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Abstract
In this paper, we prove a strong convergence theorem for a new hybrid method,
using shrinking projection method introduced by Takahashi and a fixed point
method for finding a common element of the set of solutions of mixed equilibrium
problem and the set of common fixed points of a countable family of multivalued
nonexpansive mappings in Hilbert spaces. We also apply our main result to the
convex minimization problem and the fixed point problem of a countable family of
multivalued nonexpansive mappings.
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1 Introduction
Themixed equilibriumproblem (MEP) includes several important problems arising in op-
timization, economics, physics, engineering, transportation, network, Nash equilibrium
problems in noncooperative games, and others. Variational inequalities and mathemat-
ical programming problems are also viewed as the abstract equilibrium problems (EP)
(e.g., [, ]). Many authors have proposed several methods to solve the EP and MEP, see,
for instance, [–] and the references therein.
Fixed point problems for multivalued mappings are more difficult than those of single-

valuedmappings and play very important role in applied science and economics. Recently,
many authors have proposed their fixed point methods for finding a fixed point of both
multivalued mapping and a family of multivalued mappings. All of those methods have
only weak convergence.
It is known that Mann’s iterations have only weak convergence even in the Hilbert

spaces. To overcome this problem, Takahashi [] introduced a new method, known as
shrinking projection method, which is a hybrid method of Mann’s iteration, and the pro-
jectionmethod, and obtained strong convergence results of suchmethod. In this paper, we
use the shrinking projectionmethod defined by Takahashi [] and our newmethod to de-
fine a new hybrid method forMEP and a fixed point problem for a family of nonexpansive
multivalued mappings.
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An element p ∈ K is called a fixed point of a single-valued mapping T if p = Tp and of a
multivalued mapping T if p ∈ Tp. The set of fixed points of T is denoted by F(T).
Let X be a real Banach space. A subsetK of X is called proximinal if for each x ∈ X, there

exists an element k ∈ K such that

d(x,k) = d(x,K),

where d(x,K) = inf{‖x – y‖ : y ∈ K} is the distance from the point x to the set K .
Let X be a uniformly convex real Banach space, and let K be a nonempty closed convex

subset of X, and let CB(K) be a family of nonempty closed bounded subsets of K , and let
P(K) be a nonempty proximinal bounded subsets of K .
For multivalued mappings T : K → P(K), define PT (x) := {y ∈ T(x) : ‖x– y‖ = d(x,T(x))}

for all x ∈ K .
The Hausdorff metric on CB(X) is defined by

H(A,B) =max
{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}

for all A,B ∈ CB(X).
A multivalued mapping T : K → CB(K) is said to be nonexpansive ifH(Tx,Ty) ≤ ‖x– y‖

for all x, y ∈ K .
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖. Let D

be a nonempty closed convex subset of H . Let F : D × D → R be a bifunction, and let
ϕ :D →R∪{+∞} be a function such thatD∩domϕ �= ∅, whereR is the set of real numbers
and domϕ = {x ∈H : ϕ(x) < +∞}.
Flores-Bazán [] introduced the following mixed equilibrium problem:

Find x ∈ D such that F(x, y) + ϕ(y) ≥ ϕ(x), ∀y ∈D. (.)

The set of solutions of (.) is denoted byMEP(F ,ϕ).
If ϕ ≡ , then the mixed equilibrium problem (.) reduces to the following equilibrium

problem:

Find x ∈ D such that F(x, y)≥ , ∀y ∈D. (.)

The set of solutions of (.) is denoted by EP(F) (see Combettes and Hirstoaga []).
If F ≡ , then the mixed equilibrium problem (.) reduces to the following convexmin-

imization problem:

Find x ∈ D such that ϕ(y) ≥ ϕ(x), ∀y ∈D. (.)

The set of solutions of (.) is denoted by CMP(ϕ).
In an infinite-dimensional Hilbert space, the Mann iteration algorithms have only a

weak convergence. In , Nakajo and Takahashi [] introduced the method, called CQ
method, to modify Mann’s iteration to obtain the strong convergence theorem for non-
expansive mapping in a Hilbert space. The CQ method has been studied extensively by
many authors, for instance, Marino and Xu []; Zhou []; Zhang and Cheng [].
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In , Takahashi et al. [] introduced the following iteration scheme, which is usually
called the shrinking projection method. Let {αn} be a sequence in (, ) and x ∈ H . For
C = C and x = PCx, define a sequence {xn} of D as follows:

⎧⎪⎨
⎪⎩
yn = ( – αn)xn + αnTnxn,
Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖},
xn+ = PCn+x, n≥ ,

where PCn is the metric projection of H onto Cn and {Tn} is a family of nonexpansive
mappings. They proved that the sequence {xn} converges strongly to z = PF(T)x, where
F(T) =

⋂∞
n= F(Tn). The shrinking projection method has been studied widely by many

authors, for example, Tada and Takahashi []; Aoyama et al. []; Yao et al. []; Kang et
al. []; Cholamjiak and Suantai []; Ceng et al. []; Tang et al. []; Cai and Bu [];
Kumam et al. []; Kimura et al. []; Shehu [, ]; Wang et al. [].
In , Wangkeeree and Wangkeeree [] proved a strong convergence theorem of

an iterative algorithm based on extragradient method for finding a common element of
the set of solutions of a mixed equilibrium problem, the set of common fixed points of a
family of infinitely nonexpansive mappings and the set of the variational inequality for a
monotone Lipschitz continuous mapping in a Hilbert space.
In , Rodjanadid [] introduced another iterativemethodmodified from an iterative

scheme of Klin-eam and Suantai [] for finding a common element of the set of solutions
of mixed equilibrium problems and the set of common fixed points of countable family
of nonexpansive mappings in real Hilbert spaces. The mixed equilibrium problems have
been studied by many authors, for instance, Peng and Yao []; Zeng et al. []; Peng et
al. []; Wangkeeree and Kamraksa []; Jaiboon and Kumam []; Chamnarnpan and
Kumam []; Cholamjiak et al. [].
Nadler [] started to study fixed points of multivalued contractions and nonexpansive

mapping by using the Hausdorff metric.
Sastry and Babu [] defined Mann and Ishikawa iterates for a multivalued map T with

a fixed point p, and proved that these iterates converge strongly to a fixed point q of T
under the compact domain in a real Hilbert space. Moreover, they illustrated that fixed
point q may be different from p.
Panyanak [] generalized results of Sastry and Babu [] to uniformly convex Banach

spaces and proved a strong convergence theorem of Mann iterates for a mapping defined
on a noncompact domain and satisfying some conditions. He also obtained a strong con-
vergence result of Ishikawa iterates for a mapping defined on a compact domain.
Hussain and Khan [], in , introduced the best approximation operator PT to find

fixed points of *-nonexpansivemultivaluedmapping and proved strong convergence of its
iterates on a closed convex unbounded subset of a Hilbert space, which is not necessarily
compact.
Hu et al. [] obtained common fixed point of two nonexpansive multivaluedmappings

satisfying certain contractive conditions.
Cholamjiak and Suantai [] proved strong convergence theorems of two new iterative

procedures with errors for two quasi-nonexpansive multivalued mappings by using the
best approximation operator and the end point condition in uniformly convex Banach
spaces. Later, Cholamjiak et al. [] introduced a modified Mann iteration and obtained
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weak and strong convergence theorems for a countable family of nonexpansive multival-
uedmappings by using the best approximation operator in a Banach space. They also gave
some examples of multivalued mappings T such that PT are nonexpansive.
Later, Eslamian and Abkar [] generalized and modified the iteration of Abbas et al.

[] from twomappings to the infinite family of multivaluedmappings {Ti} such that each
PTi satisfies the condition (C).
In this paper, we introduce a new hybrid method for finding a common element of the

set of solutions of a mixed equilibrium problem and the set of common fixed points of a
countable family of multivalued nonexpansive mappings in Hilbert spaces. We obtain a
strong convergence theorem for the sequences generated by the proposed method with-
out the assumption of compactness of the domain and other conditions imposing on the
mappings.
In Section , we give some preliminaries and lemmas, which will be used in proving the

main results. In Section , we introduce a newhybridmethod and a fixed pointmethod de-
fined by (.) and prove strong convergence theorem for finding a common element of the
set of solutions between mixed equilibrium problem and common fixed point problems
of a countable family of multivalued nonexpansive mappings in Hilbert spaces. We also
give examples of the control sequences satisfying the control conditions in main results.
In Section , we summarize the main results of this paper.

2 Preliminaries
Let D be a closed convex subset of H . For every point x ∈H , there exists a unique nearest
point in D, denoted by PDx, such that

‖x – PDx‖ ≤ ‖x – y‖, ∀y ∈D.

PD is called themetric projection of H onto D. It is known that PD is a nonexpansive map-
ping ofH ontoD. It is also know that PD satisfies 〈x–y,PDx–PDy〉 ≥ ‖PDx–PDy‖ for every
x, y ∈H .Moreover, PDx is characterized by the properties: PDx ∈D and 〈x–PDx,PDx–y〉 ≥
 for all y ∈D.

Lemma . [] Let D be a nonempty closed convex subset of a real Hilbert space H and
PD :H →D be the metric projection from H onto D. Then the following inequality holds:

‖y – PDx‖ + ‖x – PDx‖ ≤ ‖x – y‖, ∀x ∈H ,∀y ∈D.

Lemma . [] Let H be a real Hilbert space. Then the following equations hold:
(i) ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉, ∀x, y ∈H ;
(ii) ‖tx + ( – t)y‖ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖, ∀t ∈ [, ] and x, y ∈H .

Lemma . [] Let H be a real Hilbert space. Then for each m ∈ N

∥∥∥∥∥
m∑
i=

tixi

∥∥∥∥∥


=
m∑
i=

ti‖xi‖ –
m∑

i=,i�=j
titj‖xi – xj‖,

xi ∈H and ti, tj ∈ [, ] for all i, j = , , . . . ,m with
∑m

i= ti = .
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Lemma . [] Let D be a nonempty closed and convex subset of a real Hilbert space H .
Given x, y, z ∈H and also given a ∈R, the set

{
v ∈D : ‖y – v‖ ≤ ‖x – v‖ + 〈z, v〉 + a

}

is convex and closed.

For solving the mixed equilibrium problem, we assume the bifunction F , ϕ and the set
D satisfy the following conditions:
(A) F(x,x) =  for all x ∈D;
(A) F is monotone, that is, F(x, y) + F(y,x)≤  for all x, y ∈ D;
(A) for each x, y, z ∈D, lim supt↓ F(tz + ( – t)x, y)≤ F(x, y);
(A) F(x, ·) is convex and lower semicontinuous for each x ∈D;
(B) for each x ∈H and r > , there exist a bounded subset Dx ⊆D and yx ∈D∩ domϕ

such that for any z ∈D \Dx,

F(z, yx) + ϕ(yx) +

r
〈yx – z, z – x〉 < ϕ(z);

(B) D is a bounded set.

Lemma . [] Let D be a nonempty closed and convex subset of a real Hilbert space H .
Let F :D×D → R be a bifunction satisfying conditions (A)-(A) and ϕ :D → R ∪ {+∞}
be a proper lower semicontinuous and convex function such that D ∩ domϕ �= ∅. For r > 
and x ∈D, define a mapping Tr :H →D as follows:

Tr(x) =
{
z ∈D : F(z, y) + ϕ(y) +


r
〈y – z, z – x〉 ≥ ϕ(z),∀y ∈D

}

for all x ∈ H . Assume that either (B) or (B) holds. Then the following conclusions hold:
() for each x ∈H , Tr(x) �= ∅;
() Tr is single-valued;
() Tr is firmly nonexpansive, that is, for any x, y ∈ H ,

∥∥Tr(x) – Tr(y)
∥∥ ≤ 〈

Tr(x) – Tr(y),x – y
〉
;

() F(Tr) =MEP(F ,ϕ);
() MEP(F ,ϕ) is closed and convex.

As in ([], Lemma .), the following lemma holds true for multivalued mapping. To
avoid repetition, we omit the details of proof.

Lemma. Let D be a closed and convex subset of a realHilbert spaceH . Let T :D→ P(D)
be amultivalued nonexpansive mapping with F(T) �= ∅ such that PT is nonexpansive.Then
F(T) is a closed and convex subset of D.
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3 Main results
In the following theorem, we prove strong convergence of the sequence {xn} defined by
(.) to a common element of the set of solutions of a mixed equilibrium problem and the
set of common fixed points of a countable family of multivalued nonexpansive mappings.

Theorem . Let D be a nonempty closed and convex subset of a real Hilbert space H .
Let F be a bifunction from D × D to R satisfying (A)-(A), and let ϕ be a proper lower
semicontinuous and convex function from D to R ∪ {+∞} such that D ∩ domϕ �= ∅. Let
Ti :D → P(D) be multivalued nonexpansive mappings for all i ∈ N with � :=

⋂∞
i= F(Ti)∩

MEP(F ,ϕ) �= ∅ such that all PTi are nonexpansive.Assume that either (B) or (B) holds and
{αn,i} ⊂ [, ) satisfies the condition lim infn→∞ αn,iαn, >  for all i ∈N.Define the sequence
{xn} as follows: x ∈D = C,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F(un, y) + ϕ(y) – ϕ(un) + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈D,

yn = αn,un +
∑n

i= αn,ixn,i,
Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖},
xn+ = PCn+x, n≥ ,

(.)

where the sequences rn ∈ (,∞) with lim infn→∞ rn >  and {αn,i} ⊂ [, ) satisfying∑n
i= αn,i =  and xn,i ∈ PTiun for i ∈N. Then the sequence {xn} converges strongly to P�x.

Proof We split the proof into six steps.
Step . Show that PCn+x is well defined for every x ∈D.
By Lemmas .-., we obtain that MEP(F ,ϕ) and

⋂∞
i= F(Ti) is a closed and convex

subset of D. Hence � is a closed and convex subset of D. It follows from Lemma . that
Cn+ is a closed and convex for each n≥ . Let v ∈ �. Then PTi (v) = {v} for all i ∈N. Since
un = Trnxn ∈ domϕ, we have

‖un – v‖ = ‖Trnxn – Trnv‖ ≤ ‖xn – v‖,

for every n≥ . Then

‖yn – v‖ =
∥∥∥∥∥αn,un +

n∑
i=

αn,ixn,i – v

∥∥∥∥∥

≤ αn,‖un – v‖ +
n∑
i=

αn,i‖xn,i – v‖

= αn,‖un – v‖ +
n∑
i=

αn,id(xn,i,PTiv)

≤ αn,‖un – v‖ +
n∑
i=

αn,iH(PTiun,PTiv)

≤ αn,‖un – v‖ +
n∑
i=

αn,i‖un – v‖

= ‖un – v‖ ≤ ‖xn – v‖. (.)

Hence v ∈ Cn+, so that � ⊂ Cn+. Therefore, PCn+x is well defined.
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Step . Show that limn→∞ ‖xn – x‖ exists.
Since � is a nonempty closed convex subset of H , there exists a unique v ∈ � such that

v = P�x. Since xn = PCnx and xn+ ∈ Cn+ ⊂ Cn, ∀n≥ , we have

‖xn – x‖ ≤ ‖xn+ – x‖, ∀n≥ .

On the other hand, as v ∈ � ⊂ Cn, we obtain

‖xn – x‖ ≤ ‖v – x‖, ∀n≥ .

It follows that the sequence {xn} is bounded and nondecreasing. Therefore, limn→∞ ‖xn –
x‖ exists.
Step . Show that limn→∞ xn = w ∈D.
Form > n, by the definition ofCn, we get xm = PCmx ∈ Cm ⊂ Cn. By applying Lemma .,

we have

‖xm – xn‖ ≤ ‖xm – x‖ – ‖xn – x‖.

Since limn→∞ ‖xn–x‖ exists, it follows that {xn} is Cauchy. Hence there existsw ∈D such
that limn→∞ xn = w.
Step . Show that ‖xn,i – xn‖ →  as n→ ∞ for every i ∈N.
From xn+ ∈ Cn+, we have

‖xn – yn‖ ≤ ‖xn – xn+‖ + ‖xn+ – yn‖
≤ ‖xn – xn+‖ →  as n→ ∞. (.)

For v ∈ �, by Lemma . and (.), we get

‖yn – v‖ =
∥∥∥∥∥αn,(un – v) +

n∑
i=

αn,i(xn,i – v)

∥∥∥∥∥


≤ αn,‖un – v‖ +
n∑
i=

αn,i‖xn,i – v‖ –
n∑
i=

αn,iαn,‖xn,i – un‖

= αn,‖un – v‖ +
n∑
i=

αn,id(xn,i,PTiv)
 –

n∑
i=

αn,iαn,‖xn,i – un‖

≤ αn,‖un – v‖ +
n∑
i=

αn,iH(PTiun,PTiv)
 –

n∑
i=

αn,iαn,‖xn,i – un‖

≤ αn,‖un – v‖ +
n∑
i=

αn,i‖un – v‖ –
n∑
i=

αn,iαn,‖xn,i – un‖

= ‖un – v‖ –
n∑
i=

αn,iαn,‖xn,i – un‖

≤ ‖xn – v‖ –
n∑
i=

αn,iαn,‖xn,i – un‖.
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This implies that

αn,iαn,‖xn,i – un‖ ≤
n∑
i=

αn,iαn,‖xn,i – un‖

≤ ‖xn – v‖ – ‖yn – v‖

≤ M‖xn – yn‖,

whereM = supn≥{‖xn – v‖ + ‖yn – v‖}. By the given control condition on {αn,i} and (.),
we obtain

lim
n→∞‖xn,i – un‖ = , ∀i ∈N.

By Lemma ., we have

‖un – v‖ = ‖Trnxn – Trnv‖

≤ 〈Trnxn – Trnv,xn – v〉
= 〈un – v,xn – v〉

=


{‖un – v‖ + ‖xn – v‖ – ‖xn – un‖

}
.

Hence ‖un – v‖ ≤ ‖xn – v‖ – ‖xn – un‖. By Lemma ., we get

‖yn – v‖ =
∥∥∥∥∥αn,un +

n∑
i=

αn,ixn,i – v

∥∥∥∥∥


= αn,‖un – v‖ +
n∑
i=

αn,i‖xn,i – v‖ –
n∑
i=

αn,iαn,‖xn,i – un‖

≤ αn,‖un – v‖ +
n∑
i=

αn,i‖xn,i – v‖

= αn,‖un – v‖ +
n∑
i=

αn,id(xn,i,PTiv)


≤ αn,‖un – v‖ +
n∑
i=

αn,iH(PTiun,PTiv)


≤ αn,‖un – v‖ +
n∑
i=

αn,i‖un – v‖

= ‖un – v‖

≤ ‖xn – v‖ – ‖xn – un‖.

This implies that

‖xn – un‖ ≤ ‖xn – v‖ – ‖yn – v‖

≤ M‖xn – yn‖,
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whereM = supn≥{‖xn – v‖+ ‖yn – v‖}. From (.), we get limn→∞ ‖xn –un‖ = . It follows
that

‖xn,i – xn‖ ≤ ‖xn,i – un‖ + ‖un – xn‖
→  as n→ ∞.

Step . Show that w ∈ �.
By lim infn→∞ rn > , we have

∥∥∥∥xn – un
rn

∥∥∥∥ =

rn

‖xn – un‖ → , n → ∞. (.)

From limn→∞ xn = w, we obtain limn→∞ un = w.
We will show that w ∈MEP(F ,ϕ). Since un = Trnxn ∈ domϕ, we have

F(un, y) + ϕ(y) – ϕ(un) +

rn

〈y – un,un – xn〉 ≥ , ∀y ∈D.

It follows by (A) that

ϕ(y) – ϕ(un) +

rn

〈y – un,un – xn〉 ≥ F(y,un), ∀y ∈D.

Hence

ϕ(y) – ϕ(un) +
〈
y – un,

un – xn
rn

〉
≥ F(y,un), ∀y ∈D.

It follows from (.), (A) and the lower semicontinuous of ϕ that

F(y,w) + ϕ(w) – ϕ(y) ≤ , ∀y ∈D.

For t with  < t ≤  and y ∈ D, let yt = ty + ( – t)w. Since y,w ∈ D and D is convex, then
yt ∈D and hence

F(yt ,w) + ϕ(w) – ϕ(yt) ≤ .

This implies by (A), (A) and the convexity of ϕ, that

 = F(yt , yt) + ϕ(yt) – ϕ(yt)

≤ tF(yt , y) + ( – t)F(yt ,w) + tϕ(y) + ( – t)ϕ(w) – ϕ(yt)

≤ t
[
F(yt , y) + ϕ(y) – ϕ(yt)

]
.

Dividing by t, we have

F(yt , y) + ϕ(y) – ϕ(yt) ≥ , ∀y ∈ D.
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Letting t → , it follows from the weakly semicontinuity of ϕ that

F(w, y) + ϕ(y) – ϕ(w) ≥ , ∀y ∈D.

Hence w ∈ MEP(F ,ϕ). Next, we will show that w ∈ ⋂∞
i= F(Ti). For each i = , , . . . ,n, we

have

d(w,Tiw) ≤ d(w,xn) + d(xn,xn,i) + d(xn,i,Tiw)

≤ d(w,xn) + d(xn,xn,i) +H(Tiun,Tiw)

≤ d(w,xn) + d(xn,xn,i) + d(un,w).

By Steps -, we have d(w,Tiw) = . Hence w ∈ Tiw for all i = , , . . . ,n.
Step . Show that w = P�x.
Since xn = PCnx, we get

〈z – xn,x – xn〉 ≤ , ∀z ∈ Cn.

Since w ∈ � ⊂ Cn, we have

〈z –w,x –w〉 ≤ , ∀z ∈ �.

Now, we obtain that w = P�x.
This completes the proof. �

Setting ϕ ≡  in Theorem ., we have the following result.

Corollary . Let D be a nonempty closed and convex subset of a real Hilbert space H . Let
F be a bifunction from D×D to R satisfying (A)-(A). Let Ti :D → P(D) be multivalued
nonexpansive mappings for all i ∈N with � :=

⋂∞
i= F(Ti)∩ EP(F) �= ∅ such that all PTi are

nonexpansive. Assume that {αn,i} ⊂ [, ) satisfies the condition lim infn→∞ αn,iαn, >  for
all i ∈N. Define the sequence {xn} as follows: x ∈ D = C,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F(un, y) + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈D,

yn = αn,un +
∑n

i= αn,ixn,i,
Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖},
xn+ = PCn+x, n≥ ,

(.)

where the sequences rn ∈ (,∞) with lim infn→∞ rn >  and {αn,i} ⊂ [, ) satisfying∑n
i= αn,i =  and xn,i ∈ PTiun for i ∈N. Then the sequence {xn} converges strongly to P�x.

Setting F ≡  in Theorem ., we have the following result.

Corollary . Let D be a nonempty closed and convex subset of a real Hilbert space H . Let
ϕ be a proper lower semicontinuous and convex function from D to R ∪ {+∞} such that
D∩domϕ �= ∅. Let Ti :D → P(D) be multivalued nonexpansive mappings for all i ∈N with
� :=

⋂∞
i= F(Ti)∩CMP(ϕ) �= ∅ such that all PTi are nonexpansive. Assume that either (B)

or (B) holds, and {αn,i} ⊂ [, ) satisfies the condition lim infn→∞ αn,iαn, >  for all i ∈ N.
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Define the sequence {xn} as follows: x ∈D = C,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ(y) – ϕ(un) + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈D,

yn = αn,un +
∑n

i= αn,ixn,i,
Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖},
xn+ = PCn+x, n≥ ,

(.)

where the sequences rn ∈ (,∞) with lim infn→∞ rn >  and {αn,i} ⊂ [, ) satisfying∑n
i= αn,i =  and xn,i ∈ PTiun for i ∈N. Then the sequence {xn} converges strongly to P�x.

Remark .
(i) Let {αn,i} be double sequence in (, ]. Let (a) and (b) be the following conditions:

(a) lim infn→∞ αn,iαn, >  for all i ∈N,
(b) limn→∞ αn,i exist and lie in (, ] for all i = , , , . . . .
It is easy to see that if {αn,i} satisfies the condition (a), then it satisfies the condition
(b). So Theorem . and Corollaries .-. hold true when the control double
sequence {αn,i} satisfies the condition (a).

(ii) The following double sequences are examples of the control sequences in
Theorem . and Corollaries .-.:
()

αn,k =

⎧⎪⎨
⎪⎩


k (

n
n+ ), n≥ k;

 – n
n+ (

∑n
k=


k ), n = k – ;

, n < k – ,

that is,

αn,k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝





     · · ·  · · ·








    · · ·  · · ·











   · · ·  · · ·














  · · ·  · · ·

...
...

...
...

...
...

...
n

(n+)
n

(n+)
n

(n+)
n

(n+)
n

(n+)
n

(n+) · · · n
k (n+) · · ·

...
...

...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We see that limn→∞ αn,k = 
k and lim infn→∞ αn,αn,k = 

k+ for k = , , , . . . .
()

αn,k =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩


k (

n
n+ ), n≥ k and n is odd;


k+ (

n
n+ ), n≥ k and n is even;

 – n
n+ (

∑n
k=


k ), n = k –  and n is odd;

 – n
n+ (

∑n
k=


k+ ), n = k –  and n is even;

, n < k – ,
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that is,

αn,k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝





     · · ·  · · ·








    · · ·  · · ·











   · · ·  · · ·














  · · ·  · · ·

...
...

...
...

...
...

...
n–
(n)

n–
(n)

n–
(n)

n–
(n)

n–
(n)

n–
(n) · · · n–

k (n) · · ·
n

(n+)
n

(n+)
n

(n+)
n

(n+)
n

(n+)
n

(n+) · · · n
k+(n+) · · ·

...
...

...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We see that limn→∞ αn,k does not exist and lim infn→∞ αn,αn,k = 
k+ for

k = , , , . . . .

4 Conclusions
We use the shrinking projection method defined by Takahashi [] together with our
method for finding a common element of the set of solutions of mixed equilibrium prob-
lem and common fixed points of a countable family of multivalued nonexpansive map-
pings in Hilbert spaces. The main results of paper can be applied for solving convex min-
imization problems and fixed point problems.
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