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Abstract
In this paper, we prove a common fixed point theorem for weakly compatible
mappings under φ-contractive conditions in fuzzy metric spaces. We also give an
example to illustrate the theorem. The result is a genuine generalization of the
corresponding result of Hu (Fixed Point Theory Appl. 2011:363716, 2011,
doi:10.1155/2011/363716). We also indicate a minor mistake in Hu (Fixed Point Theory
Appl. 2011:363716, 2011, doi:10.1155/2011/363716).

1 Introduction
In , Zadeh [] introduced the concept of fuzzy sets. Then many authors gave the im-
portant contribution to development of the theory of fuzzy sets and applications. George
and Veeramani [, ] gave the concept of a fuzzy metric space and defined a Hausdorff
topology on this fuzzy metric space, which have very important applications in quantum
particle physics, particularly, in connection with both string and E-infinity theory.
Bhaskar and Lakshmikantham [], Lakshmikantham and Ćirić [] discussed the mixed

monotone mappings and gave some coupled fixed point theorems, which can be used to
discuss the existence and uniqueness of solution for a periodic boundary value problem.
Sedghi et al. [] gave a coupled fixed point theorem for contractions in fuzzymetric spaces,
and Jin-xuan Fang [] gave some common fixed point theorems for compatible andweakly
compatible φ-contractions mappings in Menger probabilistic metric spaces. Xin-Qi Hu
[] proved a common fixed point theorem formappings under ϕ-contractive conditions in
fuzzy metric spaces. Many authors [–] proved fixed point theorems in (intuitionistic)
fuzzy metric spaces or probabilistic metric spaces.
In this paper, we give a new coupled fixed point theorem under weaker conditions than

in [] and give an example, which shows that the result is a genuine generalization of the
corresponding result in [].

2 Preliminaries
First, we give some definitions.

Definition . (see []) A binary operation ∗ : [, ] × [, ] → [, ] is a continuous
t-norm if ∗ satisfies the following conditions:
() ∗ is commutative and associative,
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() ∗ is continuous,
() a ∗  = a for all a ∈ [, ],
() a ∗ b ≤ c ∗ d whenever a ≤ c and b≤ d for all a,b, c,d ∈ [, ].

Definition . (see []) Let sup<t< �(t, t) = . A t-norm � is said to be of H-type if the
family of functions {�m(t)}∞m= is equicontinuous at t = , where

�(t) = t�t, �m+(t) = t�
(
�m(t)

)
, m = , , . . . , t ∈ [, ]. (.)

The t-norm �M = min is an example of t-norm of H-type, but there are some other
t-norms � of H-type [].
Obviously,� is a t-normofH-type if and only if for any λ ∈ (, ), there exists δ(λ) ∈ (, )

such that �m(t) >  – λ for allm ∈N, when t >  – δ.

Definition . (see []) A -tuple (X,M,∗) is said to be a fuzzy metric space if X is an
arbitrary nonempty set, ∗ is a continuous t-norm and M is a fuzzy set on X × (, +∞)
satisfying the following conditions for each x, y, z ∈ X and t, s > ,
(FM-) M(x, y, t) > ,
(FM-) M(x, y, t) =  if and only if x = y,
(FM-) M(x, y, t) =M(y,x, t),
(FM-) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s),
(FM-) M(x, y, ·) : (,∞) → [, ] is continuous.

We shall consider a fuzzy metric space (X,M,∗), which satisfies the following condition:

lim
t→+∞M(x, y, t) = , ∀x, y ∈ X. (.)

Let (X,M,∗) be a fuzzy metric space. For t > , the open ball B(x, r, t) with a center x ∈ X
and a radius  < r <  is defined by

B(x, r, t) =
{
y ∈ X :M(x, y, t) >  – r

}
. (.)

A subset A ⊂ X is called open if for each x ∈ A, there exist t >  and  < r <  such that
B(x, r, t)⊂ A. Let τ denote the family of all open subsets ofX. Then τ is called the topology
on X, induced by the fuzzy metricM. This topology is Hausdorff and first countable.

Example . Let (X,d) be a metric space. Define t-norm a ∗ b = ab or a ∗ b = min{a,b}
and for all x, y ∈ X and t > ,M(x, y, t) = t

t+d(x,y) . Then (X,M,∗) is a fuzzy metric space.

Definition . (see []) Let (X,M,∗) be a fuzzy metric space. Then
() a sequence {xn} in X is said to be convergent to x (denoted by limn→∞ xn = x) if

lim
n→∞M(xn,x, t) = 

for all t > .
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() A sequence {xn} in X is said to be a Cauchy sequence if for any ε > , there exists
n ∈N, such that

M(xn,xm, t) >  – ε

for all t >  and n,m ≥ n.
() A fuzzy metric space (X,M,∗) is said to be complete if and only if every Cauchy

sequence in X is convergent.

Remark . (see []) Let (X,M,∗) be a fuzzy metric space. Then
() for all x, y ∈ X ,M(x, y, ·) is non-decreasing;
() if xn → x, yn → y, tn → t, then

lim
n→∞M(xn, yn, tn) =M(x, y, t);

() ifM(x, y, t) >  – r for x, y in X , t > ,  < r < , then we can find a t,  < t < t such
thatM(x, y, t) >  – r;

() for any r > r, we can find a r such that r ∗ r ≥ r, and for any r, we can find a r
such that r ∗ r ≥ r (r, r, r, r, r ∈ (, )).

Define 	 = {φ : R+ → R+}, where R+ = [,+∞) and each φ ∈ 	 satisfies the following
conditions:

(φ-) φ is non-decreasing,
(φ-) φ is upper semi-continuous from the right,
(φ-)

∑∞
n= φn(t) < +∞ for all t > , where φn+(t) = φ(φn(t)), n ∈N.

It is easy to prove that if φ ∈ 	, then φ(t) < t for all t > .

Lemma . (see []) Let (X,M,∗) be a fuzzy metric space, where ∗ is a continuous t-norm
of H-type. If there exists φ ∈ 	 such that

M
(
x, y,φ(t)

) ≥ M(x, y, t) (.)

for all t > , then x = y.

Definition . (see []) An element (x, y) ∈ X × X is called a coupled fixed point of the
mapping F : X ×X → X if

F(x, y) = x, F(y,x) = y. (.)

Definition . (see []) An element (x, y) ∈ X × X is called a coupled coincidence point
of the mappings F : X ×X → X and g : X → X if

F(x, y) = g(x), F(y,x) = g(y). (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/220


Hu et al. Fixed Point Theory and Applications 2013, 2013:220 Page 4 of 11
http://www.fixedpointtheoryandapplications.com/content/2013/1/220

Definition . (see []) An element (x, y) ∈ X × X is called a common coupled fixed
point of the mappings F : X ×X → X and g : X → X if

x = F(x, y) = g(x), y = F(y,x) = g(y). (.)

Definition. (see []) An element x ∈ X is called a commonfixed point of themappings
F : X ×X → X and g : X → X if

x = g(x) = F(x,x). (.)

Definition . (see []) The mappings F : X × X → X and g : X → X are said to be
compatible if

lim
n→∞M

(
gF(xn, yn),F

(
g(xn), g(yn)

)
, t

)
=  (.)

and

lim
n→∞M

(
gF(yn,xn),F

(
g(yn), g(xn)

)
, t

)
=  (.)

for all t >  whenever {xn} and {yn} are sequences in X, such that

lim
n→∞F(xn, yn) = lim

n→∞ g(xn) = x, lim
n→∞F(yn,xn) = lim

n→∞ g(yn) = y, (.)

for all x, y ∈ X are satisfied.

Definition . (see []) The mappings F : X × X → X and g : X → X are called
weakly compatible mappings if F(x, y) = g(x), F(y,x) = g(y) implies that gF(x, y) = F(gx, gy),
gF(y,x) = F(gy, gx) for all x, y ∈ X.

Remark . It is easy to prove that if F and g are compatible, then they are weakly com-
patible, but the converse need not be true. See the example in the next section.

3 Main results
For simplicity, denote

[
M(x, y, t)

]n =M(x, y, t) ∗M(x, y, t) ∗ · · · ∗M(x, y, t)︸ ︷︷ ︸
n

for all n ∈N.
Xin-Qi Hu [] proved the following result.

Theorem . (see []) Let (X,M,∗) be a complete FM-space, where ∗ is a continuous t-
norm of H-type satisfying (.). Let F : X × X → X and g : X → X be two mappings, and
there exists φ ∈ 	 such that

M
(
F(x, y),F(u, v),φ(t)

) ≥ M
(
g(x), g(u), t

) ∗M
(
g(y), g(v), t

)
(.)

for all x, y,u, v ∈ X, t > .
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Suppose that F(X ×X)⊆ g(X), g is continuous, F and g are compatible. Then there exist
x, y ∈ X such that x = g(x) = F(x,x); that is, F and g have a unique common fixed point in X.

Now we give our main result.

Theorem . Let (X,M,∗) be a FM-space, where ∗ is a continuous t-norm of H-type sat-
isfying (.). Let F : X × X → X and g : X → X be two weakly compatible mappings, and
there exists φ ∈ 	 satisfying (.).
Suppose that F(X × X) ⊆ g(X) and F(X × X) or g(X) is complete. Then F and g have a

unique common fixed point in X.

Proof Let x, y ∈ X be two arbitrary points in X. Since F(X × X) ⊆ g(X), we can choose
x, y ∈ X such that g(x) = F(x, y) and g(y) = F(y,x). Continuing this process, we can
construct two sequences {xn} and {yn} in X such that

g(xn+) = F(xn, yn), g(yn+) = F(yn,xn), for all n ≥ . (.)

The proof is divided into  steps.
Step : We shall prove that {gxn} and {gyn} are Cauchy sequences.
Since ∗ is a t-norm of H-type, for any λ > , there exists an μ >  such that

( –μ) ∗ ( –μ) ∗ · · · ∗ ( –μ)︸ ︷︷ ︸
k

≥  – λ

for all k ∈N.
SinceM(x, y, ·) is continuous and limt→+∞ M(x, y, t) =  for all x, y ∈ X, there exists t > 

such that

M(gx, gx, t) ≥  –μ, M(gy, gy, t) ≥  –μ. (.)

On the other hand, since φ ∈ 	, by condition (φ-), we have
∑∞

n= φ
n(t) < ∞. Then for

any t > , there exists n ∈ N such that

t >
∞∑

k=n

φk(t). (.)

From condition (.), we have

M
(
gx, gx,φ(t)

)
=M

(
F(x, y),F(x, y),φ(t)

)
≥ M(gx, gx, t) ∗M(gy, gy, t),

M
(
gy, gy,φ(t)

)
=M

(
F(y,x),F(y,x),φ(t)

)
≥ M(gy, gy, t) ∗M(gx, gx, t).
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Similarly, we have

M
(
gx, gx,φ(t)

)
=M

(
F(x, y),F(x, y),φ(t)

)
≥ M

(
gx, gx,φ(t)

) ∗M
(
gy, gy,φ(t)

)
≥ [

M(gx, gx, t)
] ∗ [

M(gy, gy, t)
],

M
(
gy, gy,φ(t)

)
=M

(
F(y,x),F(y,x),φ(t)

)
≥ [

M(gy, gy, t)
] ∗ [

M(gx, gx, t)
].

From the inequalities above and by induction, it is easy to prove that

M
(
gxn, gxn+,φn(t)

) ≥ [
M(gx, gx, t)

]n– ∗ [
M(gy, gy, t)

]n– ,
M

(
gyn, gyn+,φn(t)

) ≥ [
M(gy, gy, t)

]n– ∗ [
M(gx, gx, t)

]n– .
So, from (.) and (.), form > n≥ n, we have

M(gxn, gxm, t) ≥ M

(
gxn, gxm,

∞∑
k=n

φk(t)

)

≥ M

(
gxn, gxm,

m–∑
k=n

φk(t)

)

≥ M
(
gxn, gxn+,φn(t)

) ∗M
(
gxn+, gxn+,φn+(t)

) ∗ · · ·
∗M

(
gxm–, gxm,φm–(t)

)
≥ [

M(gy, gy, t)
]n– ∗ [

M(gx, gx, t)
]n– ∗ [

M(gy, gy, t)
]n

∗ [
M(gx, gx, t)

]n ∗ · · · ∗ [
M(gy, gy, t)

]m–

∗ [
M(gx, gx, t)

]m–

=
[
M(gy, gy, t)

]m––n– ∗ [
M(gx, gx, t)

]m––n–

≥ ( –μ) ∗ ( –μ) ∗ · · · ∗ ( –μ)︸ ︷︷ ︸
m–n

≥  – λ,

which implies that

M(gxn, gxm, t) >  – λ (.)

for allm,n ∈ N with m > n ≥ n and t > . So {g(xn)} is a Cauchy sequence.
Similarly, we can prove that {g(yn)} is also a Cauchy sequence.
Step : Now, we prove that g and F have a coupled coincidence point.
Without loss of generality, we can assume that g(X) is complete, then there exist x, y ∈

g(X), and exist a,b ∈ X such that

lim
n→∞ g(xn) = lim

n→∞F(xn, yn) = g(a) = x,

lim
n→∞ g(yn) = lim

n→∞F(yn,xn) = g(b) = y.
(.)
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From (.), we get

M
(
F(xn, yn),F(a,b),φ(t)

) ≥ M
(
gxn, g(a), t

) ∗M
(
gyn, g(b), t

)
.

SinceM is continuous, taking limit as n→ ∞, we have

M
(
g(a),F(a,b),φ(t)

)
= ,

which implies that F(a,b) = g(a) = x.
Similarly, we can show that F(b,a) = g(b) = y.
Since F and g are weakly compatible, we get that gF(a,b) = F(g(a), g(b)) and gF(b,a) =

F(g(b), g(a)), which implies that g(x) = F(x, y) and g(y) = F(y,x).
Step : We prove that g(x) = y and g(y) = x.
Since ∗ is a t-norm of H-type, for any λ > , there exists an μ >  such that

( –μ) ∗ ( –μ) ∗ · · · ∗ ( –μ)︸ ︷︷ ︸
k

≥  – λ

for all k ∈N.
SinceM(x, y, ·) is continuous and limt→+∞ M(x, y, t) =  for all x, y ∈ X, there exists t > 

such thatM(gx, y, t) ≥  –μ andM(gy,x, t) ≥  –μ.
On the other hand, since φ ∈ 	, by condition (φ-), we have

∑∞
n= φ

n(t) < ∞. Thus, for
any t > , there exists n ∈ N such that t >

∑∞
k=n φk(t). Since

M
(
gx, gyn+,φ(t)

)
=M

(
F(x, y),F(yn,xn),φ(t)

)
≥ M(gx, gyn, t) ∗M(gy, gxn, t),

letting n → ∞, we get

M
(
gx, y,φ(t)

) ≥ M(gx, y, t) ∗M(gy,x, t). (.)

Similarly, we can get

M
(
gy,x,φ(t)

) ≥ M(gx, y, t) ∗M(gy,x, t). (.)

From (.) and (.), we have

M
(
gx, y,φ(t)

) ∗M
(
gy,x,φ(t)

) ≥ [
M(gx, y, t)

] ∗ [
M(gy,x, t)

].
From this inequality, we can get

M
(
gx, y,φn(t)

) ∗M
(
gy,x,φn(t)

) ≥ [
M

(
gx, y,φn–(t)

)] ∗ [
M

(
gy,x,φn–(t)

)]
≥ [

M(gx, y, t)
]n ∗ [

M(gy,x, t)
]n

http://www.fixedpointtheoryandapplications.com/content/2013/1/220
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for all n ∈N. Since t >
∑∞

k=n φk(t), then, we have

M(gx, y, t) ∗M(gy,x, t) ≥ M

(
gx, y,

∞∑
k=n

φk(t)

)
∗M

(
gy,x,

∞∑
k=n

φk(t)

)

≥ M
(
gx, y,φn (t)

) ∗M
(
gy,x,φn (t)

)
≥ [

M(gx, y, t)
]n ∗ [

M(gy,x, t)
]n

≥ ( –μ) ∗ ( –μ) ∗ · · · ∗ ( –μ)︸ ︷︷ ︸
n

≥  – λ.

Therefore, for any λ > , we have

M(gx, y, t) ∗M(gy,x, t) ≥  – λ (.)

for all t > . Hence conclude that gx = y and gy = x.
Step : Now, we prove that x = y.
Since ∗ is a t-norm of H-type, for any λ > , there exists an μ >  such that

( –μ) ∗ ( –μ) ∗ · · · ∗ ( –μ)︸ ︷︷ ︸
k

≥  – λ

for all k ∈N.
Since M(x, y, ·) is continuous and limt→+∞ M(x, y, t) = , there exists t >  such that

M(x, y, t) ≥  –μ.
On the other hand, since φ ∈ 	, by condition (φ-), we have

∑∞
n= φ

n(t) < ∞. Then, for
any t > , there exists n ∈ N such that t >

∑∞
k=n φk(t).

From (.), we have

M
(
gxn+, gyn+,φ(t)

)
=M

(
F(xn, yn),F(yn,xn),φ(t)

)
≥ M(gxn, gyn, t) ∗M(gyn, gxn, t).

Letting n → ∞ yields

M
(
x, y,φ(t)

) ≥ M(x, y, t) ∗M(y,x, t).

Thus, we have

M(x, y, t) ≥ M

(
x, y,

∞∑
k=n

φk(t)

)

≥ M
(
x, y,φn (t)

)
≥ [

M(x, y, t)
]n– ∗ [

M(y,x, t)
]n–

≥ ( –μ) ∗ ( –μ) ∗ · · · ∗ ( –μ)︸ ︷︷ ︸
n–

≥  – λ,

which implies that x = y.
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Thus, we proved that F and g have a common fixed point in X.
The uniqueness of the fixed point can be easily proved in the same way as above. This

completes the proof of Theorem .. �

Taking g = I (the identity mapping) in Theorem ., we get the following consequence.

Corollary . Let (X,M,∗) be a FM-space, where ∗ is a continuous t-norm of H-type sat-
isfying (.). Let F : X ×X → X, and there exists φ ∈ 	 such that

M
(
F(x, y),F(u, v),φ(t)

) ≥ M(x,u, t) ∗M(y, v, t) (.)

for all x, y,u, v ∈ X, t > . F(X) is complete.
Then there exist x ∈ X such that x = F(x,x); that is, F admits a unique fixed point in X.

Remark . Comparing Theorem . with Theorem . in [], we can see that Theo-
rem . is a genuine generalization of Theorem ..
() We only need the completeness of g(X) or F(X ×X).
() The continuity of g is relaxed.
() The concept of compatible has been replaced by weakly compatible.

Remark . The Example  in [] is wrong, since the t-norm a ∗ b = ab is not the t-norm
of H-type.

Next, we give an example to support Theorem ..

Example . Let X = {, ,  ,  , . . . , n , . . .}, ∗ =min,M(x, y, t) = t
|x–y|+t , for all x, y ∈ X, t > .

Then (X,M,∗) is a fuzzy metric space.
Let φ(t) = t

 . Let g : X → X and F : X ×X → X be defined as

g(x) =

⎧⎪⎪⎨
⎪⎪⎩
, x = ,

, x = 
n+ ,


n+ , x = 

n ,

F(x, y) =

⎧⎨
⎩


(n+) , (x, y) = ( 

n ,

n ),

, others.

Let xn = yn = 
n . We have gxn = 

n+ → , F(xn, yn) = 
(n+) → , but

M
(
F(gxn, gyn), gF(xn, yn), t

)
=M(, , t)� ,

so g and F are not compatible. From F(x, y) = g(x), F(y,x) = g(y), we can get (x, y) = (, ),
and we have gF(, ) = F(g, g), which implies that F and g are weakly compatible.
The following result is easy to verify

t
X + t

≥ min

{
t

Y + t
,

t
Z + t

}
⇔ X ≤ max{Y ,Z}, ∀X,Y ,Z ≥ , t > .

By the definition ofM and φ and the result above, we can get that inequality (.)

M
(
F(x, y),F(u, v),φ(t)

) ≥ M
(
g(x), g(u), t

) ∗M
(
g(y), g(v), t

)
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is equivalent to the following


∣∣F(x, y) – F(u, v)

∣∣ ≤ max
{∣∣g(x) – g(u)

∣∣, ∣∣g(y) – g(v)
∣∣}. (.)

Now, we verify inequality (.). Let A = { 
n ,n ∈ N}, B = X – A. By the symmetry and

without loss of generality, (x, y), (u, v) have  possibilities.
Case : (x, y) ∈ B× B, (u, v) ∈ B× B. It is obvious that (.) holds.
Case : (x, y) ∈ B× B, (u, v) ∈ B×A. It is obvious that (.) holds.
Case : (x, y) ∈ B× B, (u, v) ∈ A×A. If u �= v, (.) holds. If u = v, let u = v = 

n , then


∣∣F(x, y) – F(u, v)

∣∣ = 
(n + )

, max
{∣∣g(x) – g(u)

∣∣, ∣∣g(y) – g(v)
∣∣} = n

n + 
,

which implies that (.) holds.
Case : (x, y) ∈ B×A, (u, v) ∈ B×A. It is obvious that (.) holds.
Case : (x, y) ∈ B × A, (u, v) ∈ A × A. If u �= v, (.) holds. If u = v, let x ∈ B, y = 

j ,
u = v = 

n , then


∣∣F(x, y) – F(u, v)

∣∣ = 
(n + )

,

max
{∣∣g(x) – g(u)

∣∣, ∣∣g(y) – g(v)
∣∣} =max

{


n + 
,
∣∣∣∣ 
j + 

–


n + 

∣∣∣∣
}
,

or

max
{∣∣g(x) – g(u)

∣∣, ∣∣g(y) – g(v)
∣∣} =max

{
n

n + 
,
∣∣∣∣ 
j + 

–


n + 

∣∣∣∣
}
,

(.) holds.
Case : (x, y) ∈ A×A, (u, v) ∈ A×A.
If x �= y, u �= v, (.) holds.
If x �= y, u = v, let x = 

i , y =

j , i �= j, u = v = 

n . Then


∣∣F(x, y) – F(u, v)

∣∣ = 
(n + )

,

max
{∣∣g(x) – g(u)

∣∣, ∣∣g(y) – g(v)
∣∣} =max

{∣∣∣∣ 
i + 

–


n + 

∣∣∣∣,
∣∣∣∣ 
j + 

–


n + 

∣∣∣∣
}
,

(.) holds.
If x = y, u = v, let x = y = 

i , u = v = 
n . Then


∣∣F(x, y) – F(u, v)

∣∣ = 
∣∣∣∣ 
(i + )

–


(n + )

∣∣∣∣,
max

{∣∣g(x) – g(u)
∣∣, ∣∣g(y) – g(v)

∣∣} = ∣∣∣∣ 
i + 

–


n + 

∣∣∣∣,
(.) holds.
Then all the conditions in Theorem . are satisfied, and  is the unique common fixed

point of g and F .
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10. Ćirić, LjB, Miheţ, D, Saadati, R: Monotone generalized contractions in partially ordered probabilistic metric spaces.

Topol. Appl. 156(17), 2838-2844 (2009)
11. O’Regan, D, Saadati, R: Nonlinear contraction theorems in probabilistic spaces. Appl. Math. Comput. 195(1), 86-93

(2008)
12. Jain, S, Jain, S, Bahadur Jain, L: Compatibility of type (P) in modified intuitionistic fuzzy metric space. J. Nonlinear Sci.

Appl. 3(2), 96-109 (2010)
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21. Shakeri, S, Ćirić, Lj, Saadati, R: Common fixed point theorem in partially ordered L-fuzzy metric spaces. Fixed Point

Theory Appl. 2010, Article ID 125082 (2010). doi:10.1155/2010/125082
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23. Ćirić, Lj, Abbas, M, Saadati, R, Hussain, N: Common fixed points of almost generalized contractive mappings in

ordered metric spaces. Appl. Math. Comput. 53(9-10), 1737-1741 (2011)
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