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1 Introduction and preliminaries
Fixed point theory plays a fundamental role in solving functional equations [] arising in
several areas of mathematics and other related disciplines as well. The Banach contraction
principle is a key principle that made a remarkable progress towards the development of
metric fixed point theory. Markin [] and Nadler [] proved a multi-valued version of the
Banach contraction principle employing the notion of a Hausdorff metric. Afterwards, a
number of generalizations (see [–]) were obtained using different contractive condi-
tions. The study of hybrid type contractive conditions involving single-valued and multi-
valuedmappings is a valuable addition to themetric fixed point theory and its applications
(for details, see [–]). Among several generalizations of the Banach contraction princi-
ple, Suzuki’s work [, Theorem .] led to a number of results (for details, see [, –]).
On the other hand, Matthews [] introduced the concept of a partial metric space as

a part of the study of denotational semantics of dataflow networks. He obtained a mod-
ified version of the Banach contraction principle, more suitable in this context (see also
[, ]). Since then, results obtained in the framework of partial metric spaces have been
used to constitute a suitable framework to model the problems related to the theory of
computation (see [, –]). Recently, Aydi et al. [] initiated the concept of a partial
Hausdorff metric and obtained an analogue of Nadler’s fixed point theorem [] in partial
metric spaces.
The aim of this paper is to obtain some coincidence point theorems for a hybrid pair

of single-valued and multi-valued mappings on an arbitrary non-empty set with values in
a partial metric space. Our results extend, unify and generalize several known results in
the existing literature (see [, , , ]). As an application, we obtain the existence and
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uniqueness of a common and bounded solution for Suzuki-Zamfirescu class of functional
equations under contractive conditions weaker than those given in [, –].
Throughout this work, a mapping ω : [, ) → (  , ] is defined by

ω(r) =


 + r
for all r ∈ [, ). (.)

In the sequel, the letters R, R+ and N will denote the set of all real numbers, the set of
all non-negative real numbers and the set of all positive integers, respectively. Consistent
with [, , , ], the following definitions and results will be needed in the sequel.

Definition . [] Let X be any non-empty set. A mapping p : X ×X →R+ is said to be
a partial metric if and only if for all x, y, z ∈ X the following conditions are satisfied:
(P) p(x,x) = p(y, y) = p(x, y) if and only if x = y;
(P) p(x,x)≤ p(x, y);
(P) p(x, y) = p(y,x);
(P) p(x, z) ≤ p(x, y) + p(y, z) – p(y, y).

The pair (X,p) is called a partial metric space. If p(x, y) = , then (P) and (P) imply
that x = y. But the converse does not hold in general. A classical example of a partial met-
ric space is the pair (R+,p), where p : X × X → R+ is defined as p(x, y) = max{x, y} (see
also []).

Example . [] If X = {[a,b] : a,b ∈R,a≤ b}, then

p
(
[a,b], [c,d]

)
=max{b,d} –min{a, c}

defines a partial metric p on X.
For more interesting examples, we refer to [, , , , , ]. Each partial metric p

on X generates a T topology τp on X which has as a base the family of open balls (p-balls)
{Bp(x, ε) : x ∈ X, ε > }, where

Bp(x, ε) =
{
y ∈ X : p(x, y) < p(x,x) + ε

}

for all x ∈ X and ε > . A sequence {xn} in a partial metric space (X,p) is called convergent
to a point x ∈ X with respect to τp if and only if p(x,x) = limn→∞ p(x,xn) (for details, see
[]). If p is a partial metric on X, then the mapping pS : X × X → R+ given by pS(x, y) =
p(x, y) – p(x,x) – p(y, y) defines a metric on X. Furthermore, a sequence {xn} converges in
a metric space (X,pS) to a point x ∈ X if and only if

p(x,x) = lim
n→∞p(x,xn) = lim

n,m→∞p(xn,xm). (.)

Definition . [] Let (X,p) be a partial metric space, then
(a) A sequence {xn} in X is called Cauchy if and only if limn,m→∞ p(xn,xm) exists and is

finite.
(b) A partial metric space (X,p) is said to be complete if every Cauchy sequence {xn} in

X converges with respect to τp to a point x ∈ X such that
p(x,x) = limn,m→∞ p(xn,xm).
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Lemma A [, ] Let (X,p) be a partial metric space, then
(c) A sequence {xn} in X is Cauchy in (X,p) if and only if it is Cauchy in (X,pS).
(d) A partial metric space (X,p) is complete if and only if (X,pS) is complete.

Consistent with [], letCBp(X) be the family of all non-empty, closed and bounded sub-
sets of the partial metric space (X,p), induced by the partial metric p. Note that closedness
is taken from (X, τp) (τp is the topology induced by p) and boundedness is given as follows:
A is a bounded subset in (X,p) if there exists an x ∈ X andM ≥  such that for all a ∈ A,
we have a ∈ Bp(x,M), that is, p(x,a) < p(a,a) +M. For A,B ∈ CBp(X) and x ∈ X, define
δp : CBp(X)×CBp(X) → [,∞) and

p(x,A) = inf
{
p(x,a) : a ∈ A

}
,

δp(A,B) = sup
{
p(a,B) : a ∈ A

}
,

δp(B,A) = sup
{
p(b,A) : b ∈ B

}
,

Hp(A,B) =max
{
δp(A,B), δp(B,A)

}
.

It can be verified that p(x,A) =  implies pS(x,A) = , where pS(x,A) = inf{pS(x,a) : a ∈ A}.

Lemma B [] Let (X,p) be a partial metric space and A be a non-empty subset of X, then
a ∈ A if and only if p(a,A) = p(a,a).

Proposition . [] Let (X,p) be a partial metric space. For any A,B,C ∈ CBp(X), we
have the following:

(i) δp(A,A) = sup{p(a,a) : a ∈ A};
(ii) δp(A,A) ≤ δp(A,B);
(iii) δp(A,B) =  implies A⊆ B;
(iv) δp(A,B) ≤ δp(A,C) + δp(C,B) – infc∈C p(c, c).

Proposition . [] Let (X,p) be a partial metric space. For any A,B,C ∈ CBp(X), we
have the following:
(h) Hp(A,A) ≤ Hp(A,B);
(h) Hp(A,B) =Hp(B,A);
(h) Hp(A,B)≤ Hp(A,C) +Hp(C,B) – infc∈C p(c, c);
(h) Hp(A,B) =  implies that A = B.

The mapping Hp : CBp(X) × CBp(X) → [,∞) is called a partial Hausdorff metric in-
duced by a partial metric p. Every Hausdorff metric is a partial Hausdorff metric, but the
converse is not true (see Example . in []).

Lemma C [] Let (X,p) be a partial metric space and A,B ∈ CBp(X) and h > , then for
any a ∈ A, there exists a b ∈ B such that p(a,b)≤ hHp(A,B).

Theorem. [] Let (X,p) be a partialmetric space. If T : X → CBp(X) is amulti-valued
mapping such that for all x, y ∈ X, we have Hp(Tx,Ty) ≤ kp(x, y), where k ∈ (, ). Then T
has a fixed point.
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Definition . Let (X,p) be a partial metric space and f : X –→ X and T : X –→ CBp(X).
A point x ∈ X is said to be (i) a fixed point of f if x = f (x), (ii) a fixed point of T if x ∈ T(x),
(iii) a coincidence point of a pair (f ,T) if fx ∈ Tx, (iv) a common fixed point of the pair (f ,T)
if x = fx ∈ Tx.

We denote the set of all fixed points of f , the set of all coincidence points of the pair
(f ,T) and the set of all common fixed points of the pair (f ,T) by F(f ), C(f ,T) and F(f ,T),
respectively. Motivated by the work of [, ], we give the following definitions in partial
metric spaces.

Definition . Let (X,p) be a partial metric space and f : X –→ X and T : X –→ CBp(X).
The pair (f ,T) is called (i) commuting if Tfx = fTx for all x ∈ X, (ii)weakly compatible if the
pair (f ,T) commutes at their coincidence points, that is, fTx = Tfx whenever x ∈ C(f ,T),
(iii) IT-commuting [] at x ∈ X if fTx ⊆ Tfx.

Definition . Let (X,p) be a partial metric space and Y be any non-empty set. Let f :
Y –→ X and T : Y –→ CBp(X) be single-valued and multi-valued mappings, respectively.
Suppose that x ∈ Y , then the set

O(f ,T ;x) = {yn : yn+ = fxn+ ∈ Txn for n = , , , . . .} (.)

is called an orbit for the pair (f ,T) at x. A partial metric space X is called (f ,T)-orbitally
complete if and only if every Cauchy sequence in the orbit for (f ,T) at x converges with
respect to τp to a point x ∈ X such that p(x,x) = limn,m→∞ p(xm,xn).

Singh andMishra [] introduced Suzuki-Zamfirescu type hybrid contractive condition
in complete metric spaces. In the context of partial metric spaces, the condition is given
as follows.

Definition . Let (X,p) be a partial metric space, f : Y –→ X and T : Y –→ CBp(X) be
single-valued and multi-valued mappings, respectively. The hybrid pair (f ,T) is said to
satisfy Suzuki-Zamfirescu hybrid contraction condition if there exists r ∈ [, ) such that
ω(r)p(fx,Tx) ≤ p(fx, fy) implies that

Hp(Tx,Ty) ≤ rMp,f (x, y) (.)

for all x, y ∈ Y and

Mp,f (x, y) =max

{
p(fx, fy),

p(fx,Tx) + p(fy,Ty)


,
p(fx,Ty) + p(fy,Tx)



}
. (.)

LemmaD Let (X,p) be a partial metric space, f : Y –→ X and T : Y –→ CBp(X) be single-
valued and multi-valued mappings, respectively. Then the partial metric space (X,p) is
(f ,T)-orbitally complete if and only if (X,pS) is (f ,T)-orbitally complete.

Proof Suppose that (X,pS) is (f ,T)-orbitally complete and x is an arbitrary element of X.
If {yn} is a Cauchy sequence inO(f ,T ;x) in (X,p), then it is also Cauchy in (X,pS). There-
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fore, by (.) we deduce that there exists y in X such that

p(y, y) = lim
n→∞p(y, yn) = lim

n,m→∞p(yn, ym),

and {yn} converges to y in (X,p). Conversely, let (X,p) be (f ,T)-orbitally complete. If {yn}
is a Cauchy sequence in O(f ,T ;x) in (X,pS), then it is also a Cauchy sequence in (X,p).
Therefore,

p(y, y) = lim
n→∞p(y, yn) = lim

n,m→∞p(yn, ym).

For given ε > , there exists nε ∈N such that

∣∣p(y, yn) – p(y, y)
∣∣ < ε


and

∣∣p(y, yn) – p(yn, ym)
∣∣ < ε



for allm,n > nε . Consequently, we have

pS(y, yn) = p(y, yn) – p(y, y) – p(yn, ym)

≤ ∣∣p(y, yn) – p(y, y) + p(y, yn) – p(yn, ym)
∣∣

≤ ∣∣p(y, yn) – p(y, y)
∣∣ + ∣∣p(y, yn) – p(yn, ym)

∣∣
<

ε


+

ε


= ε,

whenever m,n > nε . The result follows. �

2 Coincidence points of a hybrid pair of mappings
In the following theorem, the existence of coincidence points of a hybrid pair of single-
valued andmulti-valuedmappings that satisfy Suzuki-Zamfirescu hybrid contraction con-
dition in partial metric spaces is established.

Theorem . Let (X,p) be a partial metric space and Y be any non-empty set. Assume
that a pair of mappings f : Y –→ X and T : Y –→ CBp(X) satisfies Suzuki-Zamfirescu
hybrid contraction condition with T(Y ) ⊂ f (Y ). If there exists u ∈ Y such that f (Y ) is
(f ,T)-orbitally complete at u, then C(f ,T) 	= φ. If Y = X and (f ,T) is IT-commuting at
coincidence points of (f ,T), then F(f ,T) 	= φ provided that fz is a fixed point of f for some
z ∈ C(f ,T).

Proof Let h = /
√
r and u ∈ Y be such that y = fu. By the given assumption, we have

Tu ⊆ f (Y ). So, there exists a point u ∈ Y such that y = fu ∈ Tu. As h > , so by
Lemma C, there exists a point y ∈ Tu such that

p(fu, y) ≤ hHp(Tu,Tu).

Using the fact that Tu ⊆ f (Y ), we obtain a point u ∈ Y such that y = fu ∈ Tu. There-
fore,

p(fu, fu) ≤ hHp(Tu,Tu).

http://www.fixedpointtheoryandapplications.com/content/2013/1/21
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Since

ω(r)p(fu,Tu) ≤ ω(r)p(fu, fu) ≤ p(fu, fu),

we have

p(fu, fu) ≤ hHp(Tu,Tu)

≤ hrmax

{
p(fu, fu),

p(fu,Tu) + p(fu,Tu)


,
p(fu,Tu) + p(fu,Tu)



}

≤ √
r
rmax

{
p(y, y),

p(y, y) + p(y, y)


,
p(y, y) + p(y, y)



}

≤ √
rmax

{
p(y, y),

p(y, y) + p(y, y)


}
.

If

max

{
p(y, y),

p(y, y) + p(y, y)


}
= p(y, y),

then

p(y, y) ≤ hHp(Tu,Tu) ≤
√
rp(y, y).

If

max

{
p(y, y),

p(y, y) + p(y, y)


}
=
p(y, y) + p(y, y)


,

then we obtain

p(y, y) ≤
√
r

 –
√
r
p(y, y) ≤

√
rp(y, y).

As fu ∈ Tu, we choose y ∈ Tu such that p(fu, y) ≤ hH(Tu,Tu). Using the fact that
Tu ⊆ f (Y ), we obtain a point u ∈ Y such that y = fu ∈ Tu and

p(fu, fu) ≤ hHp(Tu,Tu).

Since

ω(r)p(fu,Tu)≤ ω(r)p(fu, fu)≤ p(fu, fu),

so we have

p(fu, fu) ≤ hHp(Tu,Tu)

≤ hrmax

{
p(fu, fu),

p(fu,Tu) + p(fu,Tu)


,
p(fu,Tu) + p(fu,Tu)



}

http://www.fixedpointtheoryandapplications.com/content/2013/1/21
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≤ √
r
rmax

{
p(y, y),

p(y, y) + p(y, y)


,
p(y, y) + p(y, y)



}

≤ √
rmax

{
p(y, y),

p(y, y) + p(y, y)


}
.

Following the arguments similar to those given above, we obtain

p(y, y) ≤
√
rp(y, y),

which further implies that

p(y, y) ≤ (
√
r)p(y, y).

Continuing this process, we obtain a sequence {yn} ⊂ Y such that for any integer n ≥ ,
yn+ = fun+ ∈ Tun and

p(yn, yn+) ≤ (
√
r)np(y, y)

for every n ∈N. This shows that limn→∞ p(yn, yn+) = . Since

p(yn, yn) + p(yn+, yn+)≤ p(yn, yn+),

so we obtain

lim
n→∞p(yn, yn) =  and lim

n→∞p(yn+, yn+) = .

Now, form > n ≥ , we have

pS(yn, yn+m) = p(yn, yn+m) – p(yn, yn) – p(yn+m, yn+m)

≤ p(yn, yn+) + p(yn+, yn+) + · · · + p(yn+m–, yn+m)

≤ 
(
(
√
r)n + (

√
r)n+ + · · · + (

√
r)n+m–)p(y, y).

It follows that {yn} is a Cauchy sequence in (f (Y ),pS). By Lemma A, we have {yn} is a
Cauchy sequence in (f (Y ),p). Since (f (Y ),p) is (f ,T)-orbitally complete at u, so again
by Lemma D, (f (Y ),pS) is (f ,T)-orbitally complete at u. Hence, there exists an element
u ∈ f (Y ) such that limn→∞ pS(yn, y) = . This implies that

lim
n→∞p(yn,u) = lim

n→∞p(yn, yn) = p(u,u) = . (.)

Let z ∈ f –u, then z ∈ Y and u = fz. Now,

p(fz,Tx) ≤ p(fz, fun+) + p(fun+,Tx) – p(fun+, fun+) and

p(fun+,Tx) ≤ p(fun+, fun) + p(fun, fz) + p(fz,Tx) – p(fun, fun) – p(fz, fz)

give

lim
n→∞p(fun+,Tx) = p(fz,Tx).

http://www.fixedpointtheoryandapplications.com/content/2013/1/21
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Similarly, we can show that

lim
n→∞p(fun,Tx) = p(fz,Tx).

Now, we will claim that

p(fz,Tx) ≤ rp(fz, fx) for any fx ∈ f (Y ) – {fz}. (.)

If x = z or fx = fz, then p(fx,Tx) = . This gives pS(fx,Tx) = , which implies that fx ∈ Tx
and we are done. Now from (.), there exists a positive integer n such that for all n≥ n,

p(fz, fun+) ≤ 

p(fz, fx) and p(fz, fun)≤ 


p(fz, fx).

So, for any n≥ n, we have

ω(r)p(fun,Tun) ≤ p(fun,Tun) ≤ p(fun, fun+)

≤ p(fun, fz) + p(fz, fun+) – p(fz, fz) ≤ 

p(fz, fx)

≤ p(fz, fx) –


p(fz, fx) ≤ p(fz, fx) – p(fz, fun)

≤ p(fun, fx) – p(fun, fun) ≤ p(fun, fx).

Hence, for any n ≥ n, we obtain

ω(r)p(fun,Tun) ≤ p(fun, fx).

This implies

p(fun+,Tx) ≤ Hp(Tun,Tx)

≤ rmax

{
p(fun, fx),

p(fun,Tun) + p(fx,Tx)


,
p(fun,Tx) + p(fx,Tun)



}

≤ rmax

{
p(yn, fx),

p(yn, yn+) + p(fx,Tx)


,
p(yn,Tx) + p(fx, yn+)



}

≤ rmax

{
p(yn,u) + p(u, fx) – p(u,u),

p(yn, yn+) + p(fx,Tx)


,

p(yn,u) + p(u,Tx) – p(u,u) + p(fx,u) + p(u, yn+) – p(u,u)


}
.

On taking limit as n tends to ∞, we obtain

p(fz,Tx) ≤ rmax

{
p(u, fx),

p(fx,Tx)


,
p(u,Tx) + p(fx,u)



}

= rmax

{
p(fz, fx),

p(fx,Tx)


,
p(fz,Tx) + p(fx,, fz)



}

≤ rmax

{
p(fz, fx),

p(fz,Tx) + p(fx,, fz)


}
.
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If

max

{
p(fz, fx),

p(fz,Tx) + p(fx,, fz)


}
= p(fz, fx),

then we are done. If

max

{
p(fz, fx),

p(fz,Tx) + p(fx,, fz)


}
=
p(fz,Tx) + p(fx,, fz)


,

then we obtain

p(fz,Tx) ≤ r
 – r

p(fx, fz) ≤ rp(fx, fz)

and hence (.) holds. Next, we show that

Hp(Tz,Tx) ≤ rmax

{
p(fz, fx),

p(fx,Tx) + p(fz,Tz)


,
p(fx,Tz) + p(fz,Tx)



}
(.)

for any x ∈ Y . If x = z, then fx = fz, and the claim follows from (.). Suppose that x 	= z,
then fx 	= fz. As f is a non-constant single-valued mapping, we have

p(fx,Tx) ≤ p(fx, fz) + p(fz,Tx) – p(fz, fz)

≤ p(fx, fz) + rp(fx, fz) ≤ ( + r)p(fx, fz).

This implies

ω(r)p(fx,Tx) ≤ p(fx, fz).

Therefore,

Hp(Tz,Tx) ≤ rmax

{
p(fz, fx),

p(fx,Tx) + p(fz,Tz)


,
p(fx,Tz) + p(fz,Tx)



}
.

Hence, (.) holds for any x ∈ Y . Note that

p(Tz, fun+) ≤ Hp(Tz,Tun+)

≤ rmax

{
p(fz, fun+),

p(fun+,Tun+) + p(fz,Tz)


,

p(fun+,Tz) + p(fz,Tun+)


}

≤ rmax

{
p(fz, yn+),

p(yn+, yn+) + p(fz,Tz)


,

p(yn+, fz) + p(fz,Tz) – p(fz, fz) + p(fz, yn+)


}
.

On taking limit as n→ ∞, we obtain

p(fz,Tz) ≤ r

p(fz,Tz).

http://www.fixedpointtheoryandapplications.com/content/2013/1/21
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We obtain p(fz,Tz) = , which further implies that pS(fz,Tz) ≤ p(fz,Tz) = . Hence, fz ∈
Tz. Further if Y = X and ffz = fz, then due to IT-commutativity of the pair (f ,T), we have
fz = ffz ∈ fTz ⊆ Tfz. This shows that fz is a common fixed point of the pair (f ,T). �

Corollary A Let (X,p) be a partial metric space and Y be any non-empty set.Assume that
here exists r ∈ [, ) such that the mappings f : Y –→ X and T : Y –→ CBp(X) satisfy

ω(r)p(fx,Tx) ≤ p(fx, fy) ⇒ Hp(Tx,Ty) ≤ rp(fx, fy)

for all x, y ∈ Y , with T(Y ) ⊂ f (Y ). If there exists u ∈ Y such that f (Y ) is (f ,T)-orbitally
complete at u, then C(f ,T) 	= φ. If Y = X and (f ,T) is IT-commuting at coincidence points
of the pair (f ,T), then F(f ,T) 	= φ provided that fz is a fixed point of f for some z ∈ C(f ,T).

Example . Let X = {, , } and Y = {, , , }. Define a mapping p : X × X → R+ as
follows:

p(, ) = p(, ) = , p(, ) = p(, ) =


, p(, ) =



,

p(, ) = p(, ) =


, p(, ) = p(, ) =




.

Then p is a partial metric on X. Let ω(r) be as given in Theorem . and the mappings
T : Y –→ CBp(X) and f : Y → X be given as

Tx =

⎧⎨
⎩

{} when x 	= ,

{, } when x = ,
and fx =

⎧⎪⎪⎨
⎪⎪⎩
, if x ∈ {, },
, if x = ,

, if x = .

Note that

p(f ,T) = p(f ,T) = p(f , f ) = p(f , f ) = ,

p(f , f ) =



, p(f , f ) =


,

p(f , f ) = p(f , f ) = p(f ,T) =


,

p(f ,T) = p(f , f ) = p(f , f ) =


.

If we take r ≥ 
 and ω(r) ≤ 

 , then for all x, y ∈ Y ,

ω(r)p(fx,Tx) ≤ p(fx, fy)

holds. If we consider r = 
 , then ω(r) = 

 . Then, for x, y ∈ {, , }, we have Hp(Tx,Ty) = ,
hence Hp(Tx,Ty)≤ rp(fx, fy) is satisfied trivially. Now consider

Hp(T,T) = p(, ) =



≤ 

= rp(f , f ),

Hp(T,T) = p(, ) =



≤ 

= rp(f , f ),
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Hp(T,T) = p(, ) =


<



= rp(f , f ),

Hp(T,T) = p(, ) =


<




= rp(f , f ).

Hence, for all x, y ∈ Y ,

ω(r)p(fx,Tx) ≤ p(fx, fy)

implies

Hp(Tx,Ty) ≤ rp(fx, fy).

Let u = , y = f () = . AsT()⊆ f (Y ), there exists a point u =  in Y such that y = f () =
 ∈ T() and T() = {} ⊆ f (Y ), we obtain a point u =  in Y such that y =  = f () ∈ T().
Continuing this way, we construct an orbit {y = y = y = · · · = } for (f ,T) at u = . Also,
f (Y ) is (f ,T)-orbitally complete at u = . So, all the conditions of Corollary A are satisfied.
Moreover, C(f ,T) = {, }.
On the other hand, the metric pS induced by the partial metric p is given by

pS(, ) = pS(, ) = pS(, ) = ,

pS(, ) = pS(, ) =


, pS(, ) = pS(, ) =




,

pS(, ) = pS(, ) =



.

Now, we show that Corollary A is not applicable (in the case of a metric induced by a
partial metric p) in this case. Since

ω(r)pS(f ,T) = ω(r)pS(, ) =  ≤ pS(fx, fy)

is satisfied for any r ∈ [, ), x and y in X, so it must imply HpS (T,T)≤ rp(f , f ). But

HpS (T,T) =HpS
({}, {, }) = 



and

pS(f , f ) = pS(, ) =



<


.

Hence, for any r ∈ [, ),

HpS (T,T)� rp(f , f ).

CorollaryB Let (X,p) be a partialmetric space, Y be any non-empty set and f ,T : Y –→ X
be such that T(Y ) ⊂ f (Y ). Suppose that there exists u ∈ Y such that f (Y ) is (f ,T)-orbitally
complete at u. Assume further that there exists an r ∈ [, ) such that

ω(r)p(fx,Tx) ≤ p(fx, fy)

http://www.fixedpointtheoryandapplications.com/content/2013/1/21
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implies that

p(Tx,Ty) ≤ rmax

{
p(fx, fy),

p(fx,Tx) + p(fy,Ty)


,
p(fx,Ty) + p(fy,Tx)



}

for all x, y ∈ Y . Then C(f ,T) 	= φ. Further, if Y = X and the pair (f ,T) is commuting at x
where x ∈ C(f ,T), then F(f ,T) is a singleton.

Proof It follows from Theorem ., that C(f ,T) 	= φ. If u ∈ C(f ,T), then fu = Tu. Further,
if Y = X and (f ,T) is commuting at u, then ffu = fTu = Tfu. Now,

ω(r)p(fu,Tfu) ≤ p(fu,Tfu) = p(fu,ffu)

implies that

p(fu,ffu) = p(Tu,Tfu)

≤ rMp,f (u, fu)

≤ rmax

{
p(fu,ffu),

p(ffu,Tfu) + p(fu,Tu)


,
p(ffu,Tu) + p(fu,Tfu)



}

≤ rmax

{
p(fu,ffu),

p(ffu,ffu) + p(fu,Tu)


,
p(ffu, fu) + p(fu,ffu)



}

≤ rmax

{
p(fu,ffu),

p(ffu, fu) + p(fu,ffu)


,
p(ffu, fu) + p(fu,ffu)



}

≤ rp(fu,ffu).

As r < , we obtain p(fu,ffu) = , which further implies that pS(fu,ffu) ≤ p(fu,ffu) = .
Hence, fu is a common fixed point of f and T .
For uniqueness, assume there exist z 	= z, such that z = fz = Tz and z = fz = Tz.

Then

ψ(r)p(fz,Tz) ≤ p(fz,Tz) = p(fz, fz) ≤ p(fz, fz),

which implies

p(z, z) = p(Tz,Tz)

≤ rmax

{
p(fz, fz),

p(fz,Tz) + p(fz,Tz)


,
p(fz,Tz) + p(fz,Tz)



}

≤ rmax
{
p(z, z),p(z, z),p(z, z)

}
≤ rp(z, z).

We obtain p(z, z) = , which further implies that pS(z, z) ≤ p(z, z) = . Hence,
z = z. �
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3 An application
In this section, we assume that U and V are Banach spaces, W ⊆ U and D ⊆ V . Suppose
that

τ :W ×D –→W ,

g, g ′,h,h′ :W ×D –→R,

G,F :W ×D×R –→R.

Considering W and D as the state and decision spaces respectively, the problem of dy-
namic programming reduces to the problem of solving the functional equations:

p(x) = sup
y∈D

{
h(x, y) +G

(
x, y,p

(
τ (x, y)

))}
, for x ∈W , (.)

q(x) = sup
y∈D

{
h′(x, y) + F

(
x, y,q

(
τ (x, y)

))}
, for x ∈W . (.)

Then equations (.) and (.) can be reformulated as

p(x) = sup
y∈D

{
g(x, y) +G

(
x, y,p

(
τ (x, y)

))}
– b, for x ∈ W , (.)

q(x) = sup
y∈D

{
g ′(x, y) + F

(
x, y,q

(
τ (x, y)

))}
– b, for x ∈W . (.)

For more on the multistage process involving such functional equations, we refer to [,
–]. Now, we study the existence and uniqueness of a common and bounded solution
of the functional equations (.)-(.) arising in dynamic programming in the setup of
partial metric spaces.
Let B(W ) denote the set of all bounded real-valued functions on W . For an arbitrary

h ∈ B(W ), define ‖h‖ = supx∈W |h(x)|. Then (B(W ),‖ · ‖) is a Banach space endowed with
the metric d defined as d(h,k) = supx∈W |hx – kx|. Now, consider

pB (h,k) = d(h,k) + b = sup
x∈W

|hx – kx| + b, (.)

where h,k ∈ B(W ), b >  and pB is a partial metric on B(W ). Let ω(r) be defined as in
Section . Suppose that the following conditions hold:
(C): G, F , g , and g ′ are bounded.
(C): For x ∈W , h ∈ B(W ) and b > , define

Kh(x) = sup
y∈D

{
g(x, y) +G

(
x, y,h

(
τ (x, y)

))}
– b, (.)

Jh(x) = sup
y∈D

{
g ′(x, y) + F

(
x, y,h

(
τ (x, y)

))}
– b. (.)

Moreover, assume that there exists r ∈ [, ) such that for every (x, y) ∈W ×D, h,k ∈ B(W )
and t ∈W ,

ω(r)pB

(
Kh(t), Jh(t)

) ≤ pB

(
Jh(t), Jk(t)

)
(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/21
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implies

∣∣G(
x, y,h(t)

)
–G

(
x, y,k(t)

)∣∣ ≤ rMpB ,J
(
h(t),k(t)

)
, (.)

where

MpB ,J
(
h(t),k(t)

)
= max

{
pB

(
Jh(t), Jk(t)

)
,
pB (Jk(t),Kk(t)) + pB (Jh(t),Kh(t))


,

pB (Jh(t),Kk(t)) + pB (Jk(t),Kh(t))


}
.

(C): For any h ∈ B(W ), there exists k ∈ B(W ) such that for x ∈W ,

Kh(x) = Jk(x).

(C): There exists h ∈ B(W ) such that

Kh(x) = Jh(x) implies that JKh(x) = KJh(x).

Theorem. Assume that the conditions (C)-(C) are satisfied. If J(B(W )) is a closed con-
vex subspace of B(W ), then the functional equations (.) and (.) have a unique, common
and bounded solution.

Proof Note that (B(W ),pB) is a complete partial metric space. By (C), J , K are self-maps
of B(W ). The condition (C) implies that K(B(W )) ⊆ J(B(W )). It follows from (C) that
J and K commute at their coincidence points. Let λ be an arbitrary positive number and
h,h ∈ B(W ). Choose x ∈W and y, y ∈D such that

Khj < g(x, yj) +G(x, yj,hj(xj) – b + λ, (.)

where xj = τ (x, yj), j = , . Further, from (.) and (.), we have

Kh ≥ g(x, y) +G
(
x, y,h(x)

)
, (.)

Kh ≥ g(x, y) +G
(
x, y,h(x)

)
. (.)

Therefore, (.) in (C) becomes

ω(r)pB
(
Kh(x), Jh(x)

) ≤ pB
(
Jh(x) – Jh(x)

)
. (.)

Then (.) together with (.) and (.) implies

Kh(x) –Kh(x) < G
(
x, y,h(x)

)
–G

(
x, y,h(x)

)
– b + λ

≤ ∣∣G(
x, y,h(x)

)
–G

(
x, y,h(x)

)∣∣ – b + λ

≤ rMpB ,J
(
h(t),k(t)

)
– b + λ. (.)
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Now, (.), (.) and (.) imply

Kh(x) –Kh(x) ≤ G
(
x, y,h(x)

)
–G

(
x, y,h(x)

)
– b

≤ ∣∣G(
x, y,h(x)

)
–G

(
x, y,h(x)

)∣∣ – b

≤ rMpB ,J
(
h(t),k(t)

)
– b. (.)

From (.) and (.), we have

∣∣Kh(x) –Kh(x)
∣∣ + b ≤ rMpB ,J

(
h(t),k(t)

)
. (.)

As the above inequality is true for any x ∈ W and λ >  is taken arbitrarily, so from (.)
we obtain

ω(r)pB(Kh, Jh)≤ pB(Jh, Ih) (.)

implies

pB(Kh,Kh) ≤ rMpB ,J
(
h(t),k(t)

)
. (.)

Therefore, by Corollary B, the pair (K , J) has a common fixed point h∗, that is, h∗(x) is a
unique, bounded and common solution of (.) and (.). �
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