ‖Tnxn‖ = ‖x̂‖. Since E has the Kadec-Klee property, we obtain
that limn→∞ ‖Tnxn – x̂‖ = . Notice that

∥∥Tn+xn – x̂
∥∥ ≤ ∥∥Tn+xn – Tnxn

∥∥ +
∥∥Tnxn – x̂

∥∥.
It follows from the uniformly asymptotic regularity of T that

lim
n→∞

∥∥Tn+xn – x̂
∥∥ = .

That is, TTnxn → x̂. From the closedness of T , we find x̂ = Tx̂. This proves x̂ ∈ F(T). Next,
we show that x̂ ∈ S(f ,A). It follows from Lemma . and (.) that

φ(un, yn) ≤ φ(e, yn) – φ(e,un)

≤ φ(e,xn) + (μn – )Wn + νn – φ(e,un).

This yields that limn→∞ φ(un, yn) = . This implies from (.) that limn→∞(‖un‖ – ‖yn‖) =
. It follows that

lim
n→∞‖yn‖ = ‖x̂‖.

We, therefore, find that

lim
n→∞‖Jyn‖ = lim

n→∞‖yn‖ = ‖x̂‖ = ‖Jx̂‖.

This shows that {Jyn} is bounded. Since E* is reflexive, we may assume that Jyn ⇀ y* ∈ E*.
In view of JE = E*, we see that there exists y ∈ E such that Jy = y*. It follows that

φ(un, yn) = ‖un‖ – 〈un, Jyn〉 + ‖yn‖

= ‖un‖ – 〈un, Jyn〉 + ‖Jyn‖.

Taking lim infn→∞ on both sides of the equality above yields that

 ≥ ‖x̂‖ – 
〈
x̂, y*

〉
+

∥∥y*∥∥

= ‖x̂‖ – 〈x̂, Jy〉 + ‖Jy‖

= ‖x̂‖ – 〈x̂, Jy〉 + ‖y‖

= φ(x̂, y).
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That is, x̂ = y, which in turn implies that y* = Jx̂. It follows that Jyn ⇀ Jx̂ ∈ E*. Since E*

enjoys the Kadec-Klee property, we obtain that Jyn – Jx̂ →  as n → ∞. Note that J– :
E* → E is demicontinuous. It follows that yn ⇀ x̂. Since E enjoys the Kadec-Klee property,
we obtain that yn → x̂ as n → ∞. Note that

‖un – yn‖ ≤ ‖un – x̂‖ + ‖x̂ – yn‖.

This implies that limn→∞ ‖un – yn‖ = . Since J is uniformly norm-to-norm continuous on
any bounded sets, we have limn→∞ ‖Jun–Jyn‖ = . In viewof the restriction lim infn→∞ rn >
, we see that

lim
n→∞

‖Jun – Jyn‖
rn

= .

Since un = Krnyn, we find that

F(un,q) +

rn

〈q – un, Jun – Jyn〉 ≥ , ∀q ∈ C,

where

F(un,q) = f (un,q) + 〈Aun,q – un〉.

It follows from (A) that

‖q – un‖‖Jun – Jyn‖
rn

≥ 
rn

〈q – un, Jun – Jyn〉 ≥ F(q,un), ∀q ∈ C.

In view of (A), we find that

F(q, x̄) ≤ , ∀q ∈ C.

For  < t <  and q ∈ C, define qt = tq + ( – t)x̂. It follows that qt ∈ C, which yields that
F(qt , x̂) ≤ . It follows from (A) and (A) that

 = F(qt ,qt) ≤ tF(qt ,q) + ( – t)F(qt , x̂) ≤ tF(qt ,q).

That is,

F(qt ,q) = f (qt ,q) + 〈Aqt ,q – un〉 ≥ .

Letting t ↓ , we obtain from (A) that F(x̂,q) ≥ , ∀q ∈ C. This implies that x̂ ∈ S(f ,A).
This completes the proof x̂ ∈ F(T)∩ S(f ,A).
Finally, what we need to prove is x̂ = �F(T)∩S(f ,A)x.
Letting n→ ∞ in (.), we obtain that

〈x̂ –w, Jx – Jx̂〉 ≥ , ∀w ∈ F(T)∩ S(f ,A).

From Lemma ., we immediately find that x̂ = �F(T)∩S(f ,A)x. This completes the whole
proof. �
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Remark . Since the class of generalized asymptotically quasi-φ-nonexpansive map-
pings is a generalization of the class of asymptotically quasi-φ-nonexpansive mappings,
Theorem . includes Kim’s [] results as a special case.

Remark . Notice that every uniformly smooth and uniformly convex space is a uni-
formly smooth and strictly convex Banach space which also enjoys the Kadec-Klee prop-
erty, and every uniformly convex Banach space enjoys the Kadec-Klee property. We find
that Theorem . is still valid in the framework of every uniformly smooth and uniformly
convex space.

Next, we consider the solution of problem (.).
If the mapping T is closed quasi-φ-nonexpansive, which is more general than relatively

nonexpansive mappings, we have the following.

Corollary . Let E be a uniformly smooth and strictly convex Banach space which also
enjoys the Kadec-Klee property and C be a nonempty closed convex subset of E. Let T : C →
C be a quasi-φ-nonexpansive mapping and f be a bifunction from C × C to R satisfying
(A)-(A). Assume that T is closed and F(T) ∩ S(f ) is nonempty. Let {xn} be a sequence
generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

x = �Cx,

yn = J–(( – αn)Jxn + αnJTxn),

un ∈ C such that f (un,q) + 
rn 〈q – un, Jun – Jyn〉 ≥ , ∀q ∈ C,

Cn+ = {k ∈ Cn : φ(k,un) ≤ φ(k,xn)},
xn+ = �Cn+x,

where {αn} is a real number sequence in (, ) such that lim infn→∞ αn( – αn) >  and {rn}
is a real number sequence such that lim infn→∞ rn > . Then the sequence {xn} converges
strongly to �F(T)∩S(f )x, where �F(T)∩S(f ) is the generalized projection from E onto F(T) ∩
S(f ).

In the framework of Hilbert spaces, we find from Theorem . the following.

Theorem . Let E be a Hilbert space and C be a nonempty closed convex subset of E.
Let T : C → C be a generalized asymptotically quasi-nonexpansive mapping. Let f be a
bifunction from C×C toR satisfying (A)-(A), and let A : C → E be an α-inverse-strongly
monotone mapping. Assume that T is closed and asymptotically regular on C, and F(T)∩
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S(f ,A) is nonempty and bounded. Let {xn} be a sequence generated in the followingmanner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

x = PCx,

yn = ( – αn)xn + αnTnxn,

un ∈ C such that f (un,q) + 〈Aun,q – un〉 + 
rn 〈q – un,un – yn〉 ≥ , ∀q ∈ C,

Cn+ = {k ∈ Cn : ‖k – un‖ ≤ ‖k – xn‖ + (μn – )Wn + νn},
xn+ = PCn+x,

whereWn = sup{‖p–xn‖ : p ∈ F(T)∩S(f ,A)}, {αn} is a real number sequence in (, ) such
that lim infn→∞ αn( –αn) >  and {rn} is a real number sequence such that lim infn→∞ rn >
. Then the sequence {xn} converges strongly to PF(T)∩S(f ,A)x, where PF(T)∩S(f ,A) is the metric
projection from E onto F(T)∩ S(f ,A).

Proof In the framework of Hilbert spaces, we see that φ(x, y) = ‖x – y‖ and the mapping
J is reduced to the identity mapping. The desired conclusion can be immediately drawn
from Theorem .. �

For problem (.), we have the following result.

Corollary . Let E beHilbert space andC be a nonempty closed convex subset of E. Let T :
C → C be a generalized asymptotically quasi-nonexpansive mapping. Let f be a bifunction
from C ×C to R satisfying (A)-(A). Assume that T is closed and asymptotically regular
on C, and F(T) ∩ S(f ) is nonempty and bounded. Let {xn} be a sequence generated in the
following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

x = PCx,

yn = ( – αn)xn + αnTnxn,

un ∈ C such that f (un,q) + 
rn 〈q – un,un – yn〉 ≥ , ∀q ∈ C,

Cn+ = {k ∈ Cn : ‖k – un‖ ≤ ‖k – xn‖ + (μn – )Wn + νn},
xn+ = PCn+x,

where Wn = sup{‖p – xn‖ : p ∈ F(T) ∩ S(f )}, {αn} is a real number sequence in (, ) such
that lim infn→∞ αn( –αn) >  and {rn} is a real number sequence such that lim infn→∞ rn >
. Then the sequence {xn} converges strongly to PF(T)∩S(f )x, where PF(T)∩S(f ) is the metric
projection from E onto F(T)∩ S(f ).

Competing interests
The authors declare that they have no competing interests.

http://www.fixedpointtheoryandapplications.com/content/2013/1/237


Song and Chen Fixed Point Theory and Applications 2013, 2013:237 Page 14 of 15
http://www.fixedpointtheoryandapplications.com/content/2013/1/237

Authors’ contributions
JS design the algorithm and give the main convergence analysis. MC participated in the design of the study. Both authors
read and approved the final manuscript.

Acknowledgements
The authors are grateful to the editor and the anonymous reviewers’ suggestions which improved the contents of the
article.

Received: 24 May 2013 Accepted: 12 August 2013 Published: 23 September 2013

References
1. Cho, SY, Kang, SM: Zero point theorems form-accretive operators in a Banach space. Fixed Point Theory 13, 49-58

(2012)
2. Mahato, NK, Nahak, C: Equilibrium problem under various types of convexities in Banach space. J. Math. Comput. Sci.

1, 77-88 (2011)
3. Iiduka, H: Fixed point optimization algorithm and its application to network bandwidth allocation. J. Comput. Appl.

Math. 236, 1733-1742 (2012)
4. Shen, J, Pang, LP: An approximate bundle method for solving variational inequalities. Commun. Optim. Theory 1,

1-18 (2012)
5. Qin, X, Chang, SS, Kang, SM: Iterative methods for generalized equilibrium problems and fixed point problems with

applications. Nonlinear Anal. 11, 2963-2972 (2010)
6. Censor, Y, Cohen, N, Kutscher, T, Shamir, J: Summed squared distance error reduction by simultaneous

multiprojections and applications. Appl. Math. Comput. 126, 157-179 (2002)
7. Abdel-Salam, HS, Al-Khaled, K: Variational iteration method for solving optimization problems. J. Math. Comput. Sci. 2,

1475-1497 (2012)
8. Noor, MA, Noor, KI, Waseem, M: Decomposition method for solving system of linear equations. Eng. Math. Lett. 2,

34-41 (2012)
9. Kang, SM, Cho, SY, Liu, Z: Convergence of iterative sequences for generalized equilibrium problems involving

inverse-strongly monotone mappings. J. Inequal. Appl. 2010, 827082 (2010)
10. Bauschke, HH, Matouskova, E, Reich, S: Projection and proximal point methods: convergence results and

counterexamples. Nonlinear Anal. 56, 715-738 (2004)
11. Qin, X, Cho, SY, Zhou, H: Common fixed points of a pair of non-expansive mappings with applications to convex

feasibility problems. Glasg. Math. J. 52, 241-252 (2010)
12. Zegeye, H, Shahzad, N: Strong convergence theorem for a common point of solution of variational inequality and

fixed point problem. Adv. Fixed Point Theory 2, 374-397 (2012)
13. Cho, SY, Kang, SM: Approximation of fixed points of pseudocontraction semigroups based on a viscosity iterative

process. Appl. Math. Lett. 24, 224-228 (2011)
14. Qin, X, Cho, SY, Kang, SM: An extragradient-type method for generalized equilibrium problems involving strictly

pseudocontractive mappings. J. Glob. Optim. 49, 679-693 (2011)
15. Mann, WR: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506-510 (1953)
16. Güler, O: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29,

403-409 (1991)
17. Haugazeau, Y: Sur les inéquations variationnelles et la minimisation de fonctionnelles convexes. PhD Thesis,

Université de Paris (1968)
18. Cioranescu, I: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer, Dordrecht (1990)
19. Alber, YI: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, AG

(ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Dekker, New York (1996)
20. Zhou, H, Gao, G, Tan, B: Convergence theorems of a modified hybrid algorithm for a family of quasi-φ-asymptotically

nonexpansive mappings. J. Appl. Math. Comput. 32, 453-464 (2010)
21. Qin, X, Cho, SY, Kang, SM: On hybrid projection methods for asymptotically quasi-φ-nonexpansive mappings. Appl.

Math. Comput. 215, 3874-3883 (2010)
22. Chang, SS, Chan, CK, Lee, HWJ: Modified block iterative algorithm for quasi-φ-asymptotically nonexpansive

mappings and equilibrium problem in Banach spaces. Appl. Math. Comput. 217, 7520-7530 (2011)
23. Qin, X, Agarwal, RP: Shrinking projection methods for a pair of asymptotically quasi-φ-nonexpansive mappings.

Numer. Funct. Anal. Optim. 31, 1072-1089 (2010)
24. Agarwal, RP, Cho, YJ, Qin, X: Generalized projection algorithms for nonlinear operators. Numer. Funct. Anal. Optim. 28,

1197-1215 (2007)
25. Qin, X, Agarwal, RP, Cho, SY, Kang, SM: Convergence of algorithms for fixed points of generalized asymptotically

quasi-φ-nonexpansive mappings with applications. Fixed Point Theory Appl. 2012, 58 (2012)
26. Agarwal, RP, Qin, X, Kang, SM: An implicit iterative algorithm with errors for two families of generalized asymptotically

nonexpansive mappings. Fixed Point Theory Appl. 2011, 58 (2011)
27. Cho, SY, Li, W, Kang, SM: Convergence analysis of an iterative algorithm for monotone operators. J. Inequal. Appl.

2013, 199 (2013)
28. Chang, SS, Lee, HWJ, Chan, CK: A new hybrid method for solving a generalized equilibrium problem, solving a

variational inequality problem and obtaining common fixed points in Banach spaces, with applications. Nonlinear
Anal. 73, 2260-2270 (2010)

29. Reich, S, Sabach, S: Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive
Banach spaces. Nonlinear Anal. 73, 122-135 (2010)

30. Kassay, G, Reich, S, Sabach, S: Iterative methods for solving systems of variational inequalities in reflexive Banach
spaces. SIAM J. Optim. 21, 1319-1344 (2011)

31. Martin-Marquez, V, Reich, S, Sabach, S: Bregman strongly nonexpansive operators in reflexive Banach spaces. J. Math.
Anal. Appl. 400, 597-614 (2013)

http://www.fixedpointtheoryandapplications.com/content/2013/1/237


Song and Chen Fixed Point Theory and Applications 2013, 2013:237 Page 15 of 15
http://www.fixedpointtheoryandapplications.com/content/2013/1/237

32. Qin, X, Cho, SY, Kang, SM: Strong convergence of shrinking projection methods for quasi-φ-nonexpansive mappings
and equilibrium problems. J. Comput. Appl. Math. 234, 750-760 (2010)

33. Hao, Y: On generalized quasi-phi-nonexpansive mappings and their projection algorithms. Fixed Point Theory Appl.
2013, 204 (2013)

34. Takahashi, W, Zembayashi, K: Strong and weak convergence theorems for equilibrium problems and relatively
nonexpansive mappings in Banach spaces. Nonlinear Anal. 70, 45-57 (2009)

35. Qin, X, Cho, YJ, Kang, SM: Convergence theorems of common elements for equilibrium problems and fixed point
problems in Banach spaces. J. Comput. Appl. Math. 225, 20-30 (2009)

36. Kim, JK: Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point
problems of the asymptotically quasi-φ-nonexpansive mappings. Fixed Point Theory Appl. 2011, 10 (2011)

37. Zhang, M: Iterative algorithms for common elements in fixed point sets and zero point sets with applications. Fixed
Point Theory Appl. 2012, 21 (2012)
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